/* $XFree86: xc/lib/GL/mesa/src/drv/radeon/radeon_ioctl.c,v 1.11 2003/01/29 22:04:59 dawes Exp $ */ /************************************************************************** Copyright 2000, 2001 ATI Technologies Inc., Ontario, Canada, and VA Linux Systems Inc., Fremont, California. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************/ /* * Authors: * Kevin E. Martin * Gareth Hughes * Keith Whitwell */ #include #include #include "glheader.h" #include "imports.h" #include "simple_list.h" #include "swrast/swrast.h" #include "radeon_context.h" #include "radeon_state.h" #include "radeon_ioctl.h" #include "radeon_tcl.h" #include "radeon_sanity.h" #include "radeon_macros.h" /* for INREG() */ #include "vblank.h" #define RADEON_TIMEOUT 512 #define RADEON_IDLE_RETRY 16 static void radeonWaitForIdle( radeonContextPtr rmesa ); /* ============================================================= * Kernel command buffer handling */ static void print_state_atom( struct radeon_state_atom *state ) { int i; fprintf(stderr, "emit %s/%d\n", state->name, state->cmd_size); if (RADEON_DEBUG & DEBUG_VERBOSE) for (i = 0 ; i < state->cmd_size ; i++) fprintf(stderr, "\t%s[%d]: %x\n", state->name, i, state->cmd[i]); } static void radeon_emit_state_list( radeonContextPtr rmesa, struct radeon_state_atom *list ) { struct radeon_state_atom *state, *tmp; char *dest; int i, size, texunits; /* It appears that some permutations of state atoms lock up the * chip. Therefore we make sure that state atoms are emitted in a * fixed order. First mark all dirty state atoms and then go * through all state atoms in a well defined order and emit only * the marked ones. * FIXME: This requires knowledge of which state atoms exist. * FIXME: Is the zbs hack below still needed? */ size = 0; foreach_s( state, tmp, list ) { if (state->check( rmesa->glCtx )) { size += state->cmd_size; state->dirty = GL_TRUE; move_to_head( &(rmesa->hw.clean), state ); if (RADEON_DEBUG & DEBUG_STATE) print_state_atom( state ); } else if (RADEON_DEBUG & DEBUG_STATE) fprintf(stderr, "skip state %s\n", state->name); } /* short cut */ if (!size) return; dest = radeonAllocCmdBuf( rmesa, size * 4, __FUNCTION__); texunits = rmesa->glCtx->Const.MaxTextureUnits; #define EMIT_ATOM(ATOM) \ do { \ if (rmesa->hw.ATOM.dirty) { \ rmesa->hw.ATOM.dirty = GL_FALSE; \ memcpy( dest, rmesa->hw.ATOM.cmd, rmesa->hw.ATOM.cmd_size * 4); \ dest += rmesa->hw.ATOM.cmd_size * 4; \ } \ } while (0) EMIT_ATOM (ctx); EMIT_ATOM (set); EMIT_ATOM (lin); EMIT_ATOM (msk); EMIT_ATOM (vpt); EMIT_ATOM (tcl); EMIT_ATOM (msc); for (i = 0; i < texunits; ++i) { EMIT_ATOM (tex[i]); EMIT_ATOM (txr[i]); } EMIT_ATOM (zbs); EMIT_ATOM (mtl); for (i = 0; i < 3 + texunits; ++i) EMIT_ATOM (mat[i]); for (i = 0; i < 8; ++i) EMIT_ATOM (lit[i]); for (i = 0; i < 6; ++i) EMIT_ATOM (ucp[i]); EMIT_ATOM (eye); EMIT_ATOM (grd); EMIT_ATOM (fog); EMIT_ATOM (glt); #undef EMIT_ATOM } void radeonEmitState( radeonContextPtr rmesa ) { struct radeon_state_atom *state, *tmp; if (RADEON_DEBUG & (DEBUG_STATE|DEBUG_PRIMS)) fprintf(stderr, "%s\n", __FUNCTION__); /* Somewhat overkill: */ if (rmesa->lost_context) { if (RADEON_DEBUG & (DEBUG_STATE|DEBUG_PRIMS|DEBUG_IOCTL)) fprintf(stderr, "%s - lost context\n", __FUNCTION__); foreach_s( state, tmp, &(rmesa->hw.clean) ) move_to_tail(&(rmesa->hw.dirty), state ); rmesa->lost_context = 0; } else if (1) { /* This is a darstardly kludge to work around a lockup that I * haven't otherwise figured out. */ move_to_tail(&(rmesa->hw.dirty), &(rmesa->hw.zbs) ); } if (!(rmesa->radeonScreen->chipset & RADEON_CHIPSET_TCL)) { foreach_s( state, tmp, &(rmesa->hw.dirty) ) { if (state->is_tcl) { move_to_head( &(rmesa->hw.clean), state ); } } } radeon_emit_state_list( rmesa, &rmesa->hw.dirty ); } /* Fire a section of the retained (indexed_verts) buffer as a regular * primtive. */ extern void radeonEmitVbufPrim( radeonContextPtr rmesa, GLuint vertex_format, GLuint primitive, GLuint vertex_nr ) { drmRadeonCmdHeader *cmd; assert(!(primitive & RADEON_CP_VC_CNTL_PRIM_WALK_IND)); radeonEmitState( rmesa ); if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s cmd_used/4: %d\n", __FUNCTION__, rmesa->store.cmd_used/4); #if RADEON_OLD_PACKETS cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 6 * sizeof(*cmd), __FUNCTION__ ); cmd[0].header.cmd_type = RADEON_CMD_PACKET3_CLIP; cmd[1].i = RADEON_CP_PACKET3_3D_RNDR_GEN_INDX_PRIM | (3 << 16); cmd[2].i = rmesa->ioctl.vertex_offset; cmd[3].i = vertex_nr; cmd[4].i = vertex_format; cmd[5].i = (primitive | RADEON_CP_VC_CNTL_PRIM_WALK_LIST | RADEON_CP_VC_CNTL_COLOR_ORDER_RGBA | RADEON_CP_VC_CNTL_VTX_FMT_RADEON_MODE | (vertex_nr << RADEON_CP_VC_CNTL_NUM_SHIFT)); if (RADEON_DEBUG & DEBUG_PRIMS) fprintf(stderr, "%s: header 0x%x offt 0x%x vfmt 0x%x vfcntl %x \n", __FUNCTION__, cmd[1].i, cmd[2].i, cmd[4].i, cmd[5].i); #else cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 4 * sizeof(*cmd), __FUNCTION__ ); cmd[0].i = 0; cmd[0].header.cmd_type = RADEON_CMD_PACKET3_CLIP; cmd[1].i = RADEON_CP_PACKET3_3D_DRAW_VBUF | (1 << 16); cmd[2].i = vertex_format; cmd[3].i = (primitive | RADEON_CP_VC_CNTL_PRIM_WALK_LIST | RADEON_CP_VC_CNTL_COLOR_ORDER_RGBA | RADEON_CP_VC_CNTL_MAOS_ENABLE | RADEON_CP_VC_CNTL_VTX_FMT_RADEON_MODE | (vertex_nr << RADEON_CP_VC_CNTL_NUM_SHIFT)); if (RADEON_DEBUG & DEBUG_PRIMS) fprintf(stderr, "%s: header 0x%x vfmt 0x%x vfcntl %x \n", __FUNCTION__, cmd[1].i, cmd[2].i, cmd[3].i); #endif } void radeonFlushElts( radeonContextPtr rmesa ) { int *cmd = (int *)(rmesa->store.cmd_buf + rmesa->store.elts_start); int dwords; #if RADEON_OLD_PACKETS int nr = (rmesa->store.cmd_used - (rmesa->store.elts_start + 24)) / 2; #else int nr = (rmesa->store.cmd_used - (rmesa->store.elts_start + 16)) / 2; #endif if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s\n", __FUNCTION__); assert( rmesa->dma.flush == radeonFlushElts ); rmesa->dma.flush = 0; /* Cope with odd number of elts: */ rmesa->store.cmd_used = (rmesa->store.cmd_used + 2) & ~2; dwords = (rmesa->store.cmd_used - rmesa->store.elts_start) / 4; #if RADEON_OLD_PACKETS cmd[1] |= (dwords - 3) << 16; cmd[5] |= nr << RADEON_CP_VC_CNTL_NUM_SHIFT; #else cmd[1] |= (dwords - 3) << 16; cmd[3] |= nr << RADEON_CP_VC_CNTL_NUM_SHIFT; #endif } GLushort *radeonAllocEltsOpenEnded( radeonContextPtr rmesa, GLuint vertex_format, GLuint primitive, GLuint min_nr ) { drmRadeonCmdHeader *cmd; GLushort *retval; if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s %d\n", __FUNCTION__, min_nr); assert((primitive & RADEON_CP_VC_CNTL_PRIM_WALK_IND)); radeonEmitState( rmesa ); #if RADEON_OLD_PACKETS cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 24 + min_nr*2, __FUNCTION__ ); cmd[0].i = 0; cmd[0].header.cmd_type = RADEON_CMD_PACKET3_CLIP; cmd[1].i = RADEON_CP_PACKET3_3D_RNDR_GEN_INDX_PRIM; cmd[2].i = rmesa->ioctl.vertex_offset; cmd[3].i = 0xffff; cmd[4].i = vertex_format; cmd[5].i = (primitive | RADEON_CP_VC_CNTL_PRIM_WALK_IND | RADEON_CP_VC_CNTL_COLOR_ORDER_RGBA | RADEON_CP_VC_CNTL_VTX_FMT_RADEON_MODE); retval = (GLushort *)(cmd+6); #else cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 16 + min_nr*2, __FUNCTION__ ); cmd[0].i = 0; cmd[0].header.cmd_type = RADEON_CMD_PACKET3_CLIP; cmd[1].i = RADEON_CP_PACKET3_3D_DRAW_INDX; cmd[2].i = vertex_format; cmd[3].i = (primitive | RADEON_CP_VC_CNTL_PRIM_WALK_IND | RADEON_CP_VC_CNTL_COLOR_ORDER_RGBA | RADEON_CP_VC_CNTL_MAOS_ENABLE | RADEON_CP_VC_CNTL_VTX_FMT_RADEON_MODE); retval = (GLushort *)(cmd+4); #endif if (RADEON_DEBUG & DEBUG_PRIMS) fprintf(stderr, "%s: header 0x%x vfmt 0x%x prim %x \n", __FUNCTION__, cmd[1].i, vertex_format, primitive); assert(!rmesa->dma.flush); rmesa->glCtx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; rmesa->dma.flush = radeonFlushElts; rmesa->store.elts_start = ((char *)cmd) - rmesa->store.cmd_buf; return retval; } void radeonEmitVertexAOS( radeonContextPtr rmesa, GLuint vertex_size, GLuint offset ) { #if RADEON_OLD_PACKETS rmesa->ioctl.vertex_size = vertex_size; rmesa->ioctl.vertex_offset = offset; #else drmRadeonCmdHeader *cmd; if (RADEON_DEBUG & (DEBUG_PRIMS|DEBUG_IOCTL)) fprintf(stderr, "%s: vertex_size 0x%x offset 0x%x \n", __FUNCTION__, vertex_size, offset); cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 5 * sizeof(int), __FUNCTION__ ); cmd[0].i = 0; cmd[0].header.cmd_type = RADEON_CMD_PACKET3; cmd[1].i = RADEON_CP_PACKET3_3D_LOAD_VBPNTR | (2 << 16); cmd[2].i = 1; cmd[3].i = vertex_size | (vertex_size << 8); cmd[4].i = offset; #endif } void radeonEmitAOS( radeonContextPtr rmesa, struct radeon_dma_region **component, GLuint nr, GLuint offset ) { #if RADEON_OLD_PACKETS assert( nr == 1 ); assert( component[0]->aos_size == component[0]->aos_stride ); rmesa->ioctl.vertex_size = component[0]->aos_size; rmesa->ioctl.vertex_offset = (component[0]->aos_start + offset * component[0]->aos_stride * 4); #else drmRadeonCmdHeader *cmd; int sz = 3 + (nr/2 * 3) + (nr & 1) * 2; int i; int *tmp; if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s\n", __FUNCTION__); cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, sz * sizeof(int), __FUNCTION__ ); cmd[0].i = 0; cmd[0].header.cmd_type = RADEON_CMD_PACKET3; cmd[1].i = RADEON_CP_PACKET3_3D_LOAD_VBPNTR | ((sz-3) << 16); cmd[2].i = nr; tmp = &cmd[0].i; cmd += 3; for (i = 0 ; i < nr ; i++) { if (i & 1) { cmd[0].i |= ((component[i]->aos_stride << 24) | (component[i]->aos_size << 16)); cmd[2].i = (component[i]->aos_start + offset * component[i]->aos_stride * 4); cmd += 3; } else { cmd[0].i = ((component[i]->aos_stride << 8) | (component[i]->aos_size << 0)); cmd[1].i = (component[i]->aos_start + offset * component[i]->aos_stride * 4); } } if (RADEON_DEBUG & DEBUG_VERTS) { fprintf(stderr, "%s:\n", __FUNCTION__); for (i = 0 ; i < sz ; i++) fprintf(stderr, " %d: %x\n", i, tmp[i]); } #endif } /* using already shifted color_fmt! */ void radeonEmitBlit( radeonContextPtr rmesa, /* FIXME: which drmMinor is required? */ GLuint color_fmt, GLuint src_pitch, GLuint src_offset, GLuint dst_pitch, GLuint dst_offset, GLint srcx, GLint srcy, GLint dstx, GLint dsty, GLuint w, GLuint h ) { drmRadeonCmdHeader *cmd; if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s src %x/%x %d,%d dst: %x/%x %d,%d sz: %dx%d\n", __FUNCTION__, src_pitch, src_offset, srcx, srcy, dst_pitch, dst_offset, dstx, dsty, w, h); assert( (src_pitch & 63) == 0 ); assert( (dst_pitch & 63) == 0 ); assert( (src_offset & 1023) == 0 ); assert( (dst_offset & 1023) == 0 ); assert( w < (1<<16) ); assert( h < (1<<16) ); cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 8 * sizeof(int), __FUNCTION__ ); cmd[0].i = 0; cmd[0].header.cmd_type = RADEON_CMD_PACKET3; cmd[1].i = RADEON_CP_PACKET3_CNTL_BITBLT_MULTI | (5 << 16); cmd[2].i = (RADEON_GMC_SRC_PITCH_OFFSET_CNTL | RADEON_GMC_DST_PITCH_OFFSET_CNTL | RADEON_GMC_BRUSH_NONE | color_fmt | RADEON_GMC_SRC_DATATYPE_COLOR | RADEON_ROP3_S | RADEON_DP_SRC_SOURCE_MEMORY | RADEON_GMC_CLR_CMP_CNTL_DIS | RADEON_GMC_WR_MSK_DIS ); cmd[3].i = ((src_pitch/64)<<22) | (src_offset >> 10); cmd[4].i = ((dst_pitch/64)<<22) | (dst_offset >> 10); cmd[5].i = (srcx << 16) | srcy; cmd[6].i = (dstx << 16) | dsty; /* dst */ cmd[7].i = (w << 16) | h; } void radeonEmitWait( radeonContextPtr rmesa, GLuint flags ) { if (rmesa->dri.drmMinor >= 6) { drmRadeonCmdHeader *cmd; assert( !(flags & ~(RADEON_WAIT_2D|RADEON_WAIT_3D)) ); cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, 1 * sizeof(int), __FUNCTION__ ); cmd[0].i = 0; cmd[0].wait.cmd_type = RADEON_CMD_WAIT; cmd[0].wait.flags = flags; } } static int radeonFlushCmdBufLocked( radeonContextPtr rmesa, const char * caller ) { int ret, i; drmRadeonCmdBuffer cmd; if (RADEON_DEBUG & DEBUG_IOCTL) { fprintf(stderr, "%s from %s\n", __FUNCTION__, caller); if (RADEON_DEBUG & DEBUG_VERBOSE) for (i = 0 ; i < rmesa->store.cmd_used ; i += 4 ) fprintf(stderr, "%d: %x\n", i/4, *(int *)(&rmesa->store.cmd_buf[i])); } if (RADEON_DEBUG & DEBUG_DMA) fprintf(stderr, "%s: Releasing %d buffers\n", __FUNCTION__, rmesa->dma.nr_released_bufs); if (RADEON_DEBUG & DEBUG_SANITY) { if (rmesa->state.scissor.enabled) ret = radeonSanityCmdBuffer( rmesa, rmesa->state.scissor.numClipRects, rmesa->state.scissor.pClipRects); else ret = radeonSanityCmdBuffer( rmesa, rmesa->numClipRects, rmesa->pClipRects); if (ret) { fprintf(stderr, "drmSanityCommandWrite: %d\n", ret); goto out; } } cmd.bufsz = rmesa->store.cmd_used; cmd.buf = rmesa->store.cmd_buf; if (rmesa->state.scissor.enabled) { cmd.nbox = rmesa->state.scissor.numClipRects; cmd.boxes = (drmClipRect *)rmesa->state.scissor.pClipRects; } else { cmd.nbox = rmesa->numClipRects; cmd.boxes = (drmClipRect *)rmesa->pClipRects; } ret = drmCommandWrite( rmesa->dri.fd, DRM_RADEON_CMDBUF, &cmd, sizeof(cmd) ); if (ret) fprintf(stderr, "drmCommandWrite: %d\n", ret); out: rmesa->store.primnr = 0; rmesa->store.statenr = 0; rmesa->store.cmd_used = 0; rmesa->dma.nr_released_bufs = 0; rmesa->lost_context = 1; return ret; } /* Note: does not emit any commands to avoid recursion on * radeonAllocCmdBuf. */ void radeonFlushCmdBuf( radeonContextPtr rmesa, const char *caller ) { int ret; LOCK_HARDWARE( rmesa ); ret = radeonFlushCmdBufLocked( rmesa, caller ); UNLOCK_HARDWARE( rmesa ); if (ret) { fprintf(stderr, "drmRadeonCmdBuffer: %d (exiting)\n", ret); exit(ret); } } /* ============================================================= * Hardware vertex buffer handling */ void radeonRefillCurrentDmaRegion( radeonContextPtr rmesa ) { struct radeon_dma_buffer *dmabuf; int fd = rmesa->dri.fd; int index = 0; int size = 0; drmDMAReq dma; int ret; if (RADEON_DEBUG & (DEBUG_IOCTL|DEBUG_DMA)) fprintf(stderr, "%s\n", __FUNCTION__); if (rmesa->dma.flush) { rmesa->dma.flush( rmesa ); } if (rmesa->dma.current.buf) radeonReleaseDmaRegion( rmesa, &rmesa->dma.current, __FUNCTION__ ); if (rmesa->dma.nr_released_bufs > 4) radeonFlushCmdBuf( rmesa, __FUNCTION__ ); dma.context = rmesa->dri.hwContext; dma.send_count = 0; dma.send_list = NULL; dma.send_sizes = NULL; dma.flags = 0; dma.request_count = 1; dma.request_size = RADEON_BUFFER_SIZE; dma.request_list = &index; dma.request_sizes = &size; dma.granted_count = 0; LOCK_HARDWARE(rmesa); /* no need to validate */ ret = drmDMA( fd, &dma ); if (ret != 0) { /* Free some up this way? */ if (rmesa->dma.nr_released_bufs) { radeonFlushCmdBufLocked( rmesa, __FUNCTION__ ); } if (RADEON_DEBUG & DEBUG_DMA) fprintf(stderr, "Waiting for buffers\n"); radeonWaitForIdleLocked( rmesa ); ret = drmDMA( fd, &dma ); if ( ret != 0 ) { UNLOCK_HARDWARE( rmesa ); fprintf( stderr, "Error: Could not get dma buffer... exiting\n" ); exit( -1 ); } } UNLOCK_HARDWARE(rmesa); if (RADEON_DEBUG & DEBUG_DMA) fprintf(stderr, "Allocated buffer %d\n", index); dmabuf = CALLOC_STRUCT( radeon_dma_buffer ); dmabuf->buf = &rmesa->radeonScreen->buffers->list[index]; dmabuf->refcount = 1; rmesa->dma.current.buf = dmabuf; rmesa->dma.current.address = dmabuf->buf->address; rmesa->dma.current.end = dmabuf->buf->total; rmesa->dma.current.start = 0; rmesa->dma.current.ptr = 0; rmesa->c_vertexBuffers++; } void radeonReleaseDmaRegion( radeonContextPtr rmesa, struct radeon_dma_region *region, const char *caller ) { if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s from %s\n", __FUNCTION__, caller); if (!region->buf) return; if (rmesa->dma.flush) rmesa->dma.flush( rmesa ); if (--region->buf->refcount == 0) { drmRadeonCmdHeader *cmd; if (RADEON_DEBUG & (DEBUG_IOCTL|DEBUG_DMA)) fprintf(stderr, "%s -- DISCARD BUF %d\n", __FUNCTION__, region->buf->buf->idx); cmd = (drmRadeonCmdHeader *)radeonAllocCmdBuf( rmesa, sizeof(*cmd), __FUNCTION__ ); cmd->dma.cmd_type = RADEON_CMD_DMA_DISCARD; cmd->dma.buf_idx = region->buf->buf->idx; FREE(region->buf); rmesa->dma.nr_released_bufs++; } region->buf = 0; region->start = 0; } /* Allocates a region from rmesa->dma.current. If there isn't enough * space in current, grab a new buffer (and discard what was left of current) */ void radeonAllocDmaRegion( radeonContextPtr rmesa, struct radeon_dma_region *region, int bytes, int alignment ) { if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s %d\n", __FUNCTION__, bytes); if (rmesa->dma.flush) rmesa->dma.flush( rmesa ); if (region->buf) radeonReleaseDmaRegion( rmesa, region, __FUNCTION__ ); alignment--; rmesa->dma.current.start = rmesa->dma.current.ptr = (rmesa->dma.current.ptr + alignment) & ~alignment; if ( rmesa->dma.current.ptr + bytes > rmesa->dma.current.end ) radeonRefillCurrentDmaRegion( rmesa ); region->start = rmesa->dma.current.start; region->ptr = rmesa->dma.current.start; region->end = rmesa->dma.current.start + bytes; region->address = rmesa->dma.current.address; region->buf = rmesa->dma.current.buf; region->buf->refcount++; rmesa->dma.current.ptr += bytes; /* bug - if alignment > 7 */ rmesa->dma.current.start = rmesa->dma.current.ptr = (rmesa->dma.current.ptr + 0x7) & ~0x7; } void radeonAllocDmaRegionVerts( radeonContextPtr rmesa, struct radeon_dma_region *region, int numverts, int vertsize, int alignment ) { radeonAllocDmaRegion( rmesa, region, vertsize * numverts, alignment ); } /* ================================================================ * SwapBuffers with client-side throttling */ static CARD32 radeonGetLastFrame (radeonContextPtr rmesa) { unsigned char *RADEONMMIO = rmesa->radeonScreen->mmio.map; int ret; CARD32 frame; if (rmesa->dri.screen->drmMinor >= 4) { drmRadeonGetParam gp; gp.param = RADEON_PARAM_LAST_FRAME; gp.value = (int *)&frame; ret = drmCommandWriteRead( rmesa->dri.fd, DRM_RADEON_GETPARAM, &gp, sizeof(gp) ); } else ret = -EINVAL; #ifndef __alpha__ if ( ret == -EINVAL ) { frame = INREG( RADEON_LAST_FRAME_REG ); ret = 0; } #endif if ( ret ) { fprintf( stderr, "%s: drmRadeonGetParam: %d\n", __FUNCTION__, ret ); exit(1); } return frame; } static void radeonEmitIrqLocked( radeonContextPtr rmesa ) { drmRadeonIrqEmit ie; int ret; ie.irq_seq = &rmesa->iw.irq_seq; ret = drmCommandWriteRead( rmesa->dri.fd, DRM_RADEON_IRQ_EMIT, &ie, sizeof(ie) ); if ( ret ) { fprintf( stderr, "%s: drmRadeonIrqEmit: %d\n", __FUNCTION__, ret ); exit(1); } } static void radeonWaitIrq( radeonContextPtr rmesa ) { int ret; do { ret = drmCommandWrite( rmesa->dri.fd, DRM_RADEON_IRQ_WAIT, &rmesa->iw, sizeof(rmesa->iw) ); } while (ret && (errno == EINTR || errno == EAGAIN)); if ( ret ) { fprintf( stderr, "%s: drmRadeonIrqWait: %d\n", __FUNCTION__, ret ); exit(1); } } static void radeonWaitForFrameCompletion( radeonContextPtr rmesa ) { RADEONSAREAPrivPtr sarea = rmesa->sarea; if (rmesa->do_irqs) { if (radeonGetLastFrame(rmesa) < sarea->last_frame) { if (!rmesa->irqsEmitted) { while (radeonGetLastFrame (rmesa) < sarea->last_frame) ; } else { UNLOCK_HARDWARE( rmesa ); radeonWaitIrq( rmesa ); LOCK_HARDWARE( rmesa ); } rmesa->irqsEmitted = 10; } if (rmesa->irqsEmitted) { radeonEmitIrqLocked( rmesa ); rmesa->irqsEmitted--; } } else { while (radeonGetLastFrame (rmesa) < sarea->last_frame) { UNLOCK_HARDWARE( rmesa ); if (rmesa->do_usleeps) DO_USLEEP( 1 ); LOCK_HARDWARE( rmesa ); } } } /* Copy the back color buffer to the front color buffer. */ void radeonCopyBuffer( const __DRIdrawablePrivate *dPriv ) { radeonContextPtr rmesa; GLint nbox, i, ret; GLboolean missed_target; int64_t ust; assert(dPriv); assert(dPriv->driContextPriv); assert(dPriv->driContextPriv->driverPrivate); rmesa = (radeonContextPtr) dPriv->driContextPriv->driverPrivate; if ( RADEON_DEBUG & DEBUG_IOCTL ) { fprintf( stderr, "\n%s( %p )\n\n", __FUNCTION__, rmesa->glCtx ); } RADEON_FIREVERTICES( rmesa ); LOCK_HARDWARE( rmesa ); /* Throttle the frame rate -- only allow one pending swap buffers * request at a time. */ radeonWaitForFrameCompletion( rmesa ); UNLOCK_HARDWARE( rmesa ); driWaitForVBlank( dPriv, & rmesa->vbl_seq, rmesa->vblank_flags, & missed_target ); LOCK_HARDWARE( rmesa ); nbox = dPriv->numClipRects; /* must be in locked region */ for ( i = 0 ; i < nbox ; ) { GLint nr = MIN2( i + RADEON_NR_SAREA_CLIPRECTS , nbox ); XF86DRIClipRectPtr box = dPriv->pClipRects; XF86DRIClipRectPtr b = rmesa->sarea->boxes; GLint n = 0; for ( ; i < nr ; i++ ) { *b++ = box[i]; n++; } rmesa->sarea->nbox = n; ret = drmCommandNone( rmesa->dri.fd, DRM_RADEON_SWAP ); if ( ret ) { fprintf( stderr, "DRM_RADEON_SWAP_BUFFERS: return = %d\n", ret ); UNLOCK_HARDWARE( rmesa ); exit( 1 ); } } UNLOCK_HARDWARE( rmesa ); rmesa->swap_count++; (*rmesa->get_ust)( & ust ); if ( missed_target ) { rmesa->swap_missed_count++; rmesa->swap_missed_ust = ust - rmesa->swap_ust; } rmesa->swap_ust = ust; } void radeonPageFlip( const __DRIdrawablePrivate *dPriv ) { radeonContextPtr rmesa; GLint ret; GLboolean missed_target; assert(dPriv); assert(dPriv->driContextPriv); assert(dPriv->driContextPriv->driverPrivate); rmesa = (radeonContextPtr) dPriv->driContextPriv->driverPrivate; if ( RADEON_DEBUG & DEBUG_IOCTL ) { fprintf(stderr, "%s: pfCurrentPage: %d\n", __FUNCTION__, rmesa->sarea->pfCurrentPage); } RADEON_FIREVERTICES( rmesa ); LOCK_HARDWARE( rmesa ); /* Need to do this for the perf box placement: */ if (dPriv->numClipRects) { XF86DRIClipRectPtr box = dPriv->pClipRects; XF86DRIClipRectPtr b = rmesa->sarea->boxes; b[0] = box[0]; rmesa->sarea->nbox = 1; } /* Throttle the frame rate -- only allow a few pending swap buffers * request at a time. */ radeonWaitForFrameCompletion( rmesa ); UNLOCK_HARDWARE( rmesa ); driWaitForVBlank( dPriv, & rmesa->vbl_seq, rmesa->vblank_flags, & missed_target ); if ( missed_target ) { rmesa->swap_missed_count++; (void) (*rmesa->get_ust)( & rmesa->swap_missed_ust ); } LOCK_HARDWARE( rmesa ); ret = drmCommandNone( rmesa->dri.fd, DRM_RADEON_FLIP ); UNLOCK_HARDWARE( rmesa ); if ( ret ) { fprintf( stderr, "DRM_RADEON_FLIP: return = %d\n", ret ); exit( 1 ); } rmesa->swap_count++; (void) (*rmesa->get_ust)( & rmesa->swap_ust ); if ( rmesa->sarea->pfCurrentPage == 1 ) { rmesa->state.color.drawOffset = rmesa->radeonScreen->frontOffset; rmesa->state.color.drawPitch = rmesa->radeonScreen->frontPitch; } else { rmesa->state.color.drawOffset = rmesa->radeonScreen->backOffset; rmesa->state.color.drawPitch = rmesa->radeonScreen->backPitch; } RADEON_STATECHANGE( rmesa, ctx ); rmesa->hw.ctx.cmd[CTX_RB3D_COLOROFFSET] = rmesa->state.color.drawOffset + rmesa->radeonScreen->fbLocation; rmesa->hw.ctx.cmd[CTX_RB3D_COLORPITCH] = rmesa->state.color.drawPitch; } /* ================================================================ * Buffer clear */ #define RADEON_MAX_CLEARS 256 static void radeonClear( GLcontext *ctx, GLbitfield mask, GLboolean all, GLint cx, GLint cy, GLint cw, GLint ch ) { radeonContextPtr rmesa = RADEON_CONTEXT(ctx); __DRIdrawablePrivate *dPriv = rmesa->dri.drawable; RADEONSAREAPrivPtr sarea = rmesa->sarea; unsigned char *RADEONMMIO = rmesa->radeonScreen->mmio.map; CARD32 clear; GLuint flags = 0; GLuint color_mask = 0; GLint ret, i; if ( RADEON_DEBUG & DEBUG_IOCTL ) { fprintf( stderr, "%s: all=%d cx=%d cy=%d cw=%d ch=%d\n", __FUNCTION__, all, cx, cy, cw, ch ); } radeonEmitState( rmesa ); /* Need to cope with lostcontext here as kernel relies on * some residual state: */ RADEON_FIREVERTICES( rmesa ); if ( mask & DD_FRONT_LEFT_BIT ) { flags |= RADEON_FRONT; color_mask = rmesa->hw.msk.cmd[MSK_RB3D_PLANEMASK]; mask &= ~DD_FRONT_LEFT_BIT; } if ( mask & DD_BACK_LEFT_BIT ) { flags |= RADEON_BACK; color_mask = rmesa->hw.msk.cmd[MSK_RB3D_PLANEMASK]; mask &= ~DD_BACK_LEFT_BIT; } if ( mask & DD_DEPTH_BIT ) { if ( ctx->Depth.Mask ) flags |= RADEON_DEPTH; /* FIXME: ??? */ mask &= ~DD_DEPTH_BIT; } if ( (mask & DD_STENCIL_BIT) && rmesa->state.stencil.hwBuffer ) { flags |= RADEON_STENCIL; mask &= ~DD_STENCIL_BIT; } if ( mask ) { if (RADEON_DEBUG & DEBUG_FALLBACKS) fprintf(stderr, "%s: swrast clear, mask: %x\n", __FUNCTION__, mask); _swrast_Clear( ctx, mask, all, cx, cy, cw, ch ); } if ( !flags ) return; /* Flip top to bottom */ cx += dPriv->x; cy = dPriv->y + dPriv->h - cy - ch; LOCK_HARDWARE( rmesa ); /* Throttle the number of clear ioctls we do. */ while ( 1 ) { int ret; if (rmesa->dri.screen->drmMinor >= 4) { drmRadeonGetParam gp; gp.param = RADEON_PARAM_LAST_CLEAR; gp.value = (int *)&clear; ret = drmCommandWriteRead( rmesa->dri.fd, DRM_RADEON_GETPARAM, &gp, sizeof(gp) ); } else ret = -EINVAL; #ifndef __alpha__ if ( ret == -EINVAL ) { clear = INREG( RADEON_LAST_CLEAR_REG ); ret = 0; } #endif if ( ret ) { fprintf( stderr, "%s: drmRadeonGetParam: %d\n", __FUNCTION__, ret ); exit(1); } if ( RADEON_DEBUG & DEBUG_IOCTL ) { fprintf( stderr, "%s( %d )\n", __FUNCTION__, (int)clear ); if ( ret ) fprintf( stderr, " ( RADEON_LAST_CLEAR register read directly )\n" ); } if ( sarea->last_clear - clear <= RADEON_MAX_CLEARS ) { break; } if ( rmesa->do_usleeps ) { UNLOCK_HARDWARE( rmesa ); DO_USLEEP( 1 ); LOCK_HARDWARE( rmesa ); } } for ( i = 0 ; i < dPriv->numClipRects ; ) { GLint nr = MIN2( i + RADEON_NR_SAREA_CLIPRECTS, dPriv->numClipRects ); XF86DRIClipRectPtr box = dPriv->pClipRects; XF86DRIClipRectPtr b = rmesa->sarea->boxes; drmRadeonClearType clear; drmRadeonClearRect depth_boxes[RADEON_NR_SAREA_CLIPRECTS]; GLint n = 0; if ( !all ) { for ( ; i < nr ; i++ ) { GLint x = box[i].x1; GLint y = box[i].y1; GLint w = box[i].x2 - x; GLint h = box[i].y2 - y; if ( x < cx ) w -= cx - x, x = cx; if ( y < cy ) h -= cy - y, y = cy; if ( x + w > cx + cw ) w = cx + cw - x; if ( y + h > cy + ch ) h = cy + ch - y; if ( w <= 0 ) continue; if ( h <= 0 ) continue; b->x1 = x; b->y1 = y; b->x2 = x + w; b->y2 = y + h; b++; n++; } } else { for ( ; i < nr ; i++ ) { *b++ = box[i]; n++; } } rmesa->sarea->nbox = n; clear.flags = flags; clear.clear_color = rmesa->state.color.clear; clear.clear_depth = rmesa->state.depth.clear; clear.color_mask = rmesa->hw.msk.cmd[MSK_RB3D_PLANEMASK]; clear.depth_mask = rmesa->state.stencil.clear; clear.depth_boxes = depth_boxes; n--; b = rmesa->sarea->boxes; for ( ; n >= 0 ; n-- ) { depth_boxes[n].f[RADEON_CLEAR_X1] = (float)b[n].x1; depth_boxes[n].f[RADEON_CLEAR_Y1] = (float)b[n].y1; depth_boxes[n].f[RADEON_CLEAR_X2] = (float)b[n].x2; depth_boxes[n].f[RADEON_CLEAR_Y2] = (float)b[n].y2; depth_boxes[n].f[RADEON_CLEAR_DEPTH] = (float)rmesa->state.depth.clear; } ret = drmCommandWrite( rmesa->dri.fd, DRM_RADEON_CLEAR, &clear, sizeof(drmRadeonClearType)); if ( ret ) { UNLOCK_HARDWARE( rmesa ); fprintf( stderr, "DRM_RADEON_CLEAR: return = %d\n", ret ); exit( 1 ); } } UNLOCK_HARDWARE( rmesa ); } void radeonWaitForIdleLocked( radeonContextPtr rmesa ) { int fd = rmesa->dri.fd; int to = 0; int ret, i = 0; rmesa->c_drawWaits++; do { do { ret = drmCommandNone( fd, DRM_RADEON_CP_IDLE); } while ( ret && errno == EBUSY && i++ < RADEON_IDLE_RETRY ); } while ( ( ret == -EBUSY ) && ( to++ < RADEON_TIMEOUT ) ); if ( ret < 0 ) { UNLOCK_HARDWARE( rmesa ); fprintf( stderr, "Error: Radeon timed out... exiting\n" ); exit( -1 ); } } static void radeonWaitForIdle( radeonContextPtr rmesa ) { LOCK_HARDWARE(rmesa); radeonWaitForIdleLocked( rmesa ); UNLOCK_HARDWARE(rmesa); } void radeonFlush( GLcontext *ctx ) { radeonContextPtr rmesa = RADEON_CONTEXT( ctx ); if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s\n", __FUNCTION__); if (rmesa->dma.flush) rmesa->dma.flush( rmesa ); if (!is_empty_list(&rmesa->hw.dirty)) radeonEmitState( rmesa ); if (rmesa->store.cmd_used) radeonFlushCmdBuf( rmesa, __FUNCTION__ ); } /* Make sure all commands have been sent to the hardware and have * completed processing. */ void radeonFinish( GLcontext *ctx ) { radeonContextPtr rmesa = RADEON_CONTEXT(ctx); radeonFlush( ctx ); if (rmesa->do_irqs) { LOCK_HARDWARE( rmesa ); radeonEmitIrqLocked( rmesa ); UNLOCK_HARDWARE( rmesa ); radeonWaitIrq( rmesa ); } else radeonWaitForIdle( rmesa ); } void radeonInitIoctlFuncs( GLcontext *ctx ) { ctx->Driver.Clear = radeonClear; ctx->Driver.Finish = radeonFinish; ctx->Driver.Flush = radeonFlush; }