/* * Copyright (C) 2005 Ben Skeggs. * * Copyright 2008 Corbin Simpson * Adaptation and modification for ATI/AMD Radeon R500 GPU chipsets. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /** * \file * * \author Ben Skeggs * * \author Jerome Glisse * * \author Corbin Simpson * * \todo Depth write, WPOS/FOGC inputs * * \todo FogOption * */ #include "glheader.h" #include "macros.h" #include "enums.h" #include "shader/prog_instruction.h" #include "shader/prog_parameter.h" #include "shader/prog_print.h" #include "r300_context.h" #include "r500_fragprog.h" #include "r300_reg.h" #include "r300_state.h" /* Mapping Mesa registers to R500 temporaries */ struct reg_acc { int reg; /* Assigned hw temp */ unsigned int refcount; /* Number of uses by mesa program */ }; /** * Describe the current lifetime information for an R300 temporary */ struct reg_lifetime { /* Index of the first slot where this register is free in the sense that it can be used as a new destination register. This is -1 if the register has been assigned to a Mesa register and the last access to the register has not yet been emitted */ int free; /* Index of the first slot where this register is currently reserved. This is used to stop e.g. a scalar operation from being moved before the allocation time of a register that was first allocated for a vector operation. */ int reserved; /* Index of the first slot in which the register can be used as a source without losing the value that is written by the last emitted instruction that writes to the register */ int vector_valid; int scalar_valid; /* Index to the slot where the register was last read. This is also the first slot in which the register may be written again */ int vector_lastread; int scalar_lastread; }; /** * Store usage information about an ALU instruction slot during the * compilation of a fragment program. */ #define SLOT_SRC_VECTOR (1<<0) #define SLOT_SRC_SCALAR (1<<3) #define SLOT_SRC_BOTH (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR) #define SLOT_OP_VECTOR (1<<16) #define SLOT_OP_SCALAR (1<<17) #define SLOT_OP_BOTH (SLOT_OP_VECTOR | SLOT_OP_SCALAR) struct r500_pfs_compile_slot { /* Bitmask indicating which parts of the slot are used, using SLOT_ constants defined above */ unsigned int used; /* Selected sources */ int vsrc[3]; int ssrc[3]; }; /** * Store information during compilation of fragment programs. */ struct r500_pfs_compile_state { struct r500_fragment_program_compiler *compiler; /* number of ALU slots used so far */ int nrslots; /* Track which (parts of) slots are already filled with instructions */ struct r500_pfs_compile_slot slot[PFS_MAX_ALU_INST]; /* Track the validity of R300 temporaries */ struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS]; /* Used to map Mesa's inputs/temps onto hardware temps */ int temp_in_use; struct reg_acc temps[PFS_NUM_TEMP_REGS]; struct reg_acc inputs[32]; /* don't actually need 32... */ /* Track usage of hardware temps, for register allocation, * indirection detection, etc. */ GLuint used_in_node; GLuint dest_in_node; }; /* * Useful macros and values */ #define ERROR(fmt, args...) do { \ fprintf(stderr, "%s::%s(): " fmt "\n", \ __FILE__, __FUNCTION__, ##args); \ cs->compiler->fp->error = GL_TRUE; \ } while(0) #define PROG_CODE struct r500_fragment_program_code *code = cs->compiler->code #define R500_US_NUM_TEMP_REGS 128 #define R500_US_NUM_CONST_REGS 256 /* "Register" flags */ #define REG_CONSTANT (1 << 8) #define REG_SRC_REL (1 << 9) #define REG_DEST_REL (1 << 7) /* Swizzle tools */ #define R500_SWIZZLE_ZERO 4 #define R500_SWIZZLE_HALF 5 #define R500_SWIZZLE_ONE 6 #define R500_SWIZ_RGB_ZERO ((4 << 0) | (4 << 3) | (4 << 6)) #define R500_SWIZ_RGB_ONE ((6 << 0) | (6 << 3) | (6 << 6)) #define R500_SWIZ_RGB_RGB ((0 << 0) | (1 << 3) | (2 << 6)) #define R500_SWIZ_MOD_NEG 1 #define R500_SWIZ_MOD_ABS 2 #define R500_SWIZ_MOD_NEG_ABS 3 /* Swizzles for inst2 */ #define MAKE_SWIZ_TEX_STRQ(x) (x << 8) #define MAKE_SWIZ_TEX_RGBA(x) (x << 24) /* Swizzles for inst3 */ #define MAKE_SWIZ_RGB_A(x) (x << 2) #define MAKE_SWIZ_RGB_B(x) (x << 15) /* Swizzles for inst4 */ #define MAKE_SWIZ_ALPHA_A(x) (x << 14) #define MAKE_SWIZ_ALPHA_B(x) (x << 21) /* Swizzle for inst5 */ #define MAKE_SWIZ_RGBA_C(x) (x << 14) #define MAKE_SWIZ_ALPHA_C(x) (x << 27) /* Writemasks */ #define R500_WRITEMASK_G 0x2 #define R500_WRITEMASK_B 0x4 #define R500_WRITEMASK_RGB 0x7 #define R500_WRITEMASK_A 0x8 #define R500_WRITEMASK_AR 0x9 #define R500_WRITEMASK_AG 0xA #define R500_WRITEMASK_ARG 0xB #define R500_WRITEMASK_AB 0xC #define R500_WRITEMASK_ARGB 0xF /* 1/(2pi), needed for quick modulus in trig insts * Thanks to glisse for pointing out how to do it! */ static const GLfloat RCP_2PI[] = {0.15915494309189535, 0.15915494309189535, 0.15915494309189535, 0.15915494309189535}; static const GLfloat LIT[] = {127.999999, 127.999999, 127.999999, -127.999999}; static inline GLuint make_rgb_swizzle(struct prog_src_register src) { GLuint swiz = 0x0; GLuint temp; /* This could be optimized, but it should be plenty fast already. */ int i; for (i = 0; i < 3; i++) { temp = GET_SWZ(src.Swizzle, i); /* Fix SWIZZLE_ONE */ if (temp == 5) temp++; swiz |= temp << i*3; } if (src.NegateBase) swiz |= (R500_SWIZ_MOD_NEG << 9); return swiz; } static inline GLuint make_rgba_swizzle(GLuint src) { GLuint swiz = 0x0; GLuint temp; int i; for (i = 0; i < 4; i++) { temp = GET_SWZ(src, i); /* Fix SWIZZLE_ONE */ if (temp == 5) temp++; swiz |= temp << i*3; } return swiz; } static inline GLuint make_alpha_swizzle(struct prog_src_register src) { GLuint swiz = GET_SWZ(src.Swizzle, 3); if (swiz == 5) swiz++; if (src.NegateBase) swiz |= (R500_SWIZ_MOD_NEG << 3); return swiz; } static inline GLuint make_sop_swizzle(struct prog_src_register src) { GLuint swiz = GET_SWZ(src.Swizzle, 0); if (swiz == 5) swiz++; return swiz; } static inline GLuint make_strq_swizzle(struct prog_src_register src) { GLuint swiz = 0x0, temp = 0x0; int i; for (i = 0; i < 4; i++) { temp = GET_SWZ(src.Swizzle, i) & 0x3; swiz |= temp << i*2; } return swiz; } static int get_temp(struct r500_pfs_compile_state *cs, int slot) { PROG_CODE; int r = code->temp_reg_offset + cs->temp_in_use + slot; if (r > R500_US_NUM_TEMP_REGS) { ERROR("Too many temporary registers requested, can't compile!\n"); } return r; } /* Borrowed verbatim from r300_fragprog since it hasn't changed. */ static GLuint emit_const4fv(struct r500_pfs_compile_state *cs, const GLfloat * cp) { PROG_CODE; GLuint reg = 0x0; int index; for (index = 0; index < code->const_nr; ++index) { if (code->constant[index] == cp) break; } if (index >= code->const_nr) { if (index >= R500_US_NUM_CONST_REGS) { ERROR("Out of hw constants!\n"); return reg; } code->const_nr++; code->constant[index] = cp; } reg = index | REG_CONSTANT; return reg; } static GLuint make_src(struct r500_pfs_compile_state *cs, struct prog_src_register src) { PROG_CODE; GLuint reg; switch (src.File) { case PROGRAM_TEMPORARY: reg = src.Index + code->temp_reg_offset; break; case PROGRAM_INPUT: reg = cs->inputs[src.Index].reg; break; case PROGRAM_LOCAL_PARAM: reg = emit_const4fv(cs, cs->compiler->fp->mesa_program.Base.LocalParams[src.Index]); break; case PROGRAM_ENV_PARAM: reg = emit_const4fv(cs, cs->compiler->compiler.Ctx->FragmentProgram.Parameters[src.Index]); break; case PROGRAM_STATE_VAR: case PROGRAM_NAMED_PARAM: case PROGRAM_CONSTANT: reg = emit_const4fv(cs, cs->compiler->fp->mesa_program.Base.Parameters->ParameterValues[src.Index]); break; default: ERROR("Can't handle src.File %x\n", src.File); reg = 0x0; break; } return reg; } static GLuint make_dest(struct r500_pfs_compile_state *cs, struct prog_dst_register dest) { PROG_CODE; GLuint reg; switch (dest.File) { case PROGRAM_TEMPORARY: reg = dest.Index + code->temp_reg_offset; break; case PROGRAM_OUTPUT: /* Eventually we may need to handle multiple * rendering targets... */ reg = dest.Index; break; default: ERROR("Can't handle dest.File %x\n", dest.File); reg = 0x0; break; } return reg; } static void emit_tex(struct r500_pfs_compile_state *cs, struct prog_instruction *fpi, int dest, int counter) { PROG_CODE; int hwsrc, hwdest; GLuint mask; mask = fpi->DstReg.WriteMask << 11; hwsrc = make_src(cs, fpi->SrcReg[0]); if (fpi->DstReg.File == PROGRAM_OUTPUT) { hwdest = get_temp(cs, 0); } else { hwdest = dest; } code->inst[counter].inst0 = R500_INST_TYPE_TEX | mask | R500_INST_TEX_SEM_WAIT; code->inst[counter].inst1 = R500_TEX_ID(fpi->TexSrcUnit) | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED; if (fpi->TexSrcTarget == TEXTURE_RECT_INDEX) code->inst[counter].inst1 |= R500_TEX_UNSCALED; switch (fpi->Opcode) { case OPCODE_KIL: code->inst[counter].inst1 |= R500_TEX_INST_TEXKILL; break; case OPCODE_TEX: code->inst[counter].inst1 |= R500_TEX_INST_LD; break; case OPCODE_TXB: code->inst[counter].inst1 |= R500_TEX_INST_LODBIAS; break; case OPCODE_TXP: code->inst[counter].inst1 |= R500_TEX_INST_PROJ; break; default: ERROR("emit_tex can't handle opcode %x\n", fpi->Opcode); } code->inst[counter].inst2 = R500_TEX_SRC_ADDR(hwsrc) | MAKE_SWIZ_TEX_STRQ(make_strq_swizzle(fpi->SrcReg[0])) /* | R500_TEX_SRC_S_SWIZ_R | R500_TEX_SRC_T_SWIZ_G | R500_TEX_SRC_R_SWIZ_B | R500_TEX_SRC_Q_SWIZ_A */ | R500_TEX_DST_ADDR(hwdest) | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A; code->inst[counter].inst3 = 0x0; code->inst[counter].inst4 = 0x0; code->inst[counter].inst5 = 0x0; if (fpi->DstReg.File == PROGRAM_OUTPUT) { counter++; code->inst[counter].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT | (mask << 4); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_OMOD_DISABLE; code->inst[counter].inst4 = R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_ALPHA_SWIZ_A_A) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_ALPHA_SWIZ_A_A) | R500_ALPHA_OMOD_DISABLE; code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); } } static void emit_alu(struct r500_pfs_compile_state *cs, int counter, struct prog_instruction *fpi) { PROG_CODE; /* Ideally, we shouldn't have to explicitly clear memory here! */ code->inst[counter].inst0 = 0x0; code->inst[counter].inst1 = 0x0; code->inst[counter].inst2 = 0x0; code->inst[counter].inst3 = 0x0; code->inst[counter].inst4 = 0x0; code->inst[counter].inst5 = 0x0; if (fpi->DstReg.File == PROGRAM_OUTPUT) { code->inst[counter].inst0 = R500_INST_TYPE_OUT; if (fpi->DstReg.Index == FRAG_RESULT_COLR) code->inst[counter].inst0 |= (fpi->DstReg.WriteMask << 15); if (fpi->DstReg.Index == FRAG_RESULT_DEPR) { code->inst[counter].inst4 |= R500_ALPHA_W_OMASK; /* Notify the state emission! */ cs->compiler->fp->writes_depth = GL_TRUE; } } else { code->inst[counter].inst0 = R500_INST_TYPE_ALU /* pixel_mask */ | (fpi->DstReg.WriteMask << 11); } code->inst[counter].inst0 |= R500_INST_TEX_SEM_WAIT; } static void emit_mov(struct r500_pfs_compile_state *cs, int counter, struct prog_instruction *fpi, GLuint src_reg, GLuint swizzle, GLuint dest) { PROG_CODE; /* The r3xx shader uses MAD to implement MOV. We are using CMP, since * it is technically more accurate and recommended by ATI/AMD. */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src_reg); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src_reg); /* (De)mangle the swizzle from Mesa to R500. */ swizzle = make_rgba_swizzle(swizzle); /* 0x1FF is 9 bits, size of an RGB swizzle. */ code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A((swizzle & 0x1ff)) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B((swizzle & 0x1ff)) | R500_ALU_RGB_OMOD_DISABLE; code->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(GET_SWZ(swizzle, 3)) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(GET_SWZ(swizzle, 3)) | R500_ALPHA_OMOD_DISABLE; code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); } static void emit_mad(struct r500_pfs_compile_state *cs, int counter, struct prog_instruction *fpi, int one, int two, int three) { PROG_CODE; /* Note: This code was all Corbin's. Corbin is a rather hackish coder. * If you can make it pretty or fast, please do so! */ emit_alu(cs, counter, fpi); /* Common MAD stuff */ code->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(make_dest(cs, fpi->DstReg)); code->inst[counter].inst5 |= R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(make_dest(cs, fpi->DstReg)); switch (one) { case 0: case 1: case 2: code->inst[counter].inst1 |= R500_RGB_ADDR0(make_src(cs, fpi->SrcReg[one])); code->inst[counter].inst2 |= R500_ALPHA_ADDR0(make_src(cs, fpi->SrcReg[one])); code->inst[counter].inst3 |= R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[one])); code->inst[counter].inst4 |= R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[one])); break; case R500_SWIZZLE_ZERO: code->inst[counter].inst3 |= MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ZERO); code->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ZERO); break; case R500_SWIZZLE_ONE: code->inst[counter].inst3 |= MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE); code->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE); break; default: ERROR("Bad src index in emit_mad: %d\n", one); break; } switch (two) { case 0: case 1: case 2: code->inst[counter].inst1 |= R500_RGB_ADDR1(make_src(cs, fpi->SrcReg[two])); code->inst[counter].inst2 |= R500_ALPHA_ADDR1(make_src(cs, fpi->SrcReg[two])); code->inst[counter].inst3 |= R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[two])); code->inst[counter].inst4 |= R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[two])); break; case R500_SWIZZLE_ZERO: code->inst[counter].inst3 |= MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ZERO); code->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ZERO); break; case R500_SWIZZLE_ONE: code->inst[counter].inst3 |= MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ONE); code->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ONE); break; default: ERROR("Bad src index in emit_mad: %d\n", two); break; } switch (three) { case 0: case 1: case 2: code->inst[counter].inst1 |= R500_RGB_ADDR2(make_src(cs, fpi->SrcReg[three])); code->inst[counter].inst2 |= R500_ALPHA_ADDR2(make_src(cs, fpi->SrcReg[three])); code->inst[counter].inst5 |= R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[three])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[three])); break; case R500_SWIZZLE_ZERO: code->inst[counter].inst5 |= MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); break; case R500_SWIZZLE_ONE: code->inst[counter].inst5 |= MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ONE) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ONE); break; default: ERROR("Bad src index in emit_mad: %d\n", three); break; } } static void emit_sop(struct r500_pfs_compile_state *cs, int counter, struct prog_instruction *fpi, int opcode, GLuint src, GLuint swiz, GLuint dest) { PROG_CODE; emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src); code->inst[counter].inst4 |= R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(swiz); code->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); switch (opcode) { case OPCODE_COS: code->inst[counter].inst4 |= R500_ALPHA_OP_COS; break; case OPCODE_EX2: code->inst[counter].inst4 |= R500_ALPHA_OP_EX2; break; case OPCODE_LG2: code->inst[counter].inst4 |= R500_ALPHA_OP_LN2; break; case OPCODE_RCP: code->inst[counter].inst4 |= R500_ALPHA_OP_RCP; break; case OPCODE_RSQ: code->inst[counter].inst4 |= R500_ALPHA_OP_RSQ; break; case OPCODE_SIN: code->inst[counter].inst4 |= R500_ALPHA_OP_SIN; break; default: ERROR("Bad opcode in emit_sop: %d\n", opcode); break; } } static int do_inst(struct r500_pfs_compile_state *cs, struct prog_instruction *fpi, int counter) { PROG_CODE; GLuint src[3], dest = 0; int temp_swiz = 0; if (fpi->Opcode != OPCODE_KIL) { dest = make_dest(cs, fpi->DstReg); } switch (fpi->Opcode) { case OPCODE_ABS: emit_mov(cs, counter, fpi, make_src(cs, fpi->SrcReg[0]), fpi->SrcReg[0].Swizzle, dest); code->inst[counter].inst3 |= R500_ALU_RGB_MOD_A_ABS | R500_ALU_RGB_MOD_B_ABS; code->inst[counter].inst4 |= R500_ALPHA_MOD_A_ABS | R500_ALPHA_MOD_B_ABS; break; case OPCODE_ADD: /* Variation on MAD: 1*src0+src1 */ emit_mad(cs, counter, fpi, R500_SWIZZLE_ONE, 0, 1); break; case OPCODE_CMP: /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); src[2] = make_src(cs, fpi->SrcReg[2]); emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[2]) | R500_RGB_ADDR1(src[1]) | R500_RGB_ADDR2(src[0]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[2]) | R500_ALPHA_ADDR1(src[1]) | R500_ALPHA_ADDR2(src[0]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[2])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[2])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[0])); break; case OPCODE_COS: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = emit_const4fv(cs, RCP_2PI); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(cs, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(cs, 1)); counter++; emit_sop(cs, counter, fpi, OPCODE_COS, get_temp(cs, 1), make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_DP3: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 |= R500_ALPHA_OP_DP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_DP3 | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DP4: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); /* Based on DP3 */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 |= R500_ALPHA_OP_DP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_DP4 | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DPH: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); /* Based on DP3 */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 |= R500_ALPHA_OP_DP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_DP4 | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DST: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); /* [1, src0.y*src1.y, src0.z, src1.w] * So basically MUL with lotsa swizzling. */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | R500_ALU_RGB_SEL_B_SRC1; /* Select [1, y, z, 1] */ temp_swiz = (make_rgb_swizzle(fpi->SrcReg[0]) & ~0x7) | R500_SWIZZLE_ONE; code->inst[counter].inst3 |= MAKE_SWIZ_RGB_A(temp_swiz); /* Select [1, y, 1, w] */ temp_swiz = (make_rgb_swizzle(fpi->SrcReg[0]) & ~0x1c7) | R500_SWIZZLE_ONE | (R500_SWIZZLE_ONE << 6); code->inst[counter].inst3 |= MAKE_SWIZ_RGB_B(temp_swiz); code->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); break; case OPCODE_EX2: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, counter, fpi, OPCODE_EX2, src[0], make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_FLR: src[0] = make_src(cs, fpi->SrcReg[0]); code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); code->inst[counter].inst4 |= R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)); counter++; emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(get_temp(cs, 0)); code->inst[counter].inst3 = MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[0])); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[0])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC1 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC1 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALU_RGBA_MOD_C_NEG; break; case OPCODE_FRC: src[0] = make_src(cs, fpi->SrcReg[0]); emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); code->inst[counter].inst4 |= R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_LG2: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, counter, fpi, OPCODE_LG2, src[0], make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_LIT: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = emit_const4fv(cs, LIT); /* First inst: MAX temp, input, [0, 0, 0, -128] * Write: RG, A */ code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARG << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ZERO); code->inst[counter].inst4 = R500_ALPHA_OP_MAX | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAX | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)); counter++; /* Second inst: MIN temp, temp, [x, x, x, 128] * Write: A */ code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_A << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)) | R500_ALPHA_ADDR1(src[1]); /* code->inst[counter].inst3; */ code->inst[counter].inst4 = R500_ALPHA_OP_MAX | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAX | R500_ALU_RGBA_ADDRD(dest); counter++; /* Third-fifth insts: POW temp, temp.y, temp.w * Write: B */ emit_sop(cs, counter, fpi, OPCODE_LG2, get_temp(cs, 0), SWIZZLE_Y, get_temp(cs, 1)); code->inst[counter].inst0 |= (R500_WRITEMASK_ARGB << 11); counter++; code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 1)) | R500_RGB_ADDR1(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 1)) | R500_ALPHA_ADDR1(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 1)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; emit_sop(cs, counter, fpi, OPCODE_EX2, get_temp(cs, 1), SWIZZLE_W, get_temp(cs, 0)); code->inst[counter].inst0 |= (R500_WRITEMASK_B << 11); counter++; /* Sixth inst: CMP dest, temp.xxxx, temp.[1, x, z, 1], temp.[1, x, 0, 1]; * Write: ARGB * This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | R500_ALU_RGB_R_SWIZ_A_1 | R500_ALU_RGB_G_SWIZ_A_R | R500_ALU_RGB_B_SWIZ_A_B | R500_ALU_RGB_SEL_B_SRC0 | R500_ALU_RGB_R_SWIZ_B_1 | R500_ALU_RGB_G_SWIZ_B_R | R500_ALU_RGB_B_SWIZ_B_0; code->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_1 | R500_ALPHA_SEL_B_SRC0 | R500_ALPHA_SWIZ_B_1; code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC0 | R500_ALU_RGBA_ALPHA_SEL_C_SRC0 | R500_ALU_RGBA_R_SWIZ_R | R500_ALU_RGBA_G_SWIZ_R | R500_ALU_RGBA_B_SWIZ_R | R500_ALU_RGBA_A_SWIZ_R; break; case OPCODE_LRP: /* src0 * src1 + INV(src0) * src2 * 1) MUL src0, src1, temp * 2) PRE 1-src0; MAD srcp, src2, temp */ src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); src[2] = make_src(cs, fpi->SrcReg[2]); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | R500_INST_NOP | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[2]) | R500_RGB_ADDR2(get_temp(cs, 0)) | R500_RGB_SRCP_OP_1_MINUS_RGB0; code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[2]) | R500_ALPHA_ADDR2(get_temp(cs, 0)) | R500_ALPHA_SRCP_OP_1_MINUS_A0; code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRCP | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRCP | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[2])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[2])); break; case OPCODE_MAD: emit_mad(cs, counter, fpi, 0, 1, 2); break; case OPCODE_MAX: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 |= R500_ALPHA_OP_MAX | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAX | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_MIN: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 |= R500_ALPHA_OP_MIN | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MIN | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_MOV: emit_mov(cs, counter, fpi, make_src(cs, fpi->SrcReg[0]), fpi->SrcReg[0].Swizzle, dest); break; case OPCODE_MUL: /* Variation on MAD: src0*src1+0 */ emit_mad(cs, counter, fpi, 0, 1, R500_SWIZZLE_ZERO); break; case OPCODE_POW: /* POW(a,b) = EX2(LN2(a)*b) */ src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); emit_sop(cs, counter, fpi, OPCODE_LG2, src[0], make_sop_swizzle(fpi->SrcReg[0]), get_temp(cs, 0)); code->inst[counter].inst0 |= (R500_WRITEMASK_ARGB << 11); counter++; code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 1)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 1)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; emit_sop(cs, counter, fpi, OPCODE_EX2, get_temp(cs, 1), make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_RCP: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, counter, fpi, OPCODE_RCP, src[0], make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_RSQ: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, counter, fpi, OPCODE_RSQ, src[0], make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_SCS: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = emit_const4fv(cs, RCP_2PI); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(cs, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(cs, 1)); counter++; /* Do a cosine, then a sine, masking out the channels we want to protect. */ /* Cosine only goes in R (x) channel. */ fpi->DstReg.WriteMask = 0x1; emit_sop(cs, counter, fpi, OPCODE_COS, get_temp(cs, 1), make_sop_swizzle(fpi->SrcReg[0]), dest); counter++; /* Sine only goes in G (y) channel. */ fpi->DstReg.WriteMask = 0x2; emit_sop(cs, counter, fpi, OPCODE_SIN, get_temp(cs, 1), make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_SGE: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR1(src[0]) | R500_RGB_ADDR2(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR1(src[0]) | R500_ALPHA_ADDR2(src[1]); code->inst[counter].inst3 = /* 1 */ MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[0])); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[0])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_MOD_C_NEG | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_ALPHA_MOD_C_NEG; counter++; /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ZERO); code->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ZERO); code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC0 | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_RGB) | R500_ALU_RGBA_ALPHA_SEL_C_SRC0 | R500_ALU_RGBA_A_SWIZ_A; break; case OPCODE_SIN: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = emit_const4fv(cs, RCP_2PI); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; code->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB); code->inst[counter].inst4 = R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(cs, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; code->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(cs, 1)); counter++; emit_sop(cs, counter, fpi, OPCODE_SIN, get_temp(cs, 1), make_sop_swizzle(fpi->SrcReg[0]), dest); break; case OPCODE_SLT: src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR1(src[0]) | R500_RGB_ADDR2(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR1(src[0]) | R500_ALPHA_ADDR2(src[1]); code->inst[counter].inst3 = /* 1 */ MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[0])); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[0])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_MOD_C_NEG | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_ALPHA_MOD_C_NEG; counter++; /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ZERO) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ONE); code->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ZERO) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ONE); code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC0 | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_RGB) | R500_ALU_RGBA_ALPHA_SEL_C_SRC0 | R500_ALU_RGBA_A_SWIZ_A; break; case OPCODE_SUB: /* Variation on MAD: 1*src0-src1 */ fpi->SrcReg[1].NegateBase = 0xF; /* NEG_XYZW */ emit_mad(cs, counter, fpi, R500_SWIZZLE_ONE, 0, 1); break; case OPCODE_SWZ: /* TODO: The rarer negation masks! */ emit_mov(cs, counter, fpi, make_src(cs, fpi->SrcReg[0]), fpi->SrcReg[0].Swizzle, dest); break; case OPCODE_XPD: /* src0 * src1 - src1 * src0 * 1) MUL temp.xyz, src0.yzx, src1.zxy * 2) MAD src0.zxy, src1.yzx, -temp.xyz */ src[0] = make_src(cs, fpi->SrcReg[0]); src[1] = make_src(cs, fpi->SrcReg[1]); code->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_RGB << 11); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); /* Select [y, z, x] */ temp_swiz = make_rgb_swizzle(fpi->SrcReg[0]); temp_swiz = (GET_SWZ(temp_swiz, 1) << 0) | (GET_SWZ(temp_swiz, 2) << 3) | (GET_SWZ(temp_swiz, 0) << 6); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(temp_swiz); /* Select [z, x, y] */ temp_swiz = make_rgb_swizzle(fpi->SrcReg[1]); temp_swiz = (GET_SWZ(temp_swiz, 2) << 0) | (GET_SWZ(temp_swiz, 0) << 3) | (GET_SWZ(temp_swiz, 1) << 6); code->inst[counter].inst3 |= R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(temp_swiz); code->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(cs, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(cs, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; emit_alu(cs, counter, fpi); code->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]) | R500_RGB_ADDR2(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]) | R500_ALPHA_ADDR2(get_temp(cs, 0)); /* Select [z, x, y] */ temp_swiz = make_rgb_swizzle(fpi->SrcReg[0]); temp_swiz = (GET_SWZ(temp_swiz, 2) << 0) | (GET_SWZ(temp_swiz, 0) << 3) | (GET_SWZ(temp_swiz, 1) << 6); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(temp_swiz); /* Select [y, z, x] */ temp_swiz = make_rgb_swizzle(fpi->SrcReg[1]); temp_swiz = (GET_SWZ(temp_swiz, 1) << 0) | (GET_SWZ(temp_swiz, 2) << 3) | (GET_SWZ(temp_swiz, 0) << 6); code->inst[counter].inst3 |= R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(temp_swiz); code->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SWIZ_A_1 | R500_ALPHA_SWIZ_B_1; code->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_RGB) | R500_ALU_RGBA_MOD_C_NEG | R500_ALU_RGBA_A_SWIZ_0; break; case OPCODE_KIL: case OPCODE_TEX: case OPCODE_TXB: case OPCODE_TXP: emit_tex(cs, fpi, dest, counter); if (fpi->DstReg.File == PROGRAM_OUTPUT) counter++; break; default: ERROR("unknown fpi->Opcode %s\n", _mesa_opcode_string(fpi->Opcode)); break; } /* Finishing touches */ if (fpi->SaturateMode == SATURATE_ZERO_ONE) { code->inst[counter].inst0 |= R500_INST_RGB_CLAMP | R500_INST_ALPHA_CLAMP; } counter++; return counter; } static GLboolean parse_program(struct r500_pfs_compile_state *cs) { PROG_CODE; int clauseidx, counter = 0; for (clauseidx = 0; clauseidx < cs->compiler->compiler.NumClauses; clauseidx++) { struct radeon_clause* clause = &cs->compiler->compiler.Clauses[clauseidx]; struct prog_instruction* fpi; int ip; for (ip = 0; ip < clause->NumInstructions; ip++) { fpi = clause->Instructions + ip; counter = do_inst(cs, fpi, counter); if (cs->compiler->fp->error == GL_TRUE) return GL_FALSE; } } /* Finish him! (If it's an ALU/OUT instruction...) */ if ((code->inst[counter-1].inst0 & 0x3) == 1) { code->inst[counter-1].inst0 |= R500_INST_LAST; } else { /* We still need to put an output inst, right? */ WARN_ONCE("Final FP instruction is not an OUT.\n"); } cs->nrslots = counter; code->max_temp_idx++; return GL_TRUE; } static void init_program(struct r500_pfs_compile_state *cs) { PROG_CODE; struct gl_fragment_program *mp = &cs->compiler->fp->mesa_program; struct prog_instruction *fpi; GLuint InputsRead = mp->Base.InputsRead; GLuint temps_used = 0; int i, j; /* New compile, reset tracking data */ cs->compiler->fp->optimization = driQueryOptioni(&cs->compiler->r300->radeon.optionCache, "fp_optimization"); cs->compiler->fp->translated = GL_FALSE; cs->compiler->fp->error = GL_FALSE; code->const_nr = 0; /* Size of pixel stack, plus 1. */ code->max_temp_idx = 1; /* Temp register offset. */ code->temp_reg_offset = 0; /* Whether or not we perform any depth writing. */ cs->compiler->fp->writes_depth = GL_FALSE; for (i = 0; i < PFS_MAX_ALU_INST; i++) { for (j = 0; j < 3; j++) { cs->slot[i].vsrc[j] = SRC_CONST; cs->slot[i].ssrc[j] = SRC_CONST; } } /* Work out what temps the Mesa inputs correspond to, this must match * what setup_rs_unit does, which shouldn't be a problem as rs_unit * configures itself based on the fragprog's InputsRead * * NOTE: this depends on get_hw_temp() allocating registers in order, * starting from register 0, so we're just going to do that instead. */ /* Texcoords come first */ for (i = 0; i < cs->compiler->fp->ctx->Const.MaxTextureUnits; i++) { if (InputsRead & (FRAG_BIT_TEX0 << i)) { cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0; cs->inputs[FRAG_ATTRIB_TEX0 + i].reg = code->temp_reg_offset; code->temp_reg_offset++; } } InputsRead &= ~FRAG_BITS_TEX_ANY; /* fragment position treated as a texcoord */ if (InputsRead & FRAG_BIT_WPOS) { cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0; cs->inputs[FRAG_ATTRIB_WPOS].reg = code->temp_reg_offset; code->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_WPOS; /* Then primary colour */ if (InputsRead & FRAG_BIT_COL0) { cs->inputs[FRAG_ATTRIB_COL0].refcount = 0; cs->inputs[FRAG_ATTRIB_COL0].reg = code->temp_reg_offset; code->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_COL0; /* Secondary color */ if (InputsRead & FRAG_BIT_COL1) { cs->inputs[FRAG_ATTRIB_COL1].refcount = 0; cs->inputs[FRAG_ATTRIB_COL1].reg = code->temp_reg_offset; code->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_COL1; /* Anything else */ if (InputsRead) { WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead); /* force read from hwreg 0 for now */ for (i = 0; i < 32; i++) if (InputsRead & (1 << i)) cs->inputs[i].reg = 0; } int clauseidx; for (clauseidx = 0; clauseidx < cs->compiler->compiler.NumClauses; ++clauseidx) { struct radeon_clause* clause = &cs->compiler->compiler.Clauses[clauseidx]; int ip; for (ip = 0; ip < clause->NumInstructions; ip++) { fpi = clause->Instructions + ip; for (i = 0; i < 3; i++) { if (fpi->SrcReg[i].File == PROGRAM_TEMPORARY) { if (fpi->SrcReg[i].Index >= temps_used) temps_used = fpi->SrcReg[i].Index + 1; } } } } cs->temp_in_use = temps_used + 1; code->max_temp_idx = code->temp_reg_offset + cs->temp_in_use; if (RADEON_DEBUG & DEBUG_PIXEL) fprintf(stderr, "FP temp indices: code->max_temp_idx: %d cs->temp_in_use: %d\n", code->max_temp_idx, cs->temp_in_use); } static void dumb_shader(struct r500_pfs_compile_state *cs) { PROG_CODE; code->inst[0].inst0 = R500_INST_TYPE_TEX | R500_INST_TEX_SEM_WAIT | R500_INST_RGB_WMASK_R | R500_INST_RGB_WMASK_G | R500_INST_RGB_WMASK_B | R500_INST_ALPHA_WMASK | R500_INST_RGB_CLAMP | R500_INST_ALPHA_CLAMP; code->inst[0].inst1 = R500_TEX_ID(0) | R500_TEX_INST_LD | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED; code->inst[0].inst2 = R500_TEX_SRC_ADDR(0) | R500_TEX_SRC_S_SWIZ_R | R500_TEX_SRC_T_SWIZ_G | R500_TEX_DST_ADDR(0) | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A; code->inst[0].inst3 = R500_DX_ADDR(0) | R500_DX_S_SWIZ_R | R500_DX_T_SWIZ_R | R500_DX_R_SWIZ_R | R500_DX_Q_SWIZ_R | R500_DY_ADDR(0) | R500_DY_S_SWIZ_R | R500_DY_T_SWIZ_R | R500_DY_R_SWIZ_R | R500_DY_Q_SWIZ_R; code->inst[0].inst4 = 0x0; code->inst[0].inst5 = 0x0; code->inst[1].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT | R500_INST_LAST | R500_INST_RGB_OMASK_R | R500_INST_RGB_OMASK_G | R500_INST_RGB_OMASK_B | R500_INST_ALPHA_OMASK; code->inst[1].inst1 = R500_RGB_ADDR0(0) | R500_RGB_ADDR1(0) | R500_RGB_ADDR1_CONST | R500_RGB_ADDR2(0) | R500_RGB_ADDR2_CONST | R500_RGB_SRCP_OP_1_MINUS_2RGB0; code->inst[1].inst2 = R500_ALPHA_ADDR0(0) | R500_ALPHA_ADDR1(0) | R500_ALPHA_ADDR1_CONST | R500_ALPHA_ADDR2(0) | R500_ALPHA_ADDR2_CONST | R500_ALPHA_SRCP_OP_1_MINUS_2A0; code->inst[1].inst3 = R500_ALU_RGB_SEL_A_SRC0 | R500_ALU_RGB_R_SWIZ_A_R | R500_ALU_RGB_G_SWIZ_A_G | R500_ALU_RGB_B_SWIZ_A_B | R500_ALU_RGB_SEL_B_SRC0 | R500_ALU_RGB_R_SWIZ_B_1 | R500_ALU_RGB_B_SWIZ_B_1 | R500_ALU_RGB_G_SWIZ_B_1; code->inst[1].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SWIZ_B_1; code->inst[1].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_R_SWIZ_0 | R500_ALU_RGBA_G_SWIZ_0 | R500_ALU_RGBA_B_SWIZ_0 | R500_ALU_RGBA_A_SWIZ_0; cs->nrslots = 2; } GLboolean r500FragmentProgramEmit(struct r500_fragment_program_compiler *compiler) { struct r500_pfs_compile_state cs; struct r500_fragment_program_code *code = compiler->code; _mesa_memset(&cs, 0, sizeof(cs)); cs.compiler = compiler; init_program(&cs); if (!parse_program(&cs)) { #if 0 ERROR("Huh. Couldn't parse program. There should be additional errors explaining why.\nUsing dumb shader...\n"); dumb_shader(fp); code->inst_offset = 0; code->inst_end = cs.nrslots - 1; #endif return GL_FALSE; } code->inst_offset = 0; code->inst_end = cs.nrslots - 1; return GL_TRUE; }