/* -*- c-basic-offset: 4 -*- */ /* * Copyright © 2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include "i915_disasm.h" #include "i915_reg.h" #define BUFFER_FAIL(_count, _len, _name) do { \ fprintf(out, "Buffer size too small in %s (%d < %d)\n", \ (_name), (_count), (_len)); \ (*failures)++; \ return count; \ } while (0) FILE *out; static float int_as_float(uint32_t intval) { union intfloat { uint32_t i; float f; } uval; uval.i = intval; return uval.f; } static void instr_out(uint32_t *data, uint32_t hw_offset, unsigned int index, char *fmt, ...) { va_list va; fprintf(out, "0x%08x: 0x%08x: ", hw_offset + index * 4, data[index]); va_start(va, fmt); vfprintf(out, fmt, va); va_end(va); } static int decode_mi(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_mi[] = { { 0x08, 1, 1, "MI_ARB_ON_OFF" }, { 0x0a, 1, 1, "MI_BATCH_BUFFER_END" }, { 0x31, 2, 2, "MI_BATCH_BUFFER_START" }, { 0x14, 3, 3, "MI_DISPLAY_BUFFER_INFO" }, { 0x04, 1, 1, "MI_FLUSH" }, { 0x22, 3, 3, "MI_LOAD_REGISTER_IMM" }, { 0x13, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" }, { 0x12, 2, 2, "MI_LOAD_SCAN_LINES_INCL" }, { 0x00, 1, 1, "MI_NOOP" }, { 0x11, 2, 2, "MI_OVERLAY_FLIP" }, { 0x07, 1, 1, "MI_REPORT_HEAD" }, { 0x18, 2, 2, "MI_SET_CONTEXT" }, { 0x20, 3, 4, "MI_STORE_DATA_IMM" }, { 0x21, 3, 4, "MI_STORE_DATA_INDEX" }, { 0x24, 3, 3, "MI_STORE_REGISTER_MEM" }, { 0x02, 1, 1, "MI_USER_INTERRUPT" }, { 0x03, 1, 1, "MI_WAIT_FOR_EVENT" }, }; for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]); opcode++) { if ((data[0] & 0x1e000000) >> 23 == opcodes_mi[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_mi[opcode].name); if (opcodes_mi[opcode].max_len > 1) { len = (data[0] & 0x000000ff) + 2; if (len < opcodes_mi[opcode].min_len || len > opcodes_mi[opcode].max_len) { fprintf(out, "Bad length in %s\n", opcodes_mi[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_mi[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "MI UNKNOWN\n"); (*failures)++; return 1; } static int decode_2d(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_2d[] = { { 0x40, 5, 5, "COLOR_BLT" }, { 0x43, 6, 6, "SRC_COPY_BLT" }, { 0x01, 8, 8, "XY_SETUP_BLT" }, { 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" }, { 0x03, 3, 3, "XY_SETUP_CLIP_BLT" }, { 0x24, 2, 2, "XY_PIXEL_BLT" }, { 0x25, 3, 3, "XY_SCANLINES_BLT" }, { 0x26, 4, 4, "Y_TEXT_BLT" }, { 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" }, { 0x50, 6, 6, "XY_COLOR_BLT" }, { 0x51, 6, 6, "XY_PAT_BLT" }, { 0x76, 8, 8, "XY_PAT_CHROMA_BLT" }, { 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" }, { 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" }, { 0x52, 9, 9, "XY_MONO_PAT_BLT" }, { 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" }, { 0x53, 8, 8, "XY_SRC_COPY_BLT" }, { 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" }, { 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" }, { 0x55, 9, 9, "XY_FULL_BLT" }, { 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" }, { 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" }, { 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" }, { 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" }, { 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" }, }; for (opcode = 0; opcode < sizeof(opcodes_2d) / sizeof(opcodes_2d[0]); opcode++) { if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_2d[opcode].name); if (opcodes_2d[opcode].max_len > 1) { len = (data[0] & 0x000000ff) + 2; if (len < opcodes_2d[opcode].min_len || len > opcodes_2d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_2d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_2d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "2D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_1c(uint32_t *data, int count, uint32_t hw_offset, int *failures) { switch ((data[0] & 0x00f80000) >> 19) { case 0x11: instr_out(data, hw_offset, 0, "3DSTATE_DEPTH_SUBRECTANGLE_DISALBE\n"); return 1; case 0x10: instr_out(data, hw_offset, 0, "3DSTATE_SCISSOR_ENABLE\n"); return 1; } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_1d(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int len, i, c, opcode, word, map, sampler, instr; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d_1d[] = { { 0x8e, 3, 3, "3DSTATE_BUFFER_INFO" }, { 0x86, 4, 4, "3DSTATE_CHROMA_KEY" }, { 0x9c, 1, 1, "3DSTATE_CLEAR_PARAMETERS" }, { 0x88, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" }, { 0x99, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" }, { 0x9a, 2, 2, "3DSTATE_DEFAULT_SPECULAR" }, { 0x98, 2, 2, "3DSTATE_DEFAULT_Z" }, { 0x97, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" }, { 0x85, 2, 2, "3DSTATE_DEST_BUFFER_VARIABLES" }, { 0x80, 5, 5, "3DSTATE_DRAWING_RECTANGLE" }, { 0x8e, 3, 3, "3DSTATE_BUFFER_INFO" }, { 0x9d, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" }, { 0x9e, 4, 4, "3DSTATE_MONO_FILTER" }, { 0x89, 4, 4, "3DSTATE_FOG_MODE" }, { 0x8f, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" }, { 0x81, 3, 3, "3DSTATE_SCISSOR_RECTANGLE" }, { 0x83, 2, 2, "3DSTATE_SPAN_STIPPLE" }, }; switch ((data[0] & 0x00ff0000) >> 16) { case 0x07: /* This instruction is unusual. A 0 length means just 1 DWORD instead of * 2. The 0 length is specified in one place to be unsupported, but * stated to be required in another, and 0 length LOAD_INDIRECTs appear * to cause no harm at least. */ instr_out(data, hw_offset, 0, "3DSTATE_LOAD_INDIRECT\n"); len = (data[0] & 0x000000ff) + 1; i = 1; if (data[0] & (0x01 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "SIS.0\n"); instr_out(data, hw_offset, i++, "SIS.1\n"); } if (data[0] & (0x02 << 8)) { if (i + 1 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "DIS.0\n"); } if (data[0] & (0x04 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "SSB.0\n"); instr_out(data, hw_offset, i++, "SSB.1\n"); } if (data[0] & (0x08 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "MSB.0\n"); instr_out(data, hw_offset, i++, "MSB.1\n"); } if (data[0] & (0x10 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "PSP.0\n"); instr_out(data, hw_offset, i++, "PSP.1\n"); } if (data[0] & (0x20 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "PSC.0\n"); instr_out(data, hw_offset, i++, "PSC.1\n"); } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n"); (*failures)++; return len; } return len; case 0x04: instr_out(data, hw_offset, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_1\n"); len = (data[0] & 0x0000000f) + 2; i = 1; for (word = 0; word <= 7; word++) { if (data[0] & (1 << (4 + word))) { if (i >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_STATE_IMMEDIATE_1"); instr_out(data, hw_offset, i++, "S%d\n", word); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n"); (*failures)++; } return len; case 0x00: instr_out(data, hw_offset, 0, "3DSTATE_MAP_STATE\n"); len = (data[0] & 0x0000003f) + 2; i = 1; for (map = 0; map <= 15; map++) { if (data[1] & (1 << map)) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE"); instr_out(data, hw_offset, i++, "map %d MS2\n", map); instr_out(data, hw_offset, i++, "map %d MS3\n", map); instr_out(data, hw_offset, i++, "map %d MS4\n", map); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n"); (*failures)++; return len; } return len; case 0x06: instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_CONSTANTS\n"); len = (data[0] & 0x000000ff) + 2; i = 1; for (c = 0; c <= 31; c++) { if (data[1] & (1 << c)) { if (i + 4 >= count) BUFFER_FAIL(count, len, "3DSTATE_PIXEL_SHADER_CONSTANTS"); instr_out(data, hw_offset, i, "C%d.X = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.Y = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.Z = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.W = %f\n", c, int_as_float(data[i])); i++; } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n"); (*failures)++; } return len; case 0x05: instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n"); len = (data[0] & 0x000000ff) + 2; if ((len - 1) % 3 != 0 || len > 370) { fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n"); (*failures)++; } i = 1; for (instr = 0; instr < (len - 1) / 3; instr++) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE"); instr_out(data, hw_offset, i++, "PS%03x\n", instr); instr_out(data, hw_offset, i++, "PS%03x\n", instr); instr_out(data, hw_offset, i++, "PS%03x\n", instr); } return len; case 0x01: instr_out(data, hw_offset, 0, "3DSTATE_SAMPLER_STATE\n"); len = (data[0] & 0x0000003f) + 2; i = 1; for (sampler = 0; sampler <= 15; sampler++) { if (data[1] & (1 << sampler)) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_SAMPLER_STATE"); instr_out(data, hw_offset, i++, "sampler %d SS2\n", sampler); instr_out(data, hw_offset, i++, "sampler %d SS3\n", sampler); instr_out(data, hw_offset, i++, "sampler %d SS4\n", sampler); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n"); (*failures)++; } return len; } for (opcode = 0; opcode < sizeof(opcodes_3d_1d) / sizeof(opcodes_3d_1d[0]); opcode++) { if (((data[0] & 0x00ff0000) >> 16) == opcodes_3d_1d[opcode].opcode) { len = 1; instr_out(data, hw_offset, 0, "%s\n", opcodes_3d_1d[opcode].name); if (opcodes_3d_1d[opcode].max_len > 1) { len = (data[0] & 0x0000ffff) + 2; if (len < opcodes_3d_1d[opcode].min_len || len > opcodes_3d_1d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_3d_1d[opcode].name); (*failures)++; } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_3d_1d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_primitive(uint32_t *data, int count, uint32_t hw_offset, int *failures) { char immediate = (data[0] & (1 << 23)) == 0; unsigned int len, i; /* XXX: 3DPRIM_DIB not supported */ if (immediate) { len = (data[0] & 0x0003ffff) + 2; instr_out(data, hw_offset, 0, "3DPRIMITIVE inline\n"); if (count < len) BUFFER_FAIL(count, len, "3DPRIMITIVE inline"); for (i = 1; i < len; i++) { instr_out(data, hw_offset, i, " vertex data (%f float)\n", int_as_float(data[i])); } } else { /* indirect vertices */ len = data[0] & 0x0000ffff; /* index count */ if (data[0] & (1 << 17)) { /* random vertex access */ if (count < (len + 1) / 2 + 1) { BUFFER_FAIL(count, (len + 1) / 2 + 1, "3DPRIMITIVE random indirect"); } instr_out(data, hw_offset, 0, "3DPRIMITIVE random indirect (%d)\n", len); if (len == 0) { /* vertex indices continue until 0xffff is found */ for (i = 1; i < count; i++) { if ((data[i] & 0xffff) == 0xffff) { instr_out(data, hw_offset, i, " indices: (terminator)\n"); return i; } else if ((data[i] >> 16) == 0xffff) { instr_out(data, hw_offset, i, " indices: 0x%04x, " "(terminator)\n", data[i] & 0xffff); return i; } else { instr_out(data, hw_offset, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } fprintf(out, "3DPRIMITIVE: no terminator found in index buffer\n"); (*failures)++; return count; } else { /* fixed size vertex index buffer */ for (i = 0; i < len; i += 2) { if (i * 2 == len - 1) { instr_out(data, hw_offset, i, " indices: 0x%04x\n", data[i] & 0xffff); } else { instr_out(data, hw_offset, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } } return (len + 1) / 2 + 1; } else { /* sequential vertex access */ if (count < 2) BUFFER_FAIL(count, 2, "3DPRIMITIVE seq indirect"); instr_out(data, hw_offset, 0, "3DPRIMITIVE sequential indirect, %d starting from %d\n", len, data[1] & 0xffff); instr_out(data, hw_offset, 1, " start\n"); return 2; } } return len; } static int decode_3d(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" }, { 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" }, { 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" }, { 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" }, { 0x0d, 1, 1, "3DSTATE_MODES_4" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" }, }; switch ((data[0] & 0x1f000000) >> 24) { case 0x1f: return decode_3d_primitive(data, count, hw_offset, failures); case 0x1d: return decode_3d_1d(data, count, hw_offset, failures); case 0x1c: return decode_3d_1c(data, count, hw_offset, failures); } for (opcode = 0; opcode < sizeof(opcodes_3d) / sizeof(opcodes_3d[0]); opcode++) { if ((data[0] & 0x1f000000) >> 24 == opcodes_3d[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_3d[opcode].name); if (opcodes_3d[opcode].max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcodes_3d[opcode].min_len || len > opcodes_3d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_3d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_3d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } /** * Decodes an i830-i915 batch buffer, writing the output to stdout. * * \param data batch buffer contents * \param count number of DWORDs to decode in the batch buffer * \param hw_offset hardware address for the buffer */ int i915_disasm(uint32_t *data, int count, uint32_t hw_offset) { int index = 0; int failures = 0; out = stdout; while (index < count) { switch ((data[index] & 0xe0000000) >> 29) { case 0x0: index += decode_mi(data + index, count - index, hw_offset + index * 4, &failures); break; case 0x2: index += decode_2d(data + index, count - index, hw_offset + index * 4, &failures); break; case 0x3: index += decode_3d(data + index, count - index, hw_offset + index * 4, &failures); break; default: instr_out(data, hw_offset, index, "UNKNOWN\n"); failures++; index++; break; } fflush(out); } return failures; }