/* * Mesa 3-D graphics library * Version: 6.5.2 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Image convolution functions. * * Notes: filter kernel elements are indexed by <n> and <m> as in * the GL spec. */ #include "glheader.h" #include "bufferobj.h" #include "colormac.h" #include "convolve.h" #include "context.h" #include "image.h" #include "mtypes.h" #include "state.h" #include "main/dispatch.h" #if FEATURE_convolve /* * Given an internalFormat token passed to glConvolutionFilter * or glSeparableFilter, return the corresponding base format. * Return -1 if invalid token. */ static GLint base_filter_format( GLenum format ) { switch (format) { case GL_ALPHA: case GL_ALPHA4: case GL_ALPHA8: case GL_ALPHA12: case GL_ALPHA16: return GL_ALPHA; case GL_LUMINANCE: case GL_LUMINANCE4: case GL_LUMINANCE8: case GL_LUMINANCE12: case GL_LUMINANCE16: return GL_LUMINANCE; case GL_LUMINANCE_ALPHA: case GL_LUMINANCE4_ALPHA4: case GL_LUMINANCE6_ALPHA2: case GL_LUMINANCE8_ALPHA8: case GL_LUMINANCE12_ALPHA4: case GL_LUMINANCE12_ALPHA12: case GL_LUMINANCE16_ALPHA16: return GL_LUMINANCE_ALPHA; case GL_INTENSITY: case GL_INTENSITY4: case GL_INTENSITY8: case GL_INTENSITY12: case GL_INTENSITY16: return GL_INTENSITY; case GL_RGB: case GL_R3_G3_B2: case GL_RGB4: case GL_RGB5: case GL_RGB8: case GL_RGB10: case GL_RGB12: case GL_RGB16: return GL_RGB; case 4: case GL_RGBA: case GL_RGBA2: case GL_RGBA4: case GL_RGB5_A1: case GL_RGBA8: case GL_RGB10_A2: case GL_RGBA12: case GL_RGBA16: return GL_RGBA; default: return -1; /* error */ } } void GLAPIENTRY _mesa_ConvolutionFilter1D(GLenum target, GLenum internalFormat, GLsizei width, GLenum format, GLenum type, const GLvoid *image) { GLint baseFormat; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (target != GL_CONVOLUTION_1D) { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionFilter1D(target)"); return; } baseFormat = base_filter_format(internalFormat); if (baseFormat < 0 || baseFormat == GL_COLOR_INDEX) { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionFilter1D(internalFormat)"); return; } if (width < 0 || width > MAX_CONVOLUTION_WIDTH) { _mesa_error(ctx, GL_INVALID_VALUE, "glConvolutionFilter1D(width)"); return; } if (!_mesa_is_legal_format_and_type(ctx, format, type)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glConvolutionFilter1D(format or type)"); return; } if (format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX || format == GL_DEPTH_COMPONENT || format == GL_INTENSITY || type == GL_BITMAP) { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionFilter1D(format or type)"); return; } ctx->Convolution1D.Format = format; ctx->Convolution1D.InternalFormat = internalFormat; ctx->Convolution1D.Width = width; ctx->Convolution1D.Height = 1; image = _mesa_map_validate_pbo_source(ctx, 1, &ctx->Unpack, width, 1, 1, format, type, image, "glConvolutionFilter1D"); if (!image) return; _mesa_unpack_color_span_float(ctx, width, GL_RGBA, ctx->Convolution1D.Filter, format, type, image, &ctx->Unpack, 0); /* transferOps */ _mesa_unmap_pbo_source(ctx, &ctx->Unpack); _mesa_scale_and_bias_rgba(width, (GLfloat (*)[4]) ctx->Convolution1D.Filter, ctx->Pixel.ConvolutionFilterScale[0][0], ctx->Pixel.ConvolutionFilterScale[0][1], ctx->Pixel.ConvolutionFilterScale[0][2], ctx->Pixel.ConvolutionFilterScale[0][3], ctx->Pixel.ConvolutionFilterBias[0][0], ctx->Pixel.ConvolutionFilterBias[0][1], ctx->Pixel.ConvolutionFilterBias[0][2], ctx->Pixel.ConvolutionFilterBias[0][3]); ctx->NewState |= _NEW_PIXEL; } void GLAPIENTRY _mesa_ConvolutionFilter2D(GLenum target, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *image) { GLint baseFormat; GLint i; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (target != GL_CONVOLUTION_2D) { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionFilter2D(target)"); return; } baseFormat = base_filter_format(internalFormat); if (baseFormat < 0 || baseFormat == GL_COLOR_INDEX) { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionFilter2D(internalFormat)"); return; } if (width < 0 || width > MAX_CONVOLUTION_WIDTH) { _mesa_error(ctx, GL_INVALID_VALUE, "glConvolutionFilter2D(width)"); return; } if (height < 0 || height > MAX_CONVOLUTION_HEIGHT) { _mesa_error(ctx, GL_INVALID_VALUE, "glConvolutionFilter2D(height)"); return; } if (!_mesa_is_legal_format_and_type(ctx, format, type)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glConvolutionFilter2D(format or type)"); return; } if (format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX || format == GL_DEPTH_COMPONENT || format == GL_INTENSITY || type == GL_BITMAP) { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionFilter2D(format or type)"); return; } /* this should have been caught earlier */ assert(_mesa_components_in_format(format)); ctx->Convolution2D.Format = format; ctx->Convolution2D.InternalFormat = internalFormat; ctx->Convolution2D.Width = width; ctx->Convolution2D.Height = height; image = _mesa_map_validate_pbo_source(ctx, 2, &ctx->Unpack, width, height, 1, format, type, image, "glConvolutionFilter2D"); if (!image) return; /* Unpack filter image. We always store filters in RGBA format. */ for (i = 0; i < height; i++) { const GLvoid *src = _mesa_image_address2d(&ctx->Unpack, image, width, height, format, type, i, 0); GLfloat *dst = ctx->Convolution2D.Filter + i * width * 4; _mesa_unpack_color_span_float(ctx, width, GL_RGBA, dst, format, type, src, &ctx->Unpack, 0); /* transferOps */ } _mesa_unmap_pbo_source(ctx, &ctx->Unpack); _mesa_scale_and_bias_rgba(width * height, (GLfloat (*)[4]) ctx->Convolution2D.Filter, ctx->Pixel.ConvolutionFilterScale[1][0], ctx->Pixel.ConvolutionFilterScale[1][1], ctx->Pixel.ConvolutionFilterScale[1][2], ctx->Pixel.ConvolutionFilterScale[1][3], ctx->Pixel.ConvolutionFilterBias[1][0], ctx->Pixel.ConvolutionFilterBias[1][1], ctx->Pixel.ConvolutionFilterBias[1][2], ctx->Pixel.ConvolutionFilterBias[1][3]); ctx->NewState |= _NEW_PIXEL; } static void GLAPIENTRY _mesa_ConvolutionParameterf(GLenum target, GLenum pname, GLfloat param) { GET_CURRENT_CONTEXT(ctx); GLuint c; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); switch (target) { case GL_CONVOLUTION_1D: c = 0; break; case GL_CONVOLUTION_2D: c = 1; break; case GL_SEPARABLE_2D: c = 2; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameterf(target)"); return; } switch (pname) { case GL_CONVOLUTION_BORDER_MODE: if (param == (GLfloat) GL_REDUCE || param == (GLfloat) GL_CONSTANT_BORDER || param == (GLfloat) GL_REPLICATE_BORDER) { ctx->Pixel.ConvolutionBorderMode[c] = (GLenum) param; } else { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameterf(params)"); return; } break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameterf(pname)"); return; } ctx->NewState |= _NEW_PIXEL; } static void GLAPIENTRY _mesa_ConvolutionParameterfv(GLenum target, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); GLuint c; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); switch (target) { case GL_CONVOLUTION_1D: c = 0; break; case GL_CONVOLUTION_2D: c = 1; break; case GL_SEPARABLE_2D: c = 2; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameterfv(target)"); return; } switch (pname) { case GL_CONVOLUTION_BORDER_COLOR: COPY_4V(ctx->Pixel.ConvolutionBorderColor[c], params); break; case GL_CONVOLUTION_BORDER_MODE: if (params[0] == (GLfloat) GL_REDUCE || params[0] == (GLfloat) GL_CONSTANT_BORDER || params[0] == (GLfloat) GL_REPLICATE_BORDER) { ctx->Pixel.ConvolutionBorderMode[c] = (GLenum) params[0]; } else { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameterfv(params)"); return; } break; case GL_CONVOLUTION_FILTER_SCALE: COPY_4V(ctx->Pixel.ConvolutionFilterScale[c], params); break; case GL_CONVOLUTION_FILTER_BIAS: COPY_4V(ctx->Pixel.ConvolutionFilterBias[c], params); break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameterfv(pname)"); return; } ctx->NewState |= _NEW_PIXEL; } static void GLAPIENTRY _mesa_ConvolutionParameteri(GLenum target, GLenum pname, GLint param) { GET_CURRENT_CONTEXT(ctx); GLuint c; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); switch (target) { case GL_CONVOLUTION_1D: c = 0; break; case GL_CONVOLUTION_2D: c = 1; break; case GL_SEPARABLE_2D: c = 2; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameteri(target)"); return; } switch (pname) { case GL_CONVOLUTION_BORDER_MODE: if (param == (GLint) GL_REDUCE || param == (GLint) GL_CONSTANT_BORDER || param == (GLint) GL_REPLICATE_BORDER) { ctx->Pixel.ConvolutionBorderMode[c] = (GLenum) param; } else { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameteri(params)"); return; } break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameteri(pname)"); return; } ctx->NewState |= _NEW_PIXEL; } static void GLAPIENTRY _mesa_ConvolutionParameteriv(GLenum target, GLenum pname, const GLint *params) { GET_CURRENT_CONTEXT(ctx); GLuint c; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); switch (target) { case GL_CONVOLUTION_1D: c = 0; break; case GL_CONVOLUTION_2D: c = 1; break; case GL_SEPARABLE_2D: c = 2; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameteriv(target)"); return; } switch (pname) { case GL_CONVOLUTION_BORDER_COLOR: ctx->Pixel.ConvolutionBorderColor[c][0] = INT_TO_FLOAT(params[0]); ctx->Pixel.ConvolutionBorderColor[c][1] = INT_TO_FLOAT(params[1]); ctx->Pixel.ConvolutionBorderColor[c][2] = INT_TO_FLOAT(params[2]); ctx->Pixel.ConvolutionBorderColor[c][3] = INT_TO_FLOAT(params[3]); break; case GL_CONVOLUTION_BORDER_MODE: if (params[0] == (GLint) GL_REDUCE || params[0] == (GLint) GL_CONSTANT_BORDER || params[0] == (GLint) GL_REPLICATE_BORDER) { ctx->Pixel.ConvolutionBorderMode[c] = (GLenum) params[0]; } else { _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameteriv(params)"); return; } break; case GL_CONVOLUTION_FILTER_SCALE: /* COPY_4V(ctx->Pixel.ConvolutionFilterScale[c], params); */ /* need cast to prevent compiler warnings */ ctx->Pixel.ConvolutionFilterScale[c][0] = (GLfloat) params[0]; ctx->Pixel.ConvolutionFilterScale[c][1] = (GLfloat) params[1]; ctx->Pixel.ConvolutionFilterScale[c][2] = (GLfloat) params[2]; ctx->Pixel.ConvolutionFilterScale[c][3] = (GLfloat) params[3]; break; case GL_CONVOLUTION_FILTER_BIAS: /* COPY_4V(ctx->Pixel.ConvolutionFilterBias[c], params); */ /* need cast to prevent compiler warnings */ ctx->Pixel.ConvolutionFilterBias[c][0] = (GLfloat) params[0]; ctx->Pixel.ConvolutionFilterBias[c][1] = (GLfloat) params[1]; ctx->Pixel.ConvolutionFilterBias[c][2] = (GLfloat) params[2]; ctx->Pixel.ConvolutionFilterBias[c][3] = (GLfloat) params[3]; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glConvolutionParameteriv(pname)"); return; } ctx->NewState |= _NEW_PIXEL; } static void GLAPIENTRY _mesa_CopyConvolutionFilter1D(GLenum target, GLenum internalFormat, GLint x, GLint y, GLsizei width) { GLint baseFormat; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (target != GL_CONVOLUTION_1D) { _mesa_error(ctx, GL_INVALID_ENUM, "glCopyConvolutionFilter1D(target)"); return; } baseFormat = base_filter_format(internalFormat); if (baseFormat < 0 || baseFormat == GL_COLOR_INDEX) { _mesa_error(ctx, GL_INVALID_ENUM, "glCopyConvolutionFilter1D(internalFormat)"); return; } if (width < 0 || width > MAX_CONVOLUTION_WIDTH) { _mesa_error(ctx, GL_INVALID_VALUE, "glCopyConvolutionFilter1D(width)"); return; } if (!ctx->ReadBuffer->_ColorReadBuffer) { return; /* no readbuffer - OK */ } ctx->Driver.CopyConvolutionFilter1D( ctx, target, internalFormat, x, y, width); } static void GLAPIENTRY _mesa_CopyConvolutionFilter2D(GLenum target, GLenum internalFormat, GLint x, GLint y, GLsizei width, GLsizei height) { GLint baseFormat; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (target != GL_CONVOLUTION_2D) { _mesa_error(ctx, GL_INVALID_ENUM, "glCopyConvolutionFilter2D(target)"); return; } baseFormat = base_filter_format(internalFormat); if (baseFormat < 0 || baseFormat == GL_COLOR_INDEX) { _mesa_error(ctx, GL_INVALID_ENUM, "glCopyConvolutionFilter2D(internalFormat)"); return; } if (width < 0 || width > MAX_CONVOLUTION_WIDTH) { _mesa_error(ctx, GL_INVALID_VALUE, "glCopyConvolutionFilter2D(width)"); return; } if (height < 0 || height > MAX_CONVOLUTION_HEIGHT) { _mesa_error(ctx, GL_INVALID_VALUE, "glCopyConvolutionFilter2D(height)"); return; } if (!ctx->ReadBuffer->_ColorReadBuffer) { return; /* no readbuffer - OK */ } ctx->Driver.CopyConvolutionFilter2D( ctx, target, internalFormat, x, y, width, height ); } static void GLAPIENTRY _mesa_GetConvolutionFilter(GLenum target, GLenum format, GLenum type, GLvoid *image) { struct gl_convolution_attrib *filter; GLuint row; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (ctx->NewState) { _mesa_update_state(ctx); } if (!_mesa_is_legal_format_and_type(ctx, format, type)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glGetConvolutionFilter(format or type)"); return; } if (format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX || format == GL_DEPTH_COMPONENT || format == GL_INTENSITY || type == GL_BITMAP) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionFilter(format or type)"); return; } switch (target) { case GL_CONVOLUTION_1D: filter = &(ctx->Convolution1D); break; case GL_CONVOLUTION_2D: filter = &(ctx->Convolution2D); break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionFilter(target)"); return; } image = _mesa_map_validate_pbo_dest(ctx, 2, &ctx->Pack, filter->Width, filter->Height, 1, format, type, image, "glGetConvolutionFilter"); if (!image) return; for (row = 0; row < filter->Height; row++) { GLvoid *dst = _mesa_image_address2d(&ctx->Pack, image, filter->Width, filter->Height, format, type, row, 0); GLfloat (*src)[4] = (GLfloat (*)[4]) (filter->Filter + row * filter->Width * 4); _mesa_pack_rgba_span_float(ctx, filter->Width, src, format, type, dst, &ctx->Pack, 0x0); } _mesa_unmap_pbo_dest(ctx, &ctx->Pack); } static void GLAPIENTRY _mesa_GetConvolutionParameterfv(GLenum target, GLenum pname, GLfloat *params) { GET_CURRENT_CONTEXT(ctx); const struct gl_convolution_attrib *conv; GLuint c; ASSERT_OUTSIDE_BEGIN_END(ctx); switch (target) { case GL_CONVOLUTION_1D: c = 0; conv = &ctx->Convolution1D; break; case GL_CONVOLUTION_2D: c = 1; conv = &ctx->Convolution2D; break; case GL_SEPARABLE_2D: c = 2; conv = &ctx->Separable2D; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionParameterfv(target)"); return; } switch (pname) { case GL_CONVOLUTION_BORDER_COLOR: COPY_4V(params, ctx->Pixel.ConvolutionBorderColor[c]); break; case GL_CONVOLUTION_BORDER_MODE: *params = (GLfloat) ctx->Pixel.ConvolutionBorderMode[c]; break; case GL_CONVOLUTION_FILTER_SCALE: COPY_4V(params, ctx->Pixel.ConvolutionFilterScale[c]); break; case GL_CONVOLUTION_FILTER_BIAS: COPY_4V(params, ctx->Pixel.ConvolutionFilterBias[c]); break; case GL_CONVOLUTION_FORMAT: *params = (GLfloat) conv->Format; break; case GL_CONVOLUTION_WIDTH: *params = (GLfloat) conv->Width; break; case GL_CONVOLUTION_HEIGHT: *params = (GLfloat) conv->Height; break; case GL_MAX_CONVOLUTION_WIDTH: *params = (GLfloat) ctx->Const.MaxConvolutionWidth; break; case GL_MAX_CONVOLUTION_HEIGHT: *params = (GLfloat) ctx->Const.MaxConvolutionHeight; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionParameterfv(pname)"); return; } } static void GLAPIENTRY _mesa_GetConvolutionParameteriv(GLenum target, GLenum pname, GLint *params) { GET_CURRENT_CONTEXT(ctx); const struct gl_convolution_attrib *conv; GLuint c; ASSERT_OUTSIDE_BEGIN_END(ctx); switch (target) { case GL_CONVOLUTION_1D: c = 0; conv = &ctx->Convolution1D; break; case GL_CONVOLUTION_2D: c = 1; conv = &ctx->Convolution2D; break; case GL_SEPARABLE_2D: c = 2; conv = &ctx->Separable2D; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionParameteriv(target)"); return; } switch (pname) { case GL_CONVOLUTION_BORDER_COLOR: params[0] = FLOAT_TO_INT(ctx->Pixel.ConvolutionBorderColor[c][0]); params[1] = FLOAT_TO_INT(ctx->Pixel.ConvolutionBorderColor[c][1]); params[2] = FLOAT_TO_INT(ctx->Pixel.ConvolutionBorderColor[c][2]); params[3] = FLOAT_TO_INT(ctx->Pixel.ConvolutionBorderColor[c][3]); break; case GL_CONVOLUTION_BORDER_MODE: *params = (GLint) ctx->Pixel.ConvolutionBorderMode[c]; break; case GL_CONVOLUTION_FILTER_SCALE: params[0] = (GLint) ctx->Pixel.ConvolutionFilterScale[c][0]; params[1] = (GLint) ctx->Pixel.ConvolutionFilterScale[c][1]; params[2] = (GLint) ctx->Pixel.ConvolutionFilterScale[c][2]; params[3] = (GLint) ctx->Pixel.ConvolutionFilterScale[c][3]; break; case GL_CONVOLUTION_FILTER_BIAS: params[0] = (GLint) ctx->Pixel.ConvolutionFilterBias[c][0]; params[1] = (GLint) ctx->Pixel.ConvolutionFilterBias[c][1]; params[2] = (GLint) ctx->Pixel.ConvolutionFilterBias[c][2]; params[3] = (GLint) ctx->Pixel.ConvolutionFilterBias[c][3]; break; case GL_CONVOLUTION_FORMAT: *params = (GLint) conv->Format; break; case GL_CONVOLUTION_WIDTH: *params = (GLint) conv->Width; break; case GL_CONVOLUTION_HEIGHT: *params = (GLint) conv->Height; break; case GL_MAX_CONVOLUTION_WIDTH: *params = (GLint) ctx->Const.MaxConvolutionWidth; break; case GL_MAX_CONVOLUTION_HEIGHT: *params = (GLint) ctx->Const.MaxConvolutionHeight; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionParameteriv(pname)"); return; } } static void GLAPIENTRY _mesa_GetSeparableFilter(GLenum target, GLenum format, GLenum type, GLvoid *row, GLvoid *column, GLvoid *span) { const GLint colStart = MAX_CONVOLUTION_WIDTH * 4; struct gl_convolution_attrib *filter; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (ctx->NewState) { _mesa_update_state(ctx); } if (target != GL_SEPARABLE_2D) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetSeparableFilter(target)"); return; } if (!_mesa_is_legal_format_and_type(ctx, format, type)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glGetConvolutionFilter(format or type)"); return; } if (format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX || format == GL_DEPTH_COMPONENT || format == GL_INTENSITY || type == GL_BITMAP) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetConvolutionFilter(format or type)"); return; } filter = &ctx->Separable2D; /* Get row filter */ row = _mesa_map_validate_pbo_dest(ctx, 1, &ctx->Pack, filter->Width, 1, 1, format, type, row, "glGetConvolutionFilter"); if (row) { GLvoid *dst = _mesa_image_address1d(&ctx->Pack, row, filter->Width, format, type, 0); _mesa_pack_rgba_span_float(ctx, filter->Width, (GLfloat (*)[4]) filter->Filter, format, type, dst, &ctx->Pack, 0x0); _mesa_unmap_pbo_dest(ctx, &ctx->Pack); } /* get column filter */ column = _mesa_map_validate_pbo_dest(ctx, 1, &ctx->Pack, filter->Height, 1, 1, format, type, column, "glGetConvolutionFilter"); if (column) { GLvoid *dst = _mesa_image_address1d(&ctx->Pack, column, filter->Height, format, type, 0); GLfloat (*src)[4] = (GLfloat (*)[4]) (filter->Filter + colStart); _mesa_pack_rgba_span_float(ctx, filter->Height, src, format, type, dst, &ctx->Pack, 0x0); _mesa_unmap_pbo_dest(ctx, &ctx->Pack); } (void) span; /* unused at this time */ } static void GLAPIENTRY _mesa_SeparableFilter2D(GLenum target, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *row, const GLvoid *column) { const GLint colStart = MAX_CONVOLUTION_WIDTH * 4; GLint baseFormat; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (target != GL_SEPARABLE_2D) { _mesa_error(ctx, GL_INVALID_ENUM, "glSeparableFilter2D(target)"); return; } baseFormat = base_filter_format(internalFormat); if (baseFormat < 0 || baseFormat == GL_COLOR_INDEX) { _mesa_error(ctx, GL_INVALID_ENUM, "glSeparableFilter2D(internalFormat)"); return; } if (width < 0 || width > MAX_CONVOLUTION_WIDTH) { _mesa_error(ctx, GL_INVALID_VALUE, "glSeparableFilter2D(width)"); return; } if (height < 0 || height > MAX_CONVOLUTION_HEIGHT) { _mesa_error(ctx, GL_INVALID_VALUE, "glSeparableFilter2D(height)"); return; } if (!_mesa_is_legal_format_and_type(ctx, format, type)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glSeparableFilter2D(format or type)"); return; } if (format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX || format == GL_DEPTH_COMPONENT || format == GL_INTENSITY || type == GL_BITMAP) { _mesa_error(ctx, GL_INVALID_ENUM, "glSeparableFilter2D(format or type)"); return; } ctx->Separable2D.Format = format; ctx->Separable2D.InternalFormat = internalFormat; ctx->Separable2D.Width = width; ctx->Separable2D.Height = height; /* unpack row filter */ row = _mesa_map_validate_pbo_source(ctx, 1, &ctx->Unpack, width, 1, 1, format, type, row, "glSeparableFilter2D"); if (row) { _mesa_unpack_color_span_float(ctx, width, GL_RGBA, ctx->Separable2D.Filter, format, type, row, &ctx->Unpack, 0x0); /* transferOps */ _mesa_scale_and_bias_rgba(width, (GLfloat (*)[4]) ctx->Separable2D.Filter, ctx->Pixel.ConvolutionFilterScale[2][0], ctx->Pixel.ConvolutionFilterScale[2][1], ctx->Pixel.ConvolutionFilterScale[2][2], ctx->Pixel.ConvolutionFilterScale[2][3], ctx->Pixel.ConvolutionFilterBias[2][0], ctx->Pixel.ConvolutionFilterBias[2][1], ctx->Pixel.ConvolutionFilterBias[2][2], ctx->Pixel.ConvolutionFilterBias[2][3]); _mesa_unmap_pbo_source(ctx, &ctx->Unpack); } /* unpack column filter */ column = _mesa_map_validate_pbo_source(ctx, 1, &ctx->Unpack, height, 1, 1, format, type, column, "glSeparableFilter2D"); if (column) { _mesa_unpack_color_span_float(ctx, height, GL_RGBA, &ctx->Separable2D.Filter[colStart], format, type, column, &ctx->Unpack, 0); /* transferOps */ _mesa_scale_and_bias_rgba(height, (GLfloat (*)[4]) (ctx->Separable2D.Filter + colStart), ctx->Pixel.ConvolutionFilterScale[2][0], ctx->Pixel.ConvolutionFilterScale[2][1], ctx->Pixel.ConvolutionFilterScale[2][2], ctx->Pixel.ConvolutionFilterScale[2][3], ctx->Pixel.ConvolutionFilterBias[2][0], ctx->Pixel.ConvolutionFilterBias[2][1], ctx->Pixel.ConvolutionFilterBias[2][2], ctx->Pixel.ConvolutionFilterBias[2][3]); _mesa_unmap_pbo_source(ctx, &ctx->Unpack); } if (_mesa_is_bufferobj(ctx->Unpack.BufferObj)) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, ctx->Unpack.BufferObj); } ctx->NewState |= _NEW_PIXEL; } /**********************************************************************/ /*** image convolution functions ***/ /**********************************************************************/ static void convolve_1d_reduce(GLint srcWidth, const GLfloat src[][4], GLint filterWidth, const GLfloat filter[][4], GLfloat dest[][4]) { GLint dstWidth; GLint i, n; if (filterWidth >= 1) dstWidth = srcWidth - (filterWidth - 1); else dstWidth = srcWidth; if (dstWidth <= 0) return; /* null result */ for (i = 0; i < dstWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (n = 0; n < filterWidth; n++) { sumR += src[i + n][RCOMP] * filter[n][RCOMP]; sumG += src[i + n][GCOMP] * filter[n][GCOMP]; sumB += src[i + n][BCOMP] * filter[n][BCOMP]; sumA += src[i + n][ACOMP] * filter[n][ACOMP]; } dest[i][RCOMP] = sumR; dest[i][GCOMP] = sumG; dest[i][BCOMP] = sumB; dest[i][ACOMP] = sumA; } } static void convolve_1d_constant(GLint srcWidth, const GLfloat src[][4], GLint filterWidth, const GLfloat filter[][4], GLfloat dest[][4], const GLfloat borderColor[4]) { const GLint halfFilterWidth = filterWidth / 2; GLint i, n; for (i = 0; i < srcWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (n = 0; n < filterWidth; n++) { if (i + n < halfFilterWidth || i + n - halfFilterWidth >= srcWidth) { sumR += borderColor[RCOMP] * filter[n][RCOMP]; sumG += borderColor[GCOMP] * filter[n][GCOMP]; sumB += borderColor[BCOMP] * filter[n][BCOMP]; sumA += borderColor[ACOMP] * filter[n][ACOMP]; } else { sumR += src[i + n - halfFilterWidth][RCOMP] * filter[n][RCOMP]; sumG += src[i + n - halfFilterWidth][GCOMP] * filter[n][GCOMP]; sumB += src[i + n - halfFilterWidth][BCOMP] * filter[n][BCOMP]; sumA += src[i + n - halfFilterWidth][ACOMP] * filter[n][ACOMP]; } } dest[i][RCOMP] = sumR; dest[i][GCOMP] = sumG; dest[i][BCOMP] = sumB; dest[i][ACOMP] = sumA; } } static void convolve_1d_replicate(GLint srcWidth, const GLfloat src[][4], GLint filterWidth, const GLfloat filter[][4], GLfloat dest[][4]) { const GLint halfFilterWidth = filterWidth / 2; GLint i, n; for (i = 0; i < srcWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (n = 0; n < filterWidth; n++) { if (i + n < halfFilterWidth) { sumR += src[0][RCOMP] * filter[n][RCOMP]; sumG += src[0][GCOMP] * filter[n][GCOMP]; sumB += src[0][BCOMP] * filter[n][BCOMP]; sumA += src[0][ACOMP] * filter[n][ACOMP]; } else if (i + n - halfFilterWidth >= srcWidth) { sumR += src[srcWidth - 1][RCOMP] * filter[n][RCOMP]; sumG += src[srcWidth - 1][GCOMP] * filter[n][GCOMP]; sumB += src[srcWidth - 1][BCOMP] * filter[n][BCOMP]; sumA += src[srcWidth - 1][ACOMP] * filter[n][ACOMP]; } else { sumR += src[i + n - halfFilterWidth][RCOMP] * filter[n][RCOMP]; sumG += src[i + n - halfFilterWidth][GCOMP] * filter[n][GCOMP]; sumB += src[i + n - halfFilterWidth][BCOMP] * filter[n][BCOMP]; sumA += src[i + n - halfFilterWidth][ACOMP] * filter[n][ACOMP]; } } dest[i][RCOMP] = sumR; dest[i][GCOMP] = sumG; dest[i][BCOMP] = sumB; dest[i][ACOMP] = sumA; } } static void convolve_2d_reduce(GLint srcWidth, GLint srcHeight, const GLfloat src[][4], GLint filterWidth, GLint filterHeight, const GLfloat filter[][4], GLfloat dest[][4]) { GLint dstWidth, dstHeight; GLint i, j, n, m; if (filterWidth >= 1) dstWidth = srcWidth - (filterWidth - 1); else dstWidth = srcWidth; if (filterHeight >= 1) dstHeight = srcHeight - (filterHeight - 1); else dstHeight = srcHeight; if (dstWidth <= 0 || dstHeight <= 0) return; for (j = 0; j < dstHeight; j++) { for (i = 0; i < dstWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (m = 0; m < filterHeight; m++) { for (n = 0; n < filterWidth; n++) { const GLint k = (j + m) * srcWidth + i + n; const GLint f = m * filterWidth + n; sumR += src[k][RCOMP] * filter[f][RCOMP]; sumG += src[k][GCOMP] * filter[f][GCOMP]; sumB += src[k][BCOMP] * filter[f][BCOMP]; sumA += src[k][ACOMP] * filter[f][ACOMP]; } } dest[j * dstWidth + i][RCOMP] = sumR; dest[j * dstWidth + i][GCOMP] = sumG; dest[j * dstWidth + i][BCOMP] = sumB; dest[j * dstWidth + i][ACOMP] = sumA; } } } static void convolve_2d_constant(GLint srcWidth, GLint srcHeight, const GLfloat src[][4], GLint filterWidth, GLint filterHeight, const GLfloat filter[][4], GLfloat dest[][4], const GLfloat borderColor[4]) { const GLint halfFilterWidth = filterWidth / 2; const GLint halfFilterHeight = filterHeight / 2; GLint i, j, n, m; for (j = 0; j < srcHeight; j++) { for (i = 0; i < srcWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (m = 0; m < filterHeight; m++) { for (n = 0; n < filterWidth; n++) { const GLint f = m * filterWidth + n; const GLint is = i + n - halfFilterWidth; const GLint js = j + m - halfFilterHeight; if (is < 0 || is >= srcWidth || js < 0 || js >= srcHeight) { sumR += borderColor[RCOMP] * filter[f][RCOMP]; sumG += borderColor[GCOMP] * filter[f][GCOMP]; sumB += borderColor[BCOMP] * filter[f][BCOMP]; sumA += borderColor[ACOMP] * filter[f][ACOMP]; } else { const GLint k = js * srcWidth + is; sumR += src[k][RCOMP] * filter[f][RCOMP]; sumG += src[k][GCOMP] * filter[f][GCOMP]; sumB += src[k][BCOMP] * filter[f][BCOMP]; sumA += src[k][ACOMP] * filter[f][ACOMP]; } } } dest[j * srcWidth + i][RCOMP] = sumR; dest[j * srcWidth + i][GCOMP] = sumG; dest[j * srcWidth + i][BCOMP] = sumB; dest[j * srcWidth + i][ACOMP] = sumA; } } } static void convolve_2d_replicate(GLint srcWidth, GLint srcHeight, const GLfloat src[][4], GLint filterWidth, GLint filterHeight, const GLfloat filter[][4], GLfloat dest[][4]) { const GLint halfFilterWidth = filterWidth / 2; const GLint halfFilterHeight = filterHeight / 2; GLint i, j, n, m; for (j = 0; j < srcHeight; j++) { for (i = 0; i < srcWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (m = 0; m < filterHeight; m++) { for (n = 0; n < filterWidth; n++) { const GLint f = m * filterWidth + n; GLint is = i + n - halfFilterWidth; GLint js = j + m - halfFilterHeight; GLint k; if (is < 0) is = 0; else if (is >= srcWidth) is = srcWidth - 1; if (js < 0) js = 0; else if (js >= srcHeight) js = srcHeight - 1; k = js * srcWidth + is; sumR += src[k][RCOMP] * filter[f][RCOMP]; sumG += src[k][GCOMP] * filter[f][GCOMP]; sumB += src[k][BCOMP] * filter[f][BCOMP]; sumA += src[k][ACOMP] * filter[f][ACOMP]; } } dest[j * srcWidth + i][RCOMP] = sumR; dest[j * srcWidth + i][GCOMP] = sumG; dest[j * srcWidth + i][BCOMP] = sumB; dest[j * srcWidth + i][ACOMP] = sumA; } } } static void convolve_sep_reduce(GLint srcWidth, GLint srcHeight, const GLfloat src[][4], GLint filterWidth, GLint filterHeight, const GLfloat rowFilt[][4], const GLfloat colFilt[][4], GLfloat dest[][4]) { GLint dstWidth, dstHeight; GLint i, j, n, m; if (filterWidth >= 1) dstWidth = srcWidth - (filterWidth - 1); else dstWidth = srcWidth; if (filterHeight >= 1) dstHeight = srcHeight - (filterHeight - 1); else dstHeight = srcHeight; if (dstWidth <= 0 || dstHeight <= 0) return; for (j = 0; j < dstHeight; j++) { for (i = 0; i < dstWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (m = 0; m < filterHeight; m++) { for (n = 0; n < filterWidth; n++) { GLint k = (j + m) * srcWidth + i + n; sumR += src[k][RCOMP] * rowFilt[n][RCOMP] * colFilt[m][RCOMP]; sumG += src[k][GCOMP] * rowFilt[n][GCOMP] * colFilt[m][GCOMP]; sumB += src[k][BCOMP] * rowFilt[n][BCOMP] * colFilt[m][BCOMP]; sumA += src[k][ACOMP] * rowFilt[n][ACOMP] * colFilt[m][ACOMP]; } } dest[j * dstWidth + i][RCOMP] = sumR; dest[j * dstWidth + i][GCOMP] = sumG; dest[j * dstWidth + i][BCOMP] = sumB; dest[j * dstWidth + i][ACOMP] = sumA; } } } static void convolve_sep_constant(GLint srcWidth, GLint srcHeight, const GLfloat src[][4], GLint filterWidth, GLint filterHeight, const GLfloat rowFilt[][4], const GLfloat colFilt[][4], GLfloat dest[][4], const GLfloat borderColor[4]) { const GLint halfFilterWidth = filterWidth / 2; const GLint halfFilterHeight = filterHeight / 2; GLint i, j, n, m; for (j = 0; j < srcHeight; j++) { for (i = 0; i < srcWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (m = 0; m < filterHeight; m++) { for (n = 0; n < filterWidth; n++) { const GLint is = i + n - halfFilterWidth; const GLint js = j + m - halfFilterHeight; if (is < 0 || is >= srcWidth || js < 0 || js >= srcHeight) { sumR += borderColor[RCOMP] * rowFilt[n][RCOMP] * colFilt[m][RCOMP]; sumG += borderColor[GCOMP] * rowFilt[n][GCOMP] * colFilt[m][GCOMP]; sumB += borderColor[BCOMP] * rowFilt[n][BCOMP] * colFilt[m][BCOMP]; sumA += borderColor[ACOMP] * rowFilt[n][ACOMP] * colFilt[m][ACOMP]; } else { GLint k = js * srcWidth + is; sumR += src[k][RCOMP] * rowFilt[n][RCOMP] * colFilt[m][RCOMP]; sumG += src[k][GCOMP] * rowFilt[n][GCOMP] * colFilt[m][GCOMP]; sumB += src[k][BCOMP] * rowFilt[n][BCOMP] * colFilt[m][BCOMP]; sumA += src[k][ACOMP] * rowFilt[n][ACOMP] * colFilt[m][ACOMP]; } } } dest[j * srcWidth + i][RCOMP] = sumR; dest[j * srcWidth + i][GCOMP] = sumG; dest[j * srcWidth + i][BCOMP] = sumB; dest[j * srcWidth + i][ACOMP] = sumA; } } } static void convolve_sep_replicate(GLint srcWidth, GLint srcHeight, const GLfloat src[][4], GLint filterWidth, GLint filterHeight, const GLfloat rowFilt[][4], const GLfloat colFilt[][4], GLfloat dest[][4]) { const GLint halfFilterWidth = filterWidth / 2; const GLint halfFilterHeight = filterHeight / 2; GLint i, j, n, m; for (j = 0; j < srcHeight; j++) { for (i = 0; i < srcWidth; i++) { GLfloat sumR = 0.0; GLfloat sumG = 0.0; GLfloat sumB = 0.0; GLfloat sumA = 0.0; for (m = 0; m < filterHeight; m++) { for (n = 0; n < filterWidth; n++) { GLint is = i + n - halfFilterWidth; GLint js = j + m - halfFilterHeight; GLint k; if (is < 0) is = 0; else if (is >= srcWidth) is = srcWidth - 1; if (js < 0) js = 0; else if (js >= srcHeight) js = srcHeight - 1; k = js * srcWidth + is; sumR += src[k][RCOMP] * rowFilt[n][RCOMP] * colFilt[m][RCOMP]; sumG += src[k][GCOMP] * rowFilt[n][GCOMP] * colFilt[m][GCOMP]; sumB += src[k][BCOMP] * rowFilt[n][BCOMP] * colFilt[m][BCOMP]; sumA += src[k][ACOMP] * rowFilt[n][ACOMP] * colFilt[m][ACOMP]; } } dest[j * srcWidth + i][RCOMP] = sumR; dest[j * srcWidth + i][GCOMP] = sumG; dest[j * srcWidth + i][BCOMP] = sumB; dest[j * srcWidth + i][ACOMP] = sumA; } } } void _mesa_convolve_1d_image(const GLcontext *ctx, GLsizei *width, const GLfloat *srcImage, GLfloat *dstImage) { switch (ctx->Pixel.ConvolutionBorderMode[0]) { case GL_REDUCE: convolve_1d_reduce(*width, (const GLfloat (*)[4]) srcImage, ctx->Convolution1D.Width, (const GLfloat (*)[4]) ctx->Convolution1D.Filter, (GLfloat (*)[4]) dstImage); *width = *width - (MAX2(ctx->Convolution1D.Width, 1) - 1); break; case GL_CONSTANT_BORDER: convolve_1d_constant(*width, (const GLfloat (*)[4]) srcImage, ctx->Convolution1D.Width, (const GLfloat (*)[4]) ctx->Convolution1D.Filter, (GLfloat (*)[4]) dstImage, ctx->Pixel.ConvolutionBorderColor[0]); break; case GL_REPLICATE_BORDER: convolve_1d_replicate(*width, (const GLfloat (*)[4]) srcImage, ctx->Convolution1D.Width, (const GLfloat (*)[4]) ctx->Convolution1D.Filter, (GLfloat (*)[4]) dstImage); break; default: ; } } void _mesa_convolve_2d_image(const GLcontext *ctx, GLsizei *width, GLsizei *height, const GLfloat *srcImage, GLfloat *dstImage) { switch (ctx->Pixel.ConvolutionBorderMode[1]) { case GL_REDUCE: convolve_2d_reduce(*width, *height, (const GLfloat (*)[4]) srcImage, ctx->Convolution2D.Width, ctx->Convolution2D.Height, (const GLfloat (*)[4]) ctx->Convolution2D.Filter, (GLfloat (*)[4]) dstImage); *width = *width - (MAX2(ctx->Convolution2D.Width, 1) - 1); *height = *height - (MAX2(ctx->Convolution2D.Height, 1) - 1); break; case GL_CONSTANT_BORDER: convolve_2d_constant(*width, *height, (const GLfloat (*)[4]) srcImage, ctx->Convolution2D.Width, ctx->Convolution2D.Height, (const GLfloat (*)[4]) ctx->Convolution2D.Filter, (GLfloat (*)[4]) dstImage, ctx->Pixel.ConvolutionBorderColor[1]); break; case GL_REPLICATE_BORDER: convolve_2d_replicate(*width, *height, (const GLfloat (*)[4]) srcImage, ctx->Convolution2D.Width, ctx->Convolution2D.Height, (const GLfloat (*)[4])ctx->Convolution2D.Filter, (GLfloat (*)[4]) dstImage); break; default: ; } } void _mesa_convolve_sep_image(const GLcontext *ctx, GLsizei *width, GLsizei *height, const GLfloat *srcImage, GLfloat *dstImage) { const GLfloat *rowFilter = ctx->Separable2D.Filter; const GLfloat *colFilter = rowFilter + 4 * MAX_CONVOLUTION_WIDTH; switch (ctx->Pixel.ConvolutionBorderMode[2]) { case GL_REDUCE: convolve_sep_reduce(*width, *height, (const GLfloat (*)[4]) srcImage, ctx->Separable2D.Width, ctx->Separable2D.Height, (const GLfloat (*)[4]) rowFilter, (const GLfloat (*)[4]) colFilter, (GLfloat (*)[4]) dstImage); *width = *width - (MAX2(ctx->Separable2D.Width, 1) - 1); *height = *height - (MAX2(ctx->Separable2D.Height, 1) - 1); break; case GL_CONSTANT_BORDER: convolve_sep_constant(*width, *height, (const GLfloat (*)[4]) srcImage, ctx->Separable2D.Width, ctx->Separable2D.Height, (const GLfloat (*)[4]) rowFilter, (const GLfloat (*)[4]) colFilter, (GLfloat (*)[4]) dstImage, ctx->Pixel.ConvolutionBorderColor[2]); break; case GL_REPLICATE_BORDER: convolve_sep_replicate(*width, *height, (const GLfloat (*)[4]) srcImage, ctx->Separable2D.Width, ctx->Separable2D.Height, (const GLfloat (*)[4]) rowFilter, (const GLfloat (*)[4]) colFilter, (GLfloat (*)[4]) dstImage); break; default: ; } } /* * This function computes an image's size after convolution. * If the convolution border mode is GL_REDUCE, the post-convolution * image will be smaller than the original. */ void _mesa_adjust_image_for_convolution(const GLcontext *ctx, GLuint dimensions, GLsizei *width, GLsizei *height) { if (ctx->Pixel.Convolution1DEnabled && dimensions == 1 && ctx->Pixel.ConvolutionBorderMode[0] == GL_REDUCE) { *width = *width - (MAX2(ctx->Convolution1D.Width, 1) - 1); } else if (ctx->Pixel.Convolution2DEnabled && dimensions > 1 && ctx->Pixel.ConvolutionBorderMode[1] == GL_REDUCE) { *width = *width - (MAX2(ctx->Convolution2D.Width, 1) - 1); *height = *height - (MAX2(ctx->Convolution2D.Height, 1) - 1); } else if (ctx->Pixel.Separable2DEnabled && dimensions > 1 && ctx->Pixel.ConvolutionBorderMode[2] == GL_REDUCE) { *width = *width - (MAX2(ctx->Separable2D.Width, 1) - 1); *height = *height - (MAX2(ctx->Separable2D.Height, 1) - 1); } } void _mesa_init_convolve_dispatch(struct _glapi_table *disp) { SET_ConvolutionFilter1D(disp, _mesa_ConvolutionFilter1D); SET_ConvolutionFilter2D(disp, _mesa_ConvolutionFilter2D); SET_ConvolutionParameterf(disp, _mesa_ConvolutionParameterf); SET_ConvolutionParameterfv(disp, _mesa_ConvolutionParameterfv); SET_ConvolutionParameteri(disp, _mesa_ConvolutionParameteri); SET_ConvolutionParameteriv(disp, _mesa_ConvolutionParameteriv); SET_CopyConvolutionFilter1D(disp, _mesa_CopyConvolutionFilter1D); SET_CopyConvolutionFilter2D(disp, _mesa_CopyConvolutionFilter2D); SET_GetConvolutionFilter(disp, _mesa_GetConvolutionFilter); SET_GetConvolutionParameterfv(disp, _mesa_GetConvolutionParameterfv); SET_GetConvolutionParameteriv(disp, _mesa_GetConvolutionParameteriv); SET_SeparableFilter2D(disp, _mesa_SeparableFilter2D); SET_GetSeparableFilter(disp, _mesa_GetSeparableFilter); } #endif /* FEATURE_convolve */