/* -*- c-basic-offset: 4 -*- */ /* * Copyright © 2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ /** @file intel_decode.c * This file contains code to print out batchbuffer contents in a * human-readable format. * * The current version only supports i915 packets, and only pretty-prints a * subset of them. The intention is for it to make just a best attempt to * decode, but never crash in the process. */ #include #include #include #include "intel_decode.h" #include "intel_chipset.h" #define BUFFER_FAIL(_count, _len, _name) do { \ fprintf(out, "Buffer size too small in %s (%d < %d)\n", \ (_name), (_count), (_len)); \ (*failures)++; \ return count; \ } while (0) static FILE *out; static uint32_t saved_s2 = 0, saved_s4 = 0; static char saved_s2_set = 0, saved_s4_set = 0; static float int_as_float(uint32_t intval) { union intfloat { uint32_t i; float f; } uval; uval.i = intval; return uval.f; } static void instr_out(uint32_t *data, uint32_t hw_offset, unsigned int index, char *fmt, ...) { va_list va; fprintf(out, "0x%08x: 0x%08x:%s ", hw_offset + index * 4, data[index], index == 0 ? "" : " "); va_start(va, fmt); vfprintf(out, fmt, va); va_end(va); } static int decode_mi(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_mi[] = { { 0x08, 1, 1, "MI_ARB_ON_OFF" }, { 0x0a, 1, 1, "MI_BATCH_BUFFER_END" }, { 0x31, 2, 2, "MI_BATCH_BUFFER_START" }, { 0x14, 3, 3, "MI_DISPLAY_BUFFER_INFO" }, { 0x04, 1, 1, "MI_FLUSH" }, { 0x22, 3, 3, "MI_LOAD_REGISTER_IMM" }, { 0x13, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" }, { 0x12, 2, 2, "MI_LOAD_SCAN_LINES_INCL" }, { 0x00, 1, 1, "MI_NOOP" }, { 0x11, 2, 2, "MI_OVERLAY_FLIP" }, { 0x07, 1, 1, "MI_REPORT_HEAD" }, { 0x18, 2, 2, "MI_SET_CONTEXT" }, { 0x20, 3, 4, "MI_STORE_DATA_IMM" }, { 0x21, 3, 4, "MI_STORE_DATA_INDEX" }, { 0x24, 3, 3, "MI_STORE_REGISTER_MEM" }, { 0x02, 1, 1, "MI_USER_INTERRUPT" }, { 0x03, 1, 1, "MI_WAIT_FOR_EVENT" }, }; for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]); opcode++) { if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_mi[opcode].name); if (opcodes_mi[opcode].max_len > 1) { len = (data[0] & 0x000000ff) + 2; if (len < opcodes_mi[opcode].min_len || len > opcodes_mi[opcode].max_len) { fprintf(out, "Bad length in %s\n", opcodes_mi[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_mi[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "MI UNKNOWN\n"); (*failures)++; return 1; } static int decode_2d(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode, len; char *format = NULL; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_2d[] = { { 0x40, 5, 5, "COLOR_BLT" }, { 0x43, 6, 6, "SRC_COPY_BLT" }, { 0x01, 8, 8, "XY_SETUP_BLT" }, { 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" }, { 0x03, 3, 3, "XY_SETUP_CLIP_BLT" }, { 0x24, 2, 2, "XY_PIXEL_BLT" }, { 0x25, 3, 3, "XY_SCANLINES_BLT" }, { 0x26, 4, 4, "Y_TEXT_BLT" }, { 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" }, { 0x50, 6, 6, "XY_COLOR_BLT" }, { 0x51, 6, 6, "XY_PAT_BLT" }, { 0x76, 8, 8, "XY_PAT_CHROMA_BLT" }, { 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" }, { 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" }, { 0x52, 9, 9, "XY_MONO_PAT_BLT" }, { 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" }, { 0x53, 8, 8, "XY_SRC_COPY_BLT" }, { 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" }, { 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" }, { 0x55, 9, 9, "XY_FULL_BLT" }, { 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" }, { 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" }, { 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" }, { 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" }, { 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" }, }; switch ((data[0] & 0x1fc00000) >> 22) { case 0x50: instr_out(data, hw_offset, 0, "XY_COLOR_BLT (rgb %sabled, alpha %sabled, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; if (len != 6) fprintf(out, "Bad count in XY_COLOR_BLT\n"); if (count < 6) BUFFER_FAIL(count, len, "XY_COLOR_BLT"); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } instr_out(data, hw_offset, 1, "format %s, pitch %d, " "clipping %sabled\n", format, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); instr_out(data, hw_offset, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(data, hw_offset, 3, "(%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(data, hw_offset, 4, "offset 0x%08x\n", data[4]); instr_out(data, hw_offset, 5, "color\n"); return len; case 0x53: instr_out(data, hw_offset, 0, "XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled, " "src tile %d, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 15) & 1, (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; if (len != 8) fprintf(out, "Bad count in XY_SRC_COPY_BLT\n"); if (count < 8) BUFFER_FAIL(count, len, "XY_SRC_COPY_BLT"); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } instr_out(data, hw_offset, 1, "format %s, dst pitch %d, " "clipping %sabled\n", format, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); instr_out(data, hw_offset, 2, "dst (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(data, hw_offset, 3, "dst (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(data, hw_offset, 4, "dst offset 0x%08x\n", data[4]); instr_out(data, hw_offset, 5, "src (%d,%d)\n", data[5] & 0xffff, data[5] >> 16); instr_out(data, hw_offset, 6, "src pitch %d\n", (short)(data[6] & 0xffff)); instr_out(data, hw_offset, 7, "src offset 0x%08x\n", data[7]); return len; } for (opcode = 0; opcode < sizeof(opcodes_2d) / sizeof(opcodes_2d[0]); opcode++) { if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) { unsigned int i; len = 1; instr_out(data, hw_offset, 0, "%s\n", opcodes_2d[opcode].name); if (opcodes_2d[opcode].max_len > 1) { len = (data[0] & 0x000000ff) + 2; if (len < opcodes_2d[opcode].min_len || len > opcodes_2d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_2d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_2d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "2D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_1c(uint32_t *data, int count, uint32_t hw_offset, int *failures) { switch ((data[0] & 0x00f80000) >> 19) { case 0x11: instr_out(data, hw_offset, 0, "3DSTATE_DEPTH_SUBRECTANGLE_DISALBE\n"); return 1; case 0x10: instr_out(data, hw_offset, 0, "3DSTATE_SCISSOR_ENABLE\n"); return 1; case 0x01: instr_out(data, hw_offset, 0, "3DSTATE_MAP_COORD_SET_I830\n"); return 1; case 0x0a: instr_out(data, hw_offset, 0, "3DSTATE_MAP_CUBE_I830\n"); return 1; case 0x05: instr_out(data, hw_offset, 0, "3DSTATE_MAP_TEX_STREAM_I830\n"); return 1; } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_1d(uint32_t *data, int count, uint32_t hw_offset, int *failures, int i830) { unsigned int len, i, c, opcode, word, map, sampler, instr; struct { uint32_t opcode; int i830_only; int min_len; int max_len; char *name; } opcodes_3d_1d[] = { { 0x8e, 0, 3, 3, "3DSTATE_BUFFER_INFO" }, { 0x86, 0, 4, 4, "3DSTATE_CHROMA_KEY" }, { 0x9c, 0, 1, 1, "3DSTATE_CLEAR_PARAMETERS" }, { 0x88, 0, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" }, { 0x99, 0, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" }, { 0x9a, 0, 2, 2, "3DSTATE_DEFAULT_SPECULAR" }, { 0x98, 0, 2, 2, "3DSTATE_DEFAULT_Z" }, { 0x97, 0, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" }, { 0x85, 0, 2, 2, "3DSTATE_DEST_BUFFER_VARIABLES" }, { 0x80, 0, 5, 5, "3DSTATE_DRAWING_RECTANGLE" }, { 0x8e, 0, 3, 3, "3DSTATE_BUFFER_INFO" }, { 0x9d, 0, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" }, { 0x9e, 0, 4, 4, "3DSTATE_MONO_FILTER" }, { 0x89, 0, 4, 4, "3DSTATE_FOG_MODE" }, { 0x8f, 0, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" }, { 0x81, 0, 3, 3, "3DSTATE_SCISSOR_RECTANGLE" }, { 0x83, 0, 2, 2, "3DSTATE_SPAN_STIPPLE" }, { 0x8c, 1, 2, 2, "3DSTATE_MAP_COORD_TRANSFORM_I830" }, { 0x8b, 1, 2, 2, "3DSTATE_MAP_VERTEX_TRANSFORM_I830" }, { 0x8d, 1, 3, 3, "3DSTATE_W_STATE_I830" }, { 0x01, 1, 2, 2, "3DSTATE_COLOR_FACTOR_I830" }, { 0x02, 1, 2, 2, "3DSTATE_MAP_COORD_SETBIND_I830" }, }; switch ((data[0] & 0x00ff0000) >> 16) { case 0x07: /* This instruction is unusual. A 0 length means just 1 DWORD instead of * 2. The 0 length is specified in one place to be unsupported, but * stated to be required in another, and 0 length LOAD_INDIRECTs appear * to cause no harm at least. */ instr_out(data, hw_offset, 0, "3DSTATE_LOAD_INDIRECT\n"); len = (data[0] & 0x000000ff) + 1; i = 1; if (data[0] & (0x01 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "SIS.0\n"); instr_out(data, hw_offset, i++, "SIS.1\n"); } if (data[0] & (0x02 << 8)) { if (i + 1 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "DIS.0\n"); } if (data[0] & (0x04 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "SSB.0\n"); instr_out(data, hw_offset, i++, "SSB.1\n"); } if (data[0] & (0x08 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "MSB.0\n"); instr_out(data, hw_offset, i++, "MSB.1\n"); } if (data[0] & (0x10 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "PSP.0\n"); instr_out(data, hw_offset, i++, "PSP.1\n"); } if (data[0] & (0x20 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "PSC.0\n"); instr_out(data, hw_offset, i++, "PSC.1\n"); } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n"); (*failures)++; return len; } return len; case 0x04: instr_out(data, hw_offset, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_1\n"); len = (data[0] & 0x0000000f) + 2; i = 1; for (word = 0; word <= 7; word++) { if (data[0] & (1 << (4 + word))) { if (i >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_STATE_IMMEDIATE_1"); /* save vertex state for decode */ if (word == 2) { saved_s2_set = 1; saved_s2 = data[i]; } if (word == 4) { saved_s4_set = 1; saved_s4 = data[i]; } instr_out(data, hw_offset, i++, "S%d\n", word); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n"); (*failures)++; } return len; case 0x00: instr_out(data, hw_offset, 0, "3DSTATE_MAP_STATE\n"); len = (data[0] & 0x0000003f) + 2; i = 1; for (map = 0; map <= 15; map++) { if (data[1] & (1 << map)) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE"); instr_out(data, hw_offset, i++, "map %d MS2\n", map); instr_out(data, hw_offset, i++, "map %d MS3\n", map); instr_out(data, hw_offset, i++, "map %d MS4\n", map); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n"); (*failures)++; return len; } return len; case 0x06: instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_CONSTANTS\n"); len = (data[0] & 0x000000ff) + 2; i = 1; for (c = 0; c <= 31; c++) { if (data[1] & (1 << c)) { if (i + 4 >= count) BUFFER_FAIL(count, len, "3DSTATE_PIXEL_SHADER_CONSTANTS"); instr_out(data, hw_offset, i, "C%d.X = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.Y = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.Z = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.W = %f\n", c, int_as_float(data[i])); i++; } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n"); (*failures)++; } return len; case 0x05: instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n"); len = (data[0] & 0x000000ff) + 2; if ((len - 1) % 3 != 0 || len > 370) { fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n"); (*failures)++; } i = 1; for (instr = 0; instr < (len - 1) / 3; instr++) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE"); instr_out(data, hw_offset, i++, "PS%03x\n", instr); instr_out(data, hw_offset, i++, "PS%03x\n", instr); instr_out(data, hw_offset, i++, "PS%03x\n", instr); } return len; case 0x01: if (i830) break; instr_out(data, hw_offset, 0, "3DSTATE_SAMPLER_STATE\n"); len = (data[0] & 0x0000003f) + 2; i = 1; for (sampler = 0; sampler <= 15; sampler++) { if (data[1] & (1 << sampler)) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_SAMPLER_STATE"); instr_out(data, hw_offset, i++, "sampler %d SS2\n", sampler); instr_out(data, hw_offset, i++, "sampler %d SS3\n", sampler); instr_out(data, hw_offset, i++, "sampler %d SS4\n", sampler); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n"); (*failures)++; } return len; } for (opcode = 0; opcode < sizeof(opcodes_3d_1d) / sizeof(opcodes_3d_1d[0]); opcode++) { if (opcodes_3d_1d[opcode].i830_only && !i830) continue; if (((data[0] & 0x00ff0000) >> 16) == opcodes_3d_1d[opcode].opcode) { len = 1; instr_out(data, hw_offset, 0, "%s\n", opcodes_3d_1d[opcode].name); if (opcodes_3d_1d[opcode].max_len > 1) { len = (data[0] & 0x0000ffff) + 2; if (len < opcodes_3d_1d[opcode].min_len || len > opcodes_3d_1d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_3d_1d[opcode].name); (*failures)++; } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_3d_1d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_primitive(uint32_t *data, int count, uint32_t hw_offset, int *failures) { char immediate = (data[0] & (1 << 23)) == 0; unsigned int len, i; char *primtype; switch ((data[0] >> 18) & 0xf) { case 0x0: primtype = "TRILIST"; break; case 0x1: primtype = "TRISTRIP"; break; case 0x2: primtype = "TRISTRIP_REVERSE"; break; case 0x3: primtype = "TRIFAN"; break; case 0x4: primtype = "POLYGON"; break; case 0x5: primtype = "LINELIST"; break; case 0x6: primtype = "LINESTRIP"; break; case 0x7: primtype = "RECTLIST"; break; case 0x8: primtype = "POINTLIST"; break; case 0x9: primtype = "DIB"; break; case 0xa: primtype = "CLEAR_RECT"; break; default: primtype = "unknown"; break; } /* XXX: 3DPRIM_DIB not supported */ if (immediate) { len = (data[0] & 0x0003ffff) + 2; instr_out(data, hw_offset, 0, "3DPRIMITIVE inline %s\n", primtype); if (count < len) BUFFER_FAIL(count, len, "3DPRIMITIVE inline"); if (!saved_s2_set || !saved_s4_set) { fprintf(out, "unknown vertex format\n"); for (i = 1; i < len; i++) { instr_out(data, hw_offset, i, " vertex data (%f float)\n", int_as_float(data[i])); } } else { unsigned int vertex = 0; for (i = 1; i < len;) { unsigned int tc; #define VERTEX_OUT(fmt, ...) do { \ if (i < len) \ instr_out(data, hw_offset, i, " V%d."fmt"\n", vertex, __VA_ARGS__); \ else \ fprintf(out, " missing data in V%d\n", vertex); \ i++; \ } while (0) VERTEX_OUT("X = %f", int_as_float(data[i])); VERTEX_OUT("Y = %f", int_as_float(data[i])); switch (saved_s4 >> 6 & 0x7) { case 0x1: VERTEX_OUT("Z = %f", int_as_float(data[i])); break; case 0x2: VERTEX_OUT("Z = %f", int_as_float(data[i])); VERTEX_OUT("W = %f", int_as_float(data[i])); break; case 0x3: break; case 0x4: VERTEX_OUT("W = %f", int_as_float(data[i])); break; default: fprintf(out, "bad S4 position mask\n"); } if (saved_s4 & (1 << 10)) { VERTEX_OUT("color = (A=0x%02x, R=0x%02x, G=0x%02x, " "B=0x%02x)", data[i] >> 24, (data[i] >> 16) & 0xff, (data[i] >> 8) & 0xff, data[i] & 0xff); } if (saved_s4 & (1 << 11)) { VERTEX_OUT("spec = (A=0x%02x, R=0x%02x, G=0x%02x, " "B=0x%02x)", data[i] >> 24, (data[i] >> 16) & 0xff, (data[i] >> 8) & 0xff, data[i] & 0xff); } if (saved_s4 & (1 << 12)) VERTEX_OUT("width = 0x%08x)", data[i]); for (tc = 0; tc <= 7; tc++) { switch ((saved_s2 >> (tc * 4)) & 0xf) { case 0x0: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i])); break; case 0x1: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data[i])); break; case 0x2: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.W = %f", tc, int_as_float(data[i])); break; case 0x3: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); break; case 0x4: VERTEX_OUT("T%d.XY = 0x%08x half-float", tc, data[i]); break; case 0x5: VERTEX_OUT("T%d.XY = 0x%08x half-float", tc, data[i]); VERTEX_OUT("T%d.ZW = 0x%08x half-float", tc, data[i]); break; case 0xf: break; default: fprintf(out, "bad S2.T%d format\n", tc); } } vertex++; } } } else { /* indirect vertices */ len = data[0] & 0x0000ffff; /* index count */ if (data[0] & (1 << 17)) { /* random vertex access */ if (count < (len + 1) / 2 + 1) { BUFFER_FAIL(count, (len + 1) / 2 + 1, "3DPRIMITIVE random indirect"); } instr_out(data, hw_offset, 0, "3DPRIMITIVE random indirect %s (%d)\n", primtype, len); if (len == 0) { /* vertex indices continue until 0xffff is found */ for (i = 1; i < count; i++) { if ((data[i] & 0xffff) == 0xffff) { instr_out(data, hw_offset, i, " indices: (terminator)\n"); return i; } else if ((data[i] >> 16) == 0xffff) { instr_out(data, hw_offset, i, " indices: 0x%04x, " "(terminator)\n", data[i] & 0xffff); return i; } else { instr_out(data, hw_offset, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } fprintf(out, "3DPRIMITIVE: no terminator found in index buffer\n"); (*failures)++; return count; } else { /* fixed size vertex index buffer */ for (i = 0; i < len; i += 2) { if (i * 2 == len - 1) { instr_out(data, hw_offset, i, " indices: 0x%04x\n", data[i] & 0xffff); } else { instr_out(data, hw_offset, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } } return (len + 1) / 2 + 1; } else { /* sequential vertex access */ if (count < 2) BUFFER_FAIL(count, 2, "3DPRIMITIVE seq indirect"); instr_out(data, hw_offset, 0, "3DPRIMITIVE sequential indirect %s, %d starting from " "%d\n", primtype, len, data[1] & 0xffff); instr_out(data, hw_offset, 1, " start\n"); return 2; } } return len; } static int decode_3d(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" }, { 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" }, { 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" }, { 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" }, { 0x0d, 1, 1, "3DSTATE_MODES_4" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" }, }; switch ((data[0] & 0x1f000000) >> 24) { case 0x1f: return decode_3d_primitive(data, count, hw_offset, failures); case 0x1d: return decode_3d_1d(data, count, hw_offset, failures, 0); case 0x1c: return decode_3d_1c(data, count, hw_offset, failures); } for (opcode = 0; opcode < sizeof(opcodes_3d) / sizeof(opcodes_3d[0]); opcode++) { if ((data[0] & 0x1f000000) >> 24 == opcodes_3d[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_3d[opcode].name); if (opcodes_3d[opcode].max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcodes_3d[opcode].min_len || len > opcodes_3d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_3d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_3d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } static const char * get_965_surfacetype(unsigned int surfacetype) { switch (surfacetype) { case 0: return "1D"; case 1: return "2D"; case 2: return "3D"; case 3: return "CUBE"; case 4: return "BUFFER"; case 7: return "NULL"; default: return "unknown"; } } static const char * get_965_depthformat(unsigned int depthformat) { switch (depthformat) { case 0: return "s8_z24float"; case 1: return "z32float"; case 2: return "z24s8"; case 5: return "z16"; default: return "unknown"; } } static const char * get_965_element_component(uint32_t data, int component) { uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7; switch (component_control) { case 0: return "nostore"; case 1: switch (component) { case 0: return "X"; case 1: return "Y"; case 2: return "Z"; case 3: return "W"; default: return "fail"; } case 2: return "0.0"; case 3: return "1.0"; case 4: return "0x1"; case 5: return "VID"; default: return "fail"; } } static const char * get_965_prim_type(uint32_t data) { uint32_t primtype = (data >> 10) & 0x1f; switch (primtype) { case 0x01: return "point list"; case 0x02: return "line list"; case 0x03: return "line strip"; case 0x04: return "tri list"; case 0x05: return "tri strip"; case 0x06: return "tri fan"; case 0x07: return "quad list"; case 0x08: return "quad strip"; case 0x09: return "line list adj"; case 0x0a: return "line strip adj"; case 0x0b: return "tri list adj"; case 0x0c: return "tri strip adj"; case 0x0d: return "tri strip reverse"; case 0x0e: return "polygon"; case 0x0f: return "rect list"; case 0x10: return "line loop"; case 0x11: return "point list bf"; case 0x12: return "line strip cont"; case 0x13: return "line strip bf"; case 0x14: return "line strip cont bf"; case 0x15: return "tri fan no stipple"; default: return "fail"; } } static int decode_3d_965(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode, len; int i; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x6000, 3, 3, "URB_FENCE" }, { 0x6001, 2, 2, "CS_URB_STATE" }, { 0x6002, 2, 2, "CONSTANT_BUFFER" }, { 0x6101, 6, 6, "STATE_BASE_ADDRESS" }, { 0x6102, 2, 2 , "STATE_SIP" }, { 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x680b, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x6904, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x7800, 7, 7, "3DSTATE_PIPELINED_POINTERS" }, { 0x7801, 6, 6, "3DSTATE_BINDING_TABLE_POINTERS" }, { 0x780b, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x7808, 5, 257, "3DSTATE_VERTEX_BUFFERS" }, { 0x7809, 3, 256, "3DSTATE_VERTEX_ELEMENTS" }, { 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" }, { 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" }, { 0x7901, 5, 5, "3DSTATE_CONSTANT_COLOR" }, { 0x7905, 5, 7, "3DSTATE_DEPTH_BUFFER" }, { 0x7906, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" }, { 0x7907, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" }, { 0x7908, 3, 3, "3DSTATE_LINE_STIPPLE" }, { 0x7909, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" }, { 0x790a, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" }, { 0x7b00, 6, 6, "3DPRIMITIVE" }, }; len = (data[0] & 0x0000ffff) + 2; switch ((data[0] & 0xffff0000) >> 16) { case 0x6101: if (len != 6) fprintf(out, "Bad count in STATE_BASE_ADDRESS\n"); if (count < 6) BUFFER_FAIL(count, len, "STATE_BASE_ADDRESS"); instr_out(data, hw_offset, 0, "STATE_BASE_ADDRESS\n"); if (data[1] & 1) { instr_out(data, hw_offset, 1, "General state at 0x%08x\n", data[1] & ~1); } else instr_out(data, hw_offset, 1, "General state not updated\n"); if (data[2] & 1) { instr_out(data, hw_offset, 2, "Surface state at 0x%08x\n", data[2] & ~1); } else instr_out(data, hw_offset, 2, "Surface state not updated\n"); if (data[3] & 1) { instr_out(data, hw_offset, 3, "Indirect state at 0x%08x\n", data[3] & ~1); } else instr_out(data, hw_offset, 3, "Indirect state not updated\n"); if (data[4] & 1) { instr_out(data, hw_offset, 4, "General state upper bound 0x%08x\n", data[4] & ~1); } else instr_out(data, hw_offset, 4, "General state not updated\n"); if (data[5] & 1) { instr_out(data, hw_offset, 5, "Indirect state upper bound 0x%08x\n", data[5] & ~1); } else instr_out(data, hw_offset, 5, "Indirect state not updated\n"); return len; case 0x7800: if (len != 7) fprintf(out, "Bad count in 3DSTATE_PIPELINED_POINTERS\n"); if (count < 7) BUFFER_FAIL(count, len, "3DSTATE_PIPELINED_POINTERS"); instr_out(data, hw_offset, 0, "3DSTATE_PIPELINED_POINTERS\n"); instr_out(data, hw_offset, 1, "VS state\n"); instr_out(data, hw_offset, 2, "GS state\n"); instr_out(data, hw_offset, 3, "Clip state\n"); instr_out(data, hw_offset, 4, "SF state\n"); instr_out(data, hw_offset, 5, "WM state\n"); instr_out(data, hw_offset, 6, "CC state\n"); return len; case 0x7801: if (len != 6) fprintf(out, "Bad count in 3DSTATE_BINDING_TABLE_POINTERS\n"); if (count < 6) BUFFER_FAIL(count, len, "3DSTATE_BINDING_TABLE_POINTERS"); instr_out(data, hw_offset, 0, "3DSTATE_BINDING_TABLE_POINTERS\n"); instr_out(data, hw_offset, 1, "VS binding table\n"); instr_out(data, hw_offset, 2, "GS binding table\n"); instr_out(data, hw_offset, 3, "Clip binding table\n"); instr_out(data, hw_offset, 4, "SF binding table\n"); instr_out(data, hw_offset, 5, "WM binding table\n"); return len; case 0x7808: len = (data[0] & 0xff) + 2; if ((len - 1) % 4 != 0) fprintf(out, "Bad count in 3DSTATE_VERTEX_BUFFERS\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_VERTEX_BUFFERS"); instr_out(data, hw_offset, 0, "3DSTATE_VERTEX_BUFFERS\n"); for (i = 1; i < len;) { instr_out(data, hw_offset, i, "buffer %d: %s, pitch %db\n", data[i] >> 27, data[i] & (1 << 26) ? "random" : "sequential", data[i] & 0x07ff); i++; instr_out(data, hw_offset, i++, "buffer address\n"); instr_out(data, hw_offset, i++, "max index\n"); instr_out(data, hw_offset, i++, "mbz\n"); } return len; case 0x7809: len = (data[0] & 0xff) + 2; if ((len + 1) % 2 != 0) fprintf(out, "Bad count in 3DSTATE_VERTEX_ELEMENTS\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_VERTEX_ELEMENTS"); instr_out(data, hw_offset, 0, "3DSTATE_VERTEX_ELEMENTS\n"); for (i = 1; i < len;) { instr_out(data, hw_offset, i, "buffer %d: %svalid, type 0x%04x, " "src offset 0x%04xd bytes\n", data[i] >> 27, data[i] & (1 << 26) ? "" : "in", (data[i] >> 16) & 0x1ff, data[i] & 0x07ff); i++; instr_out(data, hw_offset, i, "(%s, %s, %s, %s), " "dst offset 0x%02x bytes\n", get_965_element_component(data[i], 0), get_965_element_component(data[i], 1), get_965_element_component(data[i], 2), get_965_element_component(data[i], 3), (data[i] & 0xff) * 4); i++; } return len; case 0x780a: len = (data[0] & 0xff) + 2; if (len != 3) fprintf(out, "Bad count in 3DSTATE_INDEX_BUFFER\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_INDEX_BUFFER"); instr_out(data, hw_offset, 0, "3DSTATE_INDEX_BUFFER\n"); instr_out(data, hw_offset, 1, "beginning buffer address\n"); instr_out(data, hw_offset, 2, "ending buffer address\n"); return len; case 0x7900: if (len != 4) fprintf(out, "Bad count in 3DSTATE_DRAWING_RECTANGLE\n"); if (count < 4) BUFFER_FAIL(count, len, "3DSTATE_DRAWING_RECTANGLE"); instr_out(data, hw_offset, 0, "3DSTATE_DRAWING_RECTANGLE\n"); instr_out(data, hw_offset, 1, "top left: %d,%d\n", data[1] & 0xffff, (data[1] >> 16) & 0xffff); instr_out(data, hw_offset, 2, "bottom right: %d,%d\n", data[2] & 0xffff, (data[2] >> 16) & 0xffff); instr_out(data, hw_offset, 3, "origin: %d,%d\n", (int)data[3] & 0xffff, ((int)data[3] >> 16) & 0xffff); return len; case 0x7905: if (len != 5 && len != 6) fprintf(out, "Bad count in 3DSTATE_DEPTH_BUFFER\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_DEPTH_BUFFER"); instr_out(data, hw_offset, 0, "3DSTATE_DEPTH_BUFFER\n"); instr_out(data, hw_offset, 1, "%s, %s, pitch = %d bytes, %stiled\n", get_965_surfacetype(data[1] >> 29), get_965_depthformat((data[1] >> 18) & 0x7), (data[1] & 0x0001ffff) + 1, data[1] & (1 << 27) ? "" : "not "); instr_out(data, hw_offset, 2, "depth offset\n"); instr_out(data, hw_offset, 3, "%dx%d\n", ((data[3] & 0x0007ffc0) >> 6) + 1, ((data[3] & 0xfff80000) >> 19) + 1); instr_out(data, hw_offset, 4, "volume depth\n"); if (len == 6) instr_out(data, hw_offset, 5, "\n"); return len; case 0x7b00: len = (data[0] & 0xff) + 2; if (len != 6) fprintf(out, "Bad count in 3DPRIMITIVE\n"); if (count < len) BUFFER_FAIL(count, len, "3DPRIMITIVE"); instr_out(data, hw_offset, 0, "3DPRIMITIVE: %s %s\n", get_965_prim_type(data[0]), (data[0] & (1 << 15)) ? "random" : "sequential"); instr_out(data, hw_offset, 1, "primitive count\n"); instr_out(data, hw_offset, 2, "start vertex\n"); instr_out(data, hw_offset, 3, "instance count\n"); instr_out(data, hw_offset, 4, "start instance\n"); instr_out(data, hw_offset, 5, "index bias\n"); return len; } for (opcode = 0; opcode < sizeof(opcodes_3d) / sizeof(opcodes_3d[0]); opcode++) { if ((data[0] & 0xffff0000) >> 16 == opcodes_3d[opcode].opcode) { unsigned int i; len = 1; instr_out(data, hw_offset, 0, "%s\n", opcodes_3d[opcode].name); if (opcodes_3d[opcode].max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcodes_3d[opcode].min_len || len > opcodes_3d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_3d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_3d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_i830(uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x02, 1, 1, "3DSTATE_MODES_3" }, { 0x03, 1, 1, "3DSTATE_ENABLES_1"}, { 0x04, 1, 1, "3DSTATE_ENABLES_2"}, { 0x05, 1, 1, "3DSTATE_VFT0"}, { 0x06, 1, 1, "3DSTATE_AA"}, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" }, { 0x08, 1, 1, "3DSTATE_MODES_1" }, { 0x09, 1, 1, "3DSTATE_STENCIL_TEST" }, { 0x0a, 1, 1, "3DSTATE_VFT1"}, { 0x0b, 1, 1, "3DSTATE_INDPT_ALPHA_BLEND" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x0d, 1, 1, "3DSTATE_MAP_BLEND_OP" }, { 0x0e, 1, 1, "3DSTATE_MAP_BLEND_ARG" }, { 0x0f, 1, 1, "3DSTATE_MODES_2" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x16, 1, 1, "3DSTATE_MODES_4" }, }; switch ((data[0] & 0x1f000000) >> 24) { case 0x1f: return decode_3d_primitive(data, count, hw_offset, failures); case 0x1d: return decode_3d_1d(data, count, hw_offset, failures, 1); case 0x1c: return decode_3d_1c(data, count, hw_offset, failures); } for (opcode = 0; opcode < sizeof(opcodes_3d) / sizeof(opcodes_3d[0]); opcode++) { if ((data[0] & 0x1f000000) >> 24 == opcodes_3d[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_3d[opcode].name); if (opcodes_3d[opcode].max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcodes_3d[opcode].min_len || len > opcodes_3d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_3d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_3d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN\n"); (*failures)++; return 1; } /** * Decodes an i830-i915 batch buffer, writing the output to stdout. * * \param data batch buffer contents * \param count number of DWORDs to decode in the batch buffer * \param hw_offset hardware address for the buffer */ int intel_decode(uint32_t *data, int count, uint32_t hw_offset, uint32_t devid) { int index = 0; int failures = 0; out = stderr; while (index < count) { switch ((data[index] & 0xe0000000) >> 29) { case 0x0: index += decode_mi(data + index, count - index, hw_offset + index * 4, &failures); break; case 0x2: index += decode_2d(data + index, count - index, hw_offset + index * 4, &failures); break; case 0x3: if (IS_965(devid)) { index += decode_3d_965(data + index, count - index, hw_offset + index * 4, &failures); } else if (IS_9XX(devid)) { index += decode_3d(data + index, count - index, hw_offset + index * 4, &failures); } else { index += decode_3d_i830(data + index, count - index, hw_offset + index * 4, &failures); } break; default: instr_out(data, hw_offset, index, "UNKNOWN\n"); failures++; index++; break; } fflush(out); } return failures; } void intel_decode_context_reset(void) { saved_s2_set = 0; saved_s4_set = 1; }