/* * Copyright (C) 2005 Ben Skeggs. * * Copyright 2008 Corbin Simpson * Adaptation and modification for ATI/AMD Radeon R500 GPU chipsets. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /** * \file * * \author Ben Skeggs * * \author Jerome Glisse * * \author Corbin Simpson * * \todo Depth write, WPOS/FOGC inputs * * \todo FogOption * */ #include "glheader.h" #include "macros.h" #include "enums.h" #include "shader/prog_instruction.h" #include "shader/prog_parameter.h" #include "shader/prog_print.h" #include "r300_context.h" #include "r500_fragprog.h" #include "r300_reg.h" #include "r300_state.h" /* Mapping Mesa registers to R500 temporaries */ struct reg_acc { int reg; /* Assigned hw temp */ unsigned int refcount; /* Number of uses by mesa program */ }; /** * Describe the current lifetime information for an R300 temporary */ struct reg_lifetime { /* Index of the first slot where this register is free in the sense that it can be used as a new destination register. This is -1 if the register has been assigned to a Mesa register and the last access to the register has not yet been emitted */ int free; /* Index of the first slot where this register is currently reserved. This is used to stop e.g. a scalar operation from being moved before the allocation time of a register that was first allocated for a vector operation. */ int reserved; /* Index of the first slot in which the register can be used as a source without losing the value that is written by the last emitted instruction that writes to the register */ int vector_valid; int scalar_valid; /* Index to the slot where the register was last read. This is also the first slot in which the register may be written again */ int vector_lastread; int scalar_lastread; }; /** * Store information during compilation of fragment programs. */ struct r500_pfs_compile_state { struct r500_fragment_program_compiler *compiler; /* number of ALU slots used so far */ int nrslots; /* Used to map Mesa's inputs/temps onto hardware temps */ int temp_in_use; struct reg_acc inputs[32]; /* don't actually need 32... */ }; /* * Useful macros and values */ #define ERROR(fmt, args...) do { \ fprintf(stderr, "%s::%s(): " fmt "\n", \ __FILE__, __FUNCTION__, ##args); \ cs->compiler->fp->error = GL_TRUE; \ } while(0) #define PROG_CODE struct r500_fragment_program_code *code = cs->compiler->code #define R500_US_NUM_TEMP_REGS 128 #define R500_US_NUM_CONST_REGS 256 /* "Register" flags */ #define REG_CONSTANT (1 << 8) #define REG_SRC_REL (1 << 9) #define REG_DEST_REL (1 << 7) /* Swizzle tools */ #define R500_SWIZZLE_ZERO 4 #define R500_SWIZZLE_HALF 5 #define R500_SWIZZLE_ONE 6 #define R500_SWIZ_RGB_ZERO ((4 << 0) | (4 << 3) | (4 << 6)) #define R500_SWIZ_RGB_ONE ((6 << 0) | (6 << 3) | (6 << 6)) #define R500_SWIZ_RGB_RGB ((0 << 0) | (1 << 3) | (2 << 6)) #define R500_SWIZ_MOD_NEG 1 #define R500_SWIZ_MOD_ABS 2 #define R500_SWIZ_MOD_NEG_ABS 3 /* Swizzles for inst2 */ #define MAKE_SWIZ_TEX_STRQ(x) (x << 8) #define MAKE_SWIZ_TEX_RGBA(x) (x << 24) /* Swizzles for inst3 */ #define MAKE_SWIZ_RGB_A(x) (x << 2) #define MAKE_SWIZ_RGB_B(x) (x << 15) /* Swizzles for inst4 */ #define MAKE_SWIZ_ALPHA_A(x) (x << 14) #define MAKE_SWIZ_ALPHA_B(x) (x << 21) /* Swizzle for inst5 */ #define MAKE_SWIZ_RGBA_C(x) (x << 14) #define MAKE_SWIZ_ALPHA_C(x) (x << 27) /* Writemasks */ #define R500_WRITEMASK_G 0x2 #define R500_WRITEMASK_B 0x4 #define R500_WRITEMASK_RGB 0x7 #define R500_WRITEMASK_A 0x8 #define R500_WRITEMASK_AR 0x9 #define R500_WRITEMASK_AG 0xA #define R500_WRITEMASK_ARG 0xB #define R500_WRITEMASK_AB 0xC #define R500_WRITEMASK_ARGB 0xF static const struct prog_dst_register dstreg_template = { .File = PROGRAM_TEMPORARY, .Index = 0, .WriteMask = WRITEMASK_XYZW }; static INLINE GLuint fix_hw_swizzle(GLuint swz) { if (swz == 5) swz = 6; if (swz == SWIZZLE_NIL) swz = 4; return swz; } static INLINE GLuint make_rgb_swizzle(struct prog_src_register src) { GLuint swiz = 0x0; GLuint temp; /* This could be optimized, but it should be plenty fast already. */ int i; int negatebase = 0; for (i = 0; i < 3; i++) { temp = GET_SWZ(src.Swizzle, i); if (temp != SWIZZLE_NIL && GET_BIT(src.NegateBase, i)) negatebase = 1; temp = fix_hw_swizzle(temp); swiz |= temp << i*3; } if (src.Abs) swiz |= R500_SWIZ_MOD_ABS << 9; else if (negatebase) swiz |= R500_SWIZ_MOD_NEG << 9; if (src.NegateAbs) swiz ^= R500_SWIZ_MOD_NEG << 9; return swiz; } static INLINE GLuint make_rgba_swizzle(GLuint src) { GLuint swiz = 0x0; GLuint temp; int i; for (i = 0; i < 4; i++) { temp = GET_SWZ(src, i); temp = fix_hw_swizzle(temp); swiz |= temp << i*3; } return swiz; } static INLINE GLuint make_alpha_swizzle(struct prog_src_register src) { GLuint swiz = GET_SWZ(src.Swizzle, 3); swiz = fix_hw_swizzle(swiz); if (src.Abs) { swiz |= R500_SWIZ_MOD_ABS << 3; } else if (src.NegateBase & 8) { swiz |= R500_SWIZ_MOD_NEG << 3; } if (src.NegateAbs) swiz ^= R500_SWIZ_MOD_NEG << 3; return swiz; } static INLINE GLuint make_sop_swizzle(struct prog_src_register src) { GLuint swiz = GET_SWZ(src.Swizzle, 0); swiz = fix_hw_swizzle(swiz); if (src.Abs) { swiz |= R500_SWIZ_MOD_ABS << 3; } else if (src.NegateBase & 1) { swiz |= R500_SWIZ_MOD_NEG << 3; } if (src.NegateAbs) swiz ^= R500_SWIZ_MOD_NEG << 3; return swiz; } static INLINE GLuint make_strq_swizzle(struct prog_src_register src) { GLuint swiz = 0x0, temp = 0x0; int i; for (i = 0; i < 4; i++) { temp = GET_SWZ(src.Swizzle, i) & 0x3; swiz |= temp << i*2; } return swiz; } static int get_temp(struct r500_pfs_compile_state *cs, int slot) { PROG_CODE; int r = code->temp_reg_offset + cs->temp_in_use + slot; if (r > R500_US_NUM_TEMP_REGS) { ERROR("Too many temporary registers requested, can't compile!\n"); } return r; } /* Borrowed verbatim from r300_fragprog since it hasn't changed. */ static GLuint emit_const4fv(struct r500_pfs_compile_state *cs, struct prog_src_register srcreg) { PROG_CODE; GLuint reg = 0x0; int index; for (index = 0; index < code->const_nr; ++index) { if (code->constant[index].File == srcreg.File && code->constant[index].Index == srcreg.Index) break; } if (index >= code->const_nr) { if (index >= R500_US_NUM_CONST_REGS) { ERROR("Out of hw constants!\n"); return reg; } code->const_nr++; code->constant[index] = srcreg; } reg = index | REG_CONSTANT; return reg; } static GLuint make_src(struct r500_pfs_compile_state *cs, struct prog_src_register src) { PROG_CODE; GLuint reg; switch (src.File) { case PROGRAM_TEMPORARY: reg = src.Index + code->temp_reg_offset; break; case PROGRAM_INPUT: reg = cs->inputs[src.Index].reg; break; case PROGRAM_LOCAL_PARAM: case PROGRAM_ENV_PARAM: case PROGRAM_STATE_VAR: case PROGRAM_NAMED_PARAM: case PROGRAM_CONSTANT: reg = emit_const4fv(cs, src); break; case PROGRAM_BUILTIN: reg = 0x0; break; default: ERROR("Can't handle src.File %x\n", src.File); reg = 0x0; break; } return reg; } static GLuint make_dest(struct r500_pfs_compile_state *cs, struct prog_dst_register dest) { PROG_CODE; GLuint reg; switch (dest.File) { case PROGRAM_TEMPORARY: reg = dest.Index + code->temp_reg_offset; break; case PROGRAM_OUTPUT: /* Eventually we may need to handle multiple * rendering targets... */ reg = dest.Index; break; case PROGRAM_BUILTIN: reg = 0x0; break; default: ERROR("Can't handle dest.File %x\n", dest.File); reg = 0x0; break; } return reg; } static int emit_slot(struct r500_pfs_compile_state *cs) { if (cs->nrslots >= 512) { ERROR("Too many instructions"); cs->nrslots = 1; return 0; } return cs->nrslots++; } static int emit_tex(struct r500_pfs_compile_state *cs, struct prog_instruction *fpi, int dest) { PROG_CODE; int hwsrc, hwdest; GLuint mask; int counter = emit_slot(cs); mask = fpi->DstReg.WriteMask << 11; hwsrc = make_src(cs, fpi->SrcReg[0]); if (fpi->DstReg.File == PROGRAM_OUTPUT) { hwdest = get_temp(cs, 0); } else { hwdest = dest; } code->inst[counter].inst0 = R500_INST_TYPE_TEX | mask | R500_INST_TEX_SEM_WAIT; code->inst[counter].inst1 = R500_TEX_ID(fpi->TexSrcUnit) | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED; if (fpi->TexSrcTarget == TEXTURE_RECT_INDEX) code->inst[counter].inst1 |= R500_TEX_UNSCALED; switch (fpi->Opcode) { case OPCODE_KIL: code->inst[counter].inst1 |= R500_TEX_INST_TEXKILL; break; case OPCODE_TEX: code->inst[counter].inst1 |= R500_TEX_INST_LD; break; case OPCODE_TXB: code->inst[counter].inst1 |= R500_TEX_INST_LODBIAS; break; case OPCODE_TXP: code->inst[counter].inst1 |= R500_TEX_INST_PROJ; break; default: ERROR("emit_tex can't handle opcode %x\n", fpi->Opcode); } code->inst[counter].inst2 = R500_TEX_SRC_ADDR(hwsrc) | MAKE_SWIZ_TEX_STRQ(make_strq_swizzle(fpi->SrcReg[0])) /* | R500_TEX_SRC_S_SWIZ_R | R500_TEX_SRC_T_SWIZ_G | R500_TEX_SRC_R_SWIZ_B | R500_TEX_SRC_Q_SWIZ_A */ | R500_TEX_DST_ADDR(hwdest) | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A; code->inst[counter].inst3 = 0x0; code->inst[counter].inst4 = 0x0; code->inst[counter].inst5 = 0x0; if (fpi->DstReg.File == PROGRAM_OUTPUT) { counter++; code->inst[counter].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT | (mask << 4); code->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(cs, 0)); code->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(cs, 0)); code->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_OMOD_DISABLE; code->inst[counter].inst4 = R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_ALPHA_SWIZ_A_A) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_ALPHA_SWIZ_A_A) | R500_ALPHA_OMOD_DISABLE; code->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); } return counter; } /* Do not call directly */ static int _helper_emit_alu(struct r500_pfs_compile_state *cs, GLuint rgbop, GLuint alphaop, int File, int Index, int WriteMask) { PROG_CODE; int counter = emit_slot(cs); code->inst[counter].inst4 = alphaop; code->inst[counter].inst5 = rgbop; if (File == PROGRAM_OUTPUT) { code->inst[counter].inst0 = R500_INST_TYPE_OUT; if (Index == FRAG_RESULT_COLR) { code->inst[counter].inst0 |= WriteMask << 15; } else if (Index == FRAG_RESULT_DEPR) { code->inst[counter].inst4 |= R500_ALPHA_W_OMASK; cs->compiler->fp->writes_depth = GL_TRUE; } } else { int dest = Index + code->temp_reg_offset; code->inst[counter].inst0 = R500_INST_TYPE_ALU | (WriteMask << 11); code->inst[counter].inst4 |= R500_ALPHA_ADDRD(dest); code->inst[counter].inst5 |= R500_ALU_RGBA_ADDRD(dest); } code->inst[counter].inst0 |= R500_INST_TEX_SEM_WAIT; return counter; } /** * Prepare an ALU slot with the given RGB operation, ALPHA operation, and * destination register. */ static int emit_alu(struct r500_pfs_compile_state *cs, GLuint rgbop, GLuint alphaop, struct prog_dst_register dst) { return _helper_emit_alu(cs, rgbop, alphaop, dst.File, dst.Index, dst.WriteMask); } /** * Set an instruction's source 0 (both RGB and ALPHA) to the given hardware index. */ static void set_src0_direct(struct r500_pfs_compile_state *cs, int ip, GLuint src) { PROG_CODE; code->inst[ip].inst1 |= R500_RGB_ADDR0(src); code->inst[ip].inst2 |= R500_ALPHA_ADDR0(src); } /** * Set an instruction's source 1 (both RGB and ALPHA) to the given hardware index. */ static void set_src1_direct(struct r500_pfs_compile_state *cs, int ip, GLuint src) { PROG_CODE; code->inst[ip].inst1 |= R500_RGB_ADDR1(src); code->inst[ip].inst2 |= R500_ALPHA_ADDR1(src); } /** * Set an instruction's source 2 (both RGB and ALPHA) to the given hardware index. */ static void set_src2_direct(struct r500_pfs_compile_state *cs, int ip, GLuint src) { PROG_CODE; code->inst[ip].inst1 |= R500_RGB_ADDR2(src); code->inst[ip].inst2 |= R500_ALPHA_ADDR2(src); } /** * Set an instruction's source 0 (both RGB and ALPHA) according to the given source register. */ static void set_src0(struct r500_pfs_compile_state *cs, int ip, struct prog_src_register srcreg) { set_src0_direct(cs, ip, make_src(cs, srcreg)); } /** * Set an instruction's source 1 (both RGB and ALPHA) according to the given source register. */ static void set_src1(struct r500_pfs_compile_state *cs, int ip, struct prog_src_register srcreg) { set_src1_direct(cs, ip, make_src(cs, srcreg)); } /** * Set an instruction's source 2 (both RGB and ALPHA) according to the given source register. */ static void set_src2(struct r500_pfs_compile_state *cs, int ip, struct prog_src_register srcreg) { set_src2_direct(cs, ip, make_src(cs, srcreg)); } /** * Set an instruction's argument A (both RGB and ALPHA) from the given source, * taking swizzles+neg+abs as specified (see also _reg version below). */ static void set_argA(struct r500_pfs_compile_state *cs, int ip, int source, GLuint swizRGB, GLuint swizA) { PROG_CODE; code->inst[ip].inst3 |= (source << R500_ALU_RGB_SEL_A_SHIFT) | MAKE_SWIZ_RGB_A(swizRGB); code->inst[ip].inst4 |= (source << R500_ALPHA_SEL_A_SHIFT) | MAKE_SWIZ_ALPHA_A(swizA); } /** * Set an instruction's argument B (both RGB and ALPHA) from the given source, * taking swizzles+neg+abs as specified (see also _reg version below). */ static void set_argB(struct r500_pfs_compile_state *cs, int ip, int source, GLuint swizRGB, GLuint swizA) { PROG_CODE; code->inst[ip].inst3 |= (source << R500_ALU_RGB_SEL_B_SHIFT) | MAKE_SWIZ_RGB_B(swizRGB); code->inst[ip].inst4 |= (source << R500_ALPHA_SEL_B_SHIFT) | MAKE_SWIZ_ALPHA_B(swizA); } /** * Set an instruction's argument C (both RGB and ALPHA) from the given source, * taking swizzles+neg+abs as specified (see also _reg version below). */ static void set_argC(struct r500_pfs_compile_state *cs, int ip, int source, GLuint swizRGB, GLuint swizA) { PROG_CODE; code->inst[ip].inst5 |= (source << R500_ALU_RGBA_SEL_C_SHIFT) | MAKE_SWIZ_RGBA_C(swizRGB) | (source << R500_ALU_RGBA_ALPHA_SEL_C_SHIFT) | MAKE_SWIZ_ALPHA_C(swizA); } /** * Set an instruction's argument A (both RGB and ALPHA) from the given source, * taking swizzles, negation and absolute value from the given source register. */ static void set_argA_reg(struct r500_pfs_compile_state *cs, int ip, int source, struct prog_src_register srcreg) { set_argA(cs, ip, source, make_rgb_swizzle(srcreg), make_alpha_swizzle(srcreg)); } /** * Set an instruction's argument B (both RGB and ALPHA) from the given source, * taking swizzles, negation and absolute value from the given source register. */ static void set_argB_reg(struct r500_pfs_compile_state *cs, int ip, int source, struct prog_src_register srcreg) { set_argB(cs, ip, source, make_rgb_swizzle(srcreg), make_alpha_swizzle(srcreg)); } /** * Set an instruction's argument C (both RGB and ALPHA) from the given source, * taking swizzles, negation and absolute value from the given source register. */ static void set_argC_reg(struct r500_pfs_compile_state *cs, int ip, int source, struct prog_src_register srcreg) { set_argC(cs, ip, source, make_rgb_swizzle(srcreg), make_alpha_swizzle(srcreg)); } /** * Emit a special scalar operation. */ static int emit_sop(struct r500_pfs_compile_state *cs, int opcode, struct prog_dst_register dstreg, GLuint src, GLuint swiz) { int ip = emit_alu(cs, R500_ALU_RGBA_OP_SOP, opcode, dstreg); set_src0_direct(cs, ip, src); set_argA(cs, ip, 0, R500_SWIZ_RGB_ZERO, swiz); return ip; } static void do_inst(struct r500_pfs_compile_state *cs, struct prog_instruction *fpi) { PROG_CODE; GLuint src[3], dest = 0; int ip; if (fpi->Opcode != OPCODE_KIL) { dest = make_dest(cs, fpi->DstReg); } switch (fpi->Opcode) { case OPCODE_ADD: /* Variation on MAD: 1*src0+src1 */ ip = emit_alu(cs, R500_ALU_RGBA_OP_MAD, R500_ALPHA_OP_MAD, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_argA(cs, ip, 0, R500_SWIZ_RGB_ONE, R500_SWIZZLE_ONE); set_argB_reg(cs, ip, 0, fpi->SrcReg[0]); set_argC_reg(cs, ip, 1, fpi->SrcReg[1]); break; case OPCODE_CMP: /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ ip = emit_alu(cs, R500_ALU_RGBA_OP_CMP, R500_ALPHA_OP_CMP, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_src2(cs, ip, fpi->SrcReg[2]); set_argA_reg(cs, ip, 2, fpi->SrcReg[2]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); set_argC_reg(cs, ip, 0, fpi->SrcReg[0]); break; case OPCODE_COS: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, R500_ALPHA_OP_COS, fpi->DstReg, src[0], make_sop_swizzle(fpi->SrcReg[0])); break; case OPCODE_DP3: ip = emit_alu(cs, R500_ALU_RGBA_OP_DP3, R500_ALPHA_OP_DP, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); break; case OPCODE_DP4: ip = emit_alu(cs, R500_ALU_RGBA_OP_DP4, R500_ALPHA_OP_DP, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); break; case OPCODE_EX2: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, R500_ALPHA_OP_EX2, fpi->DstReg, src[0], make_sop_swizzle(fpi->SrcReg[0])); break; case OPCODE_FRC: ip = emit_alu(cs, R500_ALU_RGBA_OP_FRC, R500_ALPHA_OP_FRC, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); break; case OPCODE_LG2: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, R500_ALPHA_OP_LN2, fpi->DstReg, src[0], make_sop_swizzle(fpi->SrcReg[0])); break; case OPCODE_MAD: ip = emit_alu(cs, R500_ALU_RGBA_OP_MAD, R500_ALPHA_OP_MAD, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_src2(cs, ip, fpi->SrcReg[2]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); set_argC_reg(cs, ip, 2, fpi->SrcReg[2]); break; case OPCODE_MAX: ip = emit_alu(cs, R500_ALU_RGBA_OP_MAX, R500_ALPHA_OP_MAX, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); break; case OPCODE_MIN: ip = emit_alu(cs, R500_ALU_RGBA_OP_MIN, R500_ALPHA_OP_MIN, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); break; case OPCODE_MOV: ip = emit_alu(cs, R500_ALU_RGBA_OP_CMP, R500_ALPHA_OP_CMP, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 0, fpi->SrcReg[0]); set_argC(cs, ip, 0, R500_SWIZ_RGB_ZERO, R500_SWIZZLE_ZERO); code->inst[ip].inst3 |= R500_ALU_RGB_OMOD_DISABLE; code->inst[ip].inst4 |= R500_ALPHA_OMOD_DISABLE; break; case OPCODE_MUL: /* Variation on MAD: src0*src1+0 */ ip = emit_alu(cs, R500_ALU_RGBA_OP_MAD, R500_ALPHA_OP_MAD, fpi->DstReg); set_src0(cs, ip, fpi->SrcReg[0]); set_src1(cs, ip, fpi->SrcReg[1]); set_argA_reg(cs, ip, 0, fpi->SrcReg[0]); set_argB_reg(cs, ip, 1, fpi->SrcReg[1]); set_argC(cs, ip, 0, R500_SWIZ_RGB_ZERO, R500_SWIZZLE_ZERO); break; case OPCODE_RCP: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, R500_ALPHA_OP_RCP, fpi->DstReg, src[0], make_sop_swizzle(fpi->SrcReg[0])); break; case OPCODE_RSQ: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, R500_ALPHA_OP_RSQ, fpi->DstReg, src[0], (make_sop_swizzle(fpi->SrcReg[0]) | (R500_SWIZ_MOD_ABS<<3)) & ~(R500_SWIZ_MOD_NEG<<3)); break; case OPCODE_SIN: src[0] = make_src(cs, fpi->SrcReg[0]); emit_sop(cs, R500_ALPHA_OP_SIN, fpi->DstReg, src[0], make_sop_swizzle(fpi->SrcReg[0])); break; case OPCODE_KIL: case OPCODE_TEX: case OPCODE_TXB: case OPCODE_TXP: emit_tex(cs, fpi, dest); break; default: ERROR("unknown fpi->Opcode %s\n", _mesa_opcode_string(fpi->Opcode)); break; } /* Finishing touches */ if (fpi->SaturateMode == SATURATE_ZERO_ONE) { code->inst[cs->nrslots-1].inst0 |= R500_INST_RGB_CLAMP | R500_INST_ALPHA_CLAMP; } } static GLboolean parse_program(struct r500_pfs_compile_state *cs) { PROG_CODE; struct prog_instruction* fpi; for(fpi = cs->compiler->program->Instructions; fpi->Opcode != OPCODE_END; ++fpi) { do_inst(cs, fpi); if (cs->compiler->fp->error) return GL_FALSE; } /* Finish him! (If it's an ALU/OUT instruction...) */ if ((code->inst[cs->nrslots-1].inst0 & 0x3) == 1) { code->inst[cs->nrslots-1].inst0 |= R500_INST_LAST; } else { /* We still need to put an output inst, right? */ WARN_ONCE("Final FP instruction is not an OUT.\n"); } code->max_temp_idx++; return GL_TRUE; } static void init_program(struct r500_pfs_compile_state *cs) { PROG_CODE; struct gl_fragment_program *mp = &cs->compiler->fp->mesa_program; struct prog_instruction *fpi; GLuint InputsRead = mp->Base.InputsRead; GLuint temps_used = 0; int i; /* New compile, reset tracking data */ cs->compiler->fp->optimization = driQueryOptioni(&cs->compiler->r300->radeon.optionCache, "fp_optimization"); cs->compiler->fp->translated = GL_FALSE; cs->compiler->fp->error = GL_FALSE; _mesa_bzero(code, sizeof(*code)); code->max_temp_idx = 1; /* Size of pixel stack, plus 1. */ cs->nrslots = 0; cs->compiler->fp->writes_depth = GL_FALSE; /* Work out what temps the Mesa inputs correspond to, this must match * what setup_rs_unit does, which shouldn't be a problem as rs_unit * configures itself based on the fragprog's InputsRead * * NOTE: this depends on get_hw_temp() allocating registers in order, * starting from register 0, so we're just going to do that instead. */ /* Texcoords come first */ for (i = 0; i < cs->compiler->fp->ctx->Const.MaxTextureUnits; i++) { if (InputsRead & (FRAG_BIT_TEX0 << i)) { cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0; cs->inputs[FRAG_ATTRIB_TEX0 + i].reg = code->temp_reg_offset; code->temp_reg_offset++; } } InputsRead &= ~FRAG_BITS_TEX_ANY; /* fragment position treated as a texcoord */ if (InputsRead & FRAG_BIT_WPOS) { cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0; cs->inputs[FRAG_ATTRIB_WPOS].reg = code->temp_reg_offset; code->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_WPOS; /* Then primary colour */ if (InputsRead & FRAG_BIT_COL0) { cs->inputs[FRAG_ATTRIB_COL0].refcount = 0; cs->inputs[FRAG_ATTRIB_COL0].reg = code->temp_reg_offset; code->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_COL0; /* Secondary color */ if (InputsRead & FRAG_BIT_COL1) { cs->inputs[FRAG_ATTRIB_COL1].refcount = 0; cs->inputs[FRAG_ATTRIB_COL1].reg = code->temp_reg_offset; code->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_COL1; /* Anything else */ if (InputsRead) { WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead); /* force read from hwreg 0 for now */ for (i = 0; i < 32; i++) if (InputsRead & (1 << i)) cs->inputs[i].reg = 0; } int ip; for (ip = 0; ip < cs->compiler->program->NumInstructions; ip++) { fpi = cs->compiler->program->Instructions + ip; for (i = 0; i < 3; i++) { if (fpi->SrcReg[i].File == PROGRAM_TEMPORARY) { if (fpi->SrcReg[i].Index >= temps_used) temps_used = fpi->SrcReg[i].Index + 1; } } } cs->temp_in_use = temps_used + 1; code->max_temp_idx = code->temp_reg_offset + cs->temp_in_use; if (RADEON_DEBUG & DEBUG_PIXEL) fprintf(stderr, "FP temp indices: code->max_temp_idx: %d cs->temp_in_use: %d\n", code->max_temp_idx, cs->temp_in_use); } static void dumb_shader(struct r500_pfs_compile_state *cs) { PROG_CODE; code->inst[0].inst0 = R500_INST_TYPE_TEX | R500_INST_TEX_SEM_WAIT | R500_INST_RGB_WMASK_R | R500_INST_RGB_WMASK_G | R500_INST_RGB_WMASK_B | R500_INST_ALPHA_WMASK | R500_INST_RGB_CLAMP | R500_INST_ALPHA_CLAMP; code->inst[0].inst1 = R500_TEX_ID(0) | R500_TEX_INST_LD | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED; code->inst[0].inst2 = R500_TEX_SRC_ADDR(0) | R500_TEX_SRC_S_SWIZ_R | R500_TEX_SRC_T_SWIZ_G | R500_TEX_DST_ADDR(0) | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A; code->inst[0].inst3 = R500_DX_ADDR(0) | R500_DX_S_SWIZ_R | R500_DX_T_SWIZ_R | R500_DX_R_SWIZ_R | R500_DX_Q_SWIZ_R | R500_DY_ADDR(0) | R500_DY_S_SWIZ_R | R500_DY_T_SWIZ_R | R500_DY_R_SWIZ_R | R500_DY_Q_SWIZ_R; code->inst[0].inst4 = 0x0; code->inst[0].inst5 = 0x0; code->inst[1].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT | R500_INST_LAST | R500_INST_RGB_OMASK_R | R500_INST_RGB_OMASK_G | R500_INST_RGB_OMASK_B | R500_INST_ALPHA_OMASK; code->inst[1].inst1 = R500_RGB_ADDR0(0) | R500_RGB_ADDR1(0) | R500_RGB_ADDR1_CONST | R500_RGB_ADDR2(0) | R500_RGB_ADDR2_CONST | R500_RGB_SRCP_OP_1_MINUS_2RGB0; code->inst[1].inst2 = R500_ALPHA_ADDR0(0) | R500_ALPHA_ADDR1(0) | R500_ALPHA_ADDR1_CONST | R500_ALPHA_ADDR2(0) | R500_ALPHA_ADDR2_CONST | R500_ALPHA_SRCP_OP_1_MINUS_2A0; code->inst[1].inst3 = R500_ALU_RGB_SEL_A_SRC0 | R500_ALU_RGB_R_SWIZ_A_R | R500_ALU_RGB_G_SWIZ_A_G | R500_ALU_RGB_B_SWIZ_A_B | R500_ALU_RGB_SEL_B_SRC0 | R500_ALU_RGB_R_SWIZ_B_1 | R500_ALU_RGB_B_SWIZ_B_1 | R500_ALU_RGB_G_SWIZ_B_1; code->inst[1].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SWIZ_B_1; code->inst[1].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_R_SWIZ_0 | R500_ALU_RGBA_G_SWIZ_0 | R500_ALU_RGBA_B_SWIZ_0 | R500_ALU_RGBA_A_SWIZ_0; cs->nrslots = 2; } GLboolean r500FragmentProgramEmit(struct r500_fragment_program_compiler *compiler) { struct r500_pfs_compile_state cs; struct r500_fragment_program_code *code = compiler->code; _mesa_memset(&cs, 0, sizeof(cs)); cs.compiler = compiler; init_program(&cs); if (!parse_program(&cs)) { #if 0 ERROR("Huh. Couldn't parse program. There should be additional errors explaining why.\nUsing dumb shader...\n"); dumb_shader(fp); code->inst_offset = 0; code->inst_end = cs.nrslots - 1; #endif return GL_FALSE; } code->inst_offset = 0; code->inst_end = cs.nrslots - 1; return GL_TRUE; }