/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * Copyright 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ extern "C" { #include "glheader.h" #include "imports.h" #include "mtypes.h" #include "program/program.h" #include "program/prog_parameter.h" #include "program/prog_cache.h" #include "program/prog_instruction.h" #include "program/prog_print.h" #include "program/prog_statevars.h" #include "program/programopt.h" #include "texenvprogram.h" } /* * Note on texture units: * * The number of texture units supported by fixed-function fragment * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS. * That's because there's a one-to-one correspondence between texture * coordinates and samplers in fixed-function processing. * * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS * sets of texcoords, so is fixed-function fragment processing. * * We can safely use ctx->Const.MaxTextureUnits for loop bounds. */ struct texenvprog_cache_item { GLuint hash; void *key; struct gl_fragment_program *data; struct texenvprog_cache_item *next; }; static GLboolean texenv_doing_secondary_color(struct gl_context *ctx) { if (ctx->Light.Enabled && (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) return GL_TRUE; if (ctx->Fog.ColorSumEnabled) return GL_TRUE; return GL_FALSE; } /** * Up to nine instructions per tex unit, plus fog, specular color. */ #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12) #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM) struct mode_opt { #ifdef __GNUC__ __extension__ GLubyte Source:4; /**< SRC_x */ __extension__ GLubyte Operand:3; /**< OPR_x */ #else GLubyte Source; /**< SRC_x */ GLubyte Operand; /**< OPR_x */ #endif }; struct state_key { GLuint nr_enabled_units:8; GLuint enabled_units:8; GLuint separate_specular:1; GLuint fog_enabled:1; GLuint fog_mode:2; /**< FOG_x */ GLuint inputs_available:12; GLuint num_draw_buffers:4; /* NOTE: This array of structs must be last! (see "keySize" below) */ struct { GLuint enabled:1; GLuint source_index:3; /**< TEXTURE_x_INDEX */ GLuint shadow:1; GLuint ScaleShiftRGB:2; GLuint ScaleShiftA:2; GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */ GLuint ModeRGB:5; /**< MODE_x */ GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */ GLuint ModeA:5; /**< MODE_x */ GLuint texture_cyl_wrap:1; /**< For gallium test/debug only */ struct mode_opt OptRGB[MAX_COMBINER_TERMS]; struct mode_opt OptA[MAX_COMBINER_TERMS]; } unit[MAX_TEXTURE_UNITS]; }; #define FOG_LINEAR 0 #define FOG_EXP 1 #define FOG_EXP2 2 #define FOG_UNKNOWN 3 static GLuint translate_fog_mode( GLenum mode ) { switch (mode) { case GL_LINEAR: return FOG_LINEAR; case GL_EXP: return FOG_EXP; case GL_EXP2: return FOG_EXP2; default: return FOG_UNKNOWN; } } #define OPR_SRC_COLOR 0 #define OPR_ONE_MINUS_SRC_COLOR 1 #define OPR_SRC_ALPHA 2 #define OPR_ONE_MINUS_SRC_ALPHA 3 #define OPR_ZERO 4 #define OPR_ONE 5 #define OPR_UNKNOWN 7 static GLuint translate_operand( GLenum operand ) { switch (operand) { case GL_SRC_COLOR: return OPR_SRC_COLOR; case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR; case GL_SRC_ALPHA: return OPR_SRC_ALPHA; case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA; case GL_ZERO: return OPR_ZERO; case GL_ONE: return OPR_ONE; default: assert(0); return OPR_UNKNOWN; } } #define SRC_TEXTURE 0 #define SRC_TEXTURE0 1 #define SRC_TEXTURE1 2 #define SRC_TEXTURE2 3 #define SRC_TEXTURE3 4 #define SRC_TEXTURE4 5 #define SRC_TEXTURE5 6 #define SRC_TEXTURE6 7 #define SRC_TEXTURE7 8 #define SRC_CONSTANT 9 #define SRC_PRIMARY_COLOR 10 #define SRC_PREVIOUS 11 #define SRC_ZERO 12 #define SRC_UNKNOWN 15 static GLuint translate_source( GLenum src ) { switch (src) { case GL_TEXTURE: return SRC_TEXTURE; case GL_TEXTURE0: case GL_TEXTURE1: case GL_TEXTURE2: case GL_TEXTURE3: case GL_TEXTURE4: case GL_TEXTURE5: case GL_TEXTURE6: case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0); case GL_CONSTANT: return SRC_CONSTANT; case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR; case GL_PREVIOUS: return SRC_PREVIOUS; case GL_ZERO: return SRC_ZERO; default: assert(0); return SRC_UNKNOWN; } } #define MODE_REPLACE 0 /* r = a0 */ #define MODE_MODULATE 1 /* r = a0 * a1 */ #define MODE_ADD 2 /* r = a0 + a1 */ #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */ #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */ #define MODE_SUBTRACT 5 /* r = a0 - a1 */ #define MODE_DOT3_RGB 6 /* r = a0 . a1 */ #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */ #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */ #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */ #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */ #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */ #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */ #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */ #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */ #define MODE_BUMP_ENVMAP_ATI 15 /* special */ #define MODE_UNKNOWN 16 /** * Translate GL combiner state into a MODE_x value */ static GLuint translate_mode( GLenum envMode, GLenum mode ) { switch (mode) { case GL_REPLACE: return MODE_REPLACE; case GL_MODULATE: return MODE_MODULATE; case GL_ADD: if (envMode == GL_COMBINE4_NV) return MODE_ADD_PRODUCTS; else return MODE_ADD; case GL_ADD_SIGNED: if (envMode == GL_COMBINE4_NV) return MODE_ADD_PRODUCTS_SIGNED; else return MODE_ADD_SIGNED; case GL_INTERPOLATE: return MODE_INTERPOLATE; case GL_SUBTRACT: return MODE_SUBTRACT; case GL_DOT3_RGB: return MODE_DOT3_RGB; case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT; case GL_DOT3_RGBA: return MODE_DOT3_RGBA; case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT; case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI; case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI; case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI; case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI; default: assert(0); return MODE_UNKNOWN; } } /** * Do we need to clamp the results of the given texture env/combine mode? * If the inputs to the mode are in [0,1] we don't always have to clamp * the results. */ static GLboolean need_saturate( GLuint mode ) { switch (mode) { case MODE_REPLACE: case MODE_MODULATE: case MODE_INTERPOLATE: return GL_FALSE; case MODE_ADD: case MODE_ADD_SIGNED: case MODE_SUBTRACT: case MODE_DOT3_RGB: case MODE_DOT3_RGB_EXT: case MODE_DOT3_RGBA: case MODE_DOT3_RGBA_EXT: case MODE_MODULATE_ADD_ATI: case MODE_MODULATE_SIGNED_ADD_ATI: case MODE_MODULATE_SUBTRACT_ATI: case MODE_ADD_PRODUCTS: case MODE_ADD_PRODUCTS_SIGNED: case MODE_BUMP_ENVMAP_ATI: return GL_TRUE; default: assert(0); return GL_FALSE; } } /** * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX. */ static GLuint translate_tex_src_bit( GLbitfield bit ) { ASSERT(bit); return _mesa_ffs(bit) - 1; } #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0) #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0) /** * Identify all possible varying inputs. The fragment program will * never reference non-varying inputs, but will track them via state * constants instead. * * This function figures out all the inputs that the fragment program * has access to. The bitmask is later reduced to just those which * are actually referenced. */ static GLbitfield get_fp_input_mask( struct gl_context *ctx ) { /* _NEW_PROGRAM */ const GLboolean vertexShader = (ctx->Shader.CurrentVertexProgram && ctx->Shader.CurrentVertexProgram->LinkStatus && ctx->Shader.CurrentVertexProgram->VertexProgram); const GLboolean vertexProgram = ctx->VertexProgram._Enabled; GLbitfield fp_inputs = 0x0; if (ctx->VertexProgram._Overriden) { /* Somebody's messing with the vertex program and we don't have * a clue what's happening. Assume that it could be producing * all possible outputs. */ fp_inputs = ~0; } else if (ctx->RenderMode == GL_FEEDBACK) { /* _NEW_RENDERMODE */ fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0); } else if (!(vertexProgram || vertexShader) || !ctx->VertexProgram._Current) { /* Fixed function vertex logic */ /* _NEW_ARRAY */ GLbitfield varying_inputs = ctx->varying_vp_inputs; /* These get generated in the setup routine regardless of the * vertex program: */ /* _NEW_POINT */ if (ctx->Point.PointSprite) varying_inputs |= FRAG_BITS_TEX_ANY; /* First look at what values may be computed by the generated * vertex program: */ /* _NEW_LIGHT */ if (ctx->Light.Enabled) { fp_inputs |= FRAG_BIT_COL0; if (texenv_doing_secondary_color(ctx)) fp_inputs |= FRAG_BIT_COL1; } /* _NEW_TEXTURE */ fp_inputs |= (ctx->Texture._TexGenEnabled | ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0; /* Then look at what might be varying as a result of enabled * arrays, etc: */ if (varying_inputs & VERT_BIT_COLOR0) fp_inputs |= FRAG_BIT_COL0; if (varying_inputs & VERT_BIT_COLOR1) fp_inputs |= FRAG_BIT_COL1; fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0) << FRAG_ATTRIB_TEX0); } else { /* calculate from vp->outputs */ struct gl_vertex_program *vprog; GLbitfield64 vp_outputs; /* Choose GLSL vertex shader over ARB vertex program. Need this * since vertex shader state validation comes after fragment state * validation (see additional comments in state.c). */ if (vertexShader) vprog = ctx->Shader.CurrentVertexProgram->VertexProgram; else vprog = ctx->VertexProgram.Current; vp_outputs = vprog->Base.OutputsWritten; /* These get generated in the setup routine regardless of the * vertex program: */ /* _NEW_POINT */ if (ctx->Point.PointSprite) vp_outputs |= FRAG_BITS_TEX_ANY; if (vp_outputs & (1 << VERT_RESULT_COL0)) fp_inputs |= FRAG_BIT_COL0; if (vp_outputs & (1 << VERT_RESULT_COL1)) fp_inputs |= FRAG_BIT_COL1; fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0) << FRAG_ATTRIB_TEX0); } return fp_inputs; } /** * Examine current texture environment state and generate a unique * key to identify it. */ static GLuint make_state_key( struct gl_context *ctx, struct state_key *key ) { GLuint i, j; GLbitfield inputs_referenced = FRAG_BIT_COL0; const GLbitfield inputs_available = get_fp_input_mask( ctx ); GLuint keySize; memset(key, 0, sizeof(*key)); /* _NEW_TEXTURE */ for (i = 0; i < ctx->Const.MaxTextureUnits; i++) { const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; const struct gl_texture_object *texObj = texUnit->_Current; const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine; GLenum format; if (!texUnit->_ReallyEnabled || !texUnit->Enabled) continue; format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat; key->unit[i].enabled = 1; key->enabled_units |= (1<nr_enabled_units = i + 1; inputs_referenced |= FRAG_BIT_TEX(i); key->unit[i].source_index = translate_tex_src_bit(texUnit->_ReallyEnabled); key->unit[i].shadow = ((texObj->CompareMode == GL_COMPARE_R_TO_TEXTURE) && ((format == GL_DEPTH_COMPONENT) || (format == GL_DEPTH_STENCIL_EXT))); key->unit[i].NumArgsRGB = comb->_NumArgsRGB; key->unit[i].NumArgsA = comb->_NumArgsA; key->unit[i].ModeRGB = translate_mode(texUnit->EnvMode, comb->ModeRGB); key->unit[i].ModeA = translate_mode(texUnit->EnvMode, comb->ModeA); key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB; key->unit[i].ScaleShiftA = comb->ScaleShiftA; for (j = 0; j < MAX_COMBINER_TERMS; j++) { key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]); key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]); key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]); key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]); } if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) { /* requires some special translation */ key->unit[i].NumArgsRGB = 2; key->unit[i].ScaleShiftRGB = 0; key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR; key->unit[i].OptRGB[0].Source = SRC_TEXTURE; key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR; key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0; } /* this is a back-door for enabling cylindrical texture wrap mode */ if (texObj->Priority == 0.125) key->unit[i].texture_cyl_wrap = 1; } /* _NEW_LIGHT | _NEW_FOG */ if (texenv_doing_secondary_color(ctx)) { key->separate_specular = 1; inputs_referenced |= FRAG_BIT_COL1; } /* _NEW_FOG */ if (ctx->Fog.Enabled) { key->fog_enabled = 1; key->fog_mode = translate_fog_mode(ctx->Fog.Mode); inputs_referenced |= FRAG_BIT_FOGC; /* maybe */ } /* _NEW_BUFFERS */ key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers; key->inputs_available = (inputs_available & inputs_referenced); /* compute size of state key, ignoring unused texture units */ keySize = sizeof(*key) - sizeof(key->unit) + key->nr_enabled_units * sizeof(key->unit[0]); return keySize; } /** * Use uregs to represent registers internally, translate to Mesa's * expected formats on emit. * * NOTE: These are passed by value extensively in this file rather * than as usual by pointer reference. If this disturbs you, try * remembering they are just 32bits in size. * * GCC is smart enough to deal with these dword-sized structures in * much the same way as if I had defined them as dwords and was using * macros to access and set the fields. This is much nicer and easier * to evolve. */ struct ureg { GLuint file:4; GLuint idx:8; GLuint negatebase:1; GLuint swz:12; GLuint pad:7; }; static const struct ureg undef = { PROGRAM_UNDEFINED, 255, 0, 0, 0 }; /** State used to build the fragment program: */ struct texenv_fragment_program { struct gl_fragment_program *program; struct state_key *state; GLbitfield alu_temps; /**< Track texture indirections, see spec. */ GLbitfield temps_output; /**< Track texture indirections, see spec. */ GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */ GLboolean error; struct ureg src_texture[MAX_TEXTURE_COORD_UNITS]; /* Reg containing each texture unit's sampled texture color, * else undef. */ struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS]; /* Reg containing texcoord for a texture unit, * needed for bump mapping, else undef. */ struct ureg src_previous; /**< Reg containing color from previous * stage. May need to be decl'd. */ GLuint last_tex_stage; /**< Number of last enabled texture unit */ struct ureg half; struct ureg one; struct ureg zero; }; static struct ureg make_ureg(GLuint file, GLuint idx) { struct ureg reg; reg.file = file; reg.idx = idx; reg.negatebase = 0; reg.swz = SWIZZLE_NOOP; reg.pad = 0; return reg; } static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w ) { reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x), GET_SWZ(reg.swz, y), GET_SWZ(reg.swz, z), GET_SWZ(reg.swz, w)); return reg; } static struct ureg swizzle1( struct ureg reg, int x ) { return swizzle(reg, x, x, x, x); } static struct ureg negate( struct ureg reg ) { reg.negatebase ^= 1; return reg; } static GLboolean is_undef( struct ureg reg ) { return reg.file == PROGRAM_UNDEFINED; } static struct ureg get_temp( struct texenv_fragment_program *p ) { GLint bit; /* First try and reuse temps which have been used already: */ bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps ); /* Then any unused temporary: */ if (!bit) bit = _mesa_ffs( ~p->temp_in_use ); if (!bit) { _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__); exit(1); } if ((GLuint) bit > p->program->Base.NumTemporaries) p->program->Base.NumTemporaries = bit; p->temp_in_use |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, (bit-1)); } static struct ureg get_tex_temp( struct texenv_fragment_program *p ) { int bit; /* First try to find available temp not previously used (to avoid * starting a new texture indirection). According to the spec, the * ~p->temps_output isn't necessary, but will keep it there for * now: */ bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output ); /* Then any unused temporary: */ if (!bit) bit = _mesa_ffs( ~p->temp_in_use ); if (!bit) { _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__); exit(1); } if ((GLuint) bit > p->program->Base.NumTemporaries) p->program->Base.NumTemporaries = bit; p->temp_in_use |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, (bit-1)); } /** Mark a temp reg as being no longer allocatable. */ static void reserve_temp( struct texenv_fragment_program *p, struct ureg r ) { if (r.file == PROGRAM_TEMPORARY) p->temps_output |= (1 << r.idx); } static void release_temps(struct gl_context *ctx, struct texenv_fragment_program *p ) { GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps; /* KW: To support tex_env_crossbar, don't release the registers in * temps_output. */ if (max_temp >= sizeof(int) * 8) p->temp_in_use = p->temps_output; else p->temp_in_use = ~((1<temps_output; } static struct ureg register_param5( struct texenv_fragment_program *p, GLint s0, GLint s1, GLint s2, GLint s3, GLint s4) { int tokens[STATE_LENGTH]; GLuint idx; tokens[0] = s0; tokens[1] = s1; tokens[2] = s2; tokens[3] = s3; tokens[4] = s4; idx = _mesa_add_state_reference(p->program->Base.Parameters, (gl_state_index *)tokens); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_param1(p,s0) register_param5(p,s0,0,0,0,0) #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0) #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0) #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0) static GLuint frag_to_vert_attrib( GLuint attrib ) { switch (attrib) { case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0; case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1; default: assert(attrib >= FRAG_ATTRIB_TEX0); assert(attrib <= FRAG_ATTRIB_TEX7); return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0; } } static struct ureg register_input( struct texenv_fragment_program *p, GLuint input ) { if (p->state->inputs_available & (1<program->Base.InputsRead |= (1 << input); return make_ureg(PROGRAM_INPUT, input); } else { GLuint idx = frag_to_vert_attrib( input ); return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx ); } } static void emit_arg( struct prog_src_register *reg, struct ureg ureg ) { reg->File = ureg.file; reg->Index = ureg.idx; reg->Swizzle = ureg.swz; reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE; reg->Abs = GL_FALSE; } static void emit_dst( struct prog_dst_register *dst, struct ureg ureg, GLuint mask ) { dst->File = ureg.file; dst->Index = ureg.idx; dst->WriteMask = mask; dst->CondMask = COND_TR; /* always pass cond test */ dst->CondSwizzle = SWIZZLE_NOOP; } static struct prog_instruction * emit_op(struct texenv_fragment_program *p, enum prog_opcode op, struct ureg dest, GLuint mask, GLboolean saturate, struct ureg src0, struct ureg src1, struct ureg src2 ) { const GLuint nr = p->program->Base.NumInstructions++; struct prog_instruction *inst = &p->program->Base.Instructions[nr]; assert(nr < MAX_INSTRUCTIONS); _mesa_init_instructions(inst, 1); inst->Opcode = op; emit_arg( &inst->SrcReg[0], src0 ); emit_arg( &inst->SrcReg[1], src1 ); emit_arg( &inst->SrcReg[2], src2 ); inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF; emit_dst( &inst->DstReg, dest, mask ); #if 0 /* Accounting for indirection tracking: */ if (dest.file == PROGRAM_TEMPORARY) p->temps_output |= 1 << dest.idx; #endif return inst; } static struct ureg emit_arith( struct texenv_fragment_program *p, enum prog_opcode op, struct ureg dest, GLuint mask, GLboolean saturate, struct ureg src0, struct ureg src1, struct ureg src2 ) { emit_op(p, op, dest, mask, saturate, src0, src1, src2); /* Accounting for indirection tracking: */ if (src0.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << src0.idx; if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << src1.idx; if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << src2.idx; if (dest.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << dest.idx; p->program->Base.NumAluInstructions++; return dest; } static struct ureg emit_texld( struct texenv_fragment_program *p, enum prog_opcode op, struct ureg dest, GLuint destmask, GLuint tex_unit, GLuint tex_idx, GLuint tex_shadow, struct ureg coord ) { struct prog_instruction *inst = emit_op( p, op, dest, destmask, GL_FALSE, /* don't saturate? */ coord, /* arg 0? */ undef, undef); inst->TexSrcTarget = tex_idx; inst->TexSrcUnit = tex_unit; inst->TexShadow = tex_shadow; p->program->Base.NumTexInstructions++; /* Accounting for indirection tracking: */ reserve_temp(p, dest); #if 0 /* Is this a texture indirection? */ if ((coord.file == PROGRAM_TEMPORARY && (p->temps_output & (1<alu_temps & (1<program->Base.NumTexIndirections++; p->temps_output = 1<alu_temps = 0; assert(0); /* KW: texture env crossbar */ } #endif return dest; } static struct ureg register_const4f( struct texenv_fragment_program *p, GLfloat s0, GLfloat s1, GLfloat s2, GLfloat s3) { GLfloat values[4]; GLuint idx, swizzle; struct ureg r; values[0] = s0; values[1] = s1; values[2] = s2; values[3] = s3; idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4, &swizzle ); r = make_ureg(PROGRAM_CONSTANT, idx); r.swz = swizzle; return r; } #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0) #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1) #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1) #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1) static struct ureg get_one( struct texenv_fragment_program *p ) { if (is_undef(p->one)) p->one = register_scalar_const(p, 1.0); return p->one; } static struct ureg get_half( struct texenv_fragment_program *p ) { if (is_undef(p->half)) p->half = register_scalar_const(p, 0.5); return p->half; } static struct ureg get_zero( struct texenv_fragment_program *p ) { if (is_undef(p->zero)) p->zero = register_scalar_const(p, 0.0); return p->zero; } static void program_error( struct texenv_fragment_program *p, const char *msg ) { _mesa_problem(NULL, "%s", msg); p->error = 1; } static struct ureg get_source( struct texenv_fragment_program *p, GLuint src, GLuint unit ) { switch (src) { case SRC_TEXTURE: assert(!is_undef(p->src_texture[unit])); return p->src_texture[unit]; case SRC_TEXTURE0: case SRC_TEXTURE1: case SRC_TEXTURE2: case SRC_TEXTURE3: case SRC_TEXTURE4: case SRC_TEXTURE5: case SRC_TEXTURE6: case SRC_TEXTURE7: assert(!is_undef(p->src_texture[src - SRC_TEXTURE0])); return p->src_texture[src - SRC_TEXTURE0]; case SRC_CONSTANT: return register_param2(p, STATE_TEXENV_COLOR, unit); case SRC_PRIMARY_COLOR: return register_input(p, FRAG_ATTRIB_COL0); case SRC_ZERO: return get_zero(p); case SRC_PREVIOUS: if (is_undef(p->src_previous)) return register_input(p, FRAG_ATTRIB_COL0); else return p->src_previous; default: assert(0); return undef; } } static struct ureg emit_combine_source( struct texenv_fragment_program *p, GLuint mask, GLuint unit, GLuint source, GLuint operand ) { struct ureg arg, src, one; src = get_source(p, source, unit); switch (operand) { case OPR_ONE_MINUS_SRC_COLOR: /* Get unused tmp, * Emit tmp = 1.0 - arg.xyzw */ arg = get_temp( p ); one = get_one( p ); return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef); case OPR_SRC_ALPHA: if (mask == WRITEMASK_W) return src; else return swizzle1( src, SWIZZLE_W ); case OPR_ONE_MINUS_SRC_ALPHA: /* Get unused tmp, * Emit tmp = 1.0 - arg.wwww */ arg = get_temp(p); one = get_one(p); return emit_arith(p, OPCODE_SUB, arg, mask, 0, one, swizzle1(src, SWIZZLE_W), undef); case OPR_ZERO: return get_zero(p); case OPR_ONE: return get_one(p); case OPR_SRC_COLOR: return src; default: assert(0); return src; } } /** * Check if the RGB and Alpha sources and operands match for the given * texture unit's combinder state. When the RGB and A sources and * operands match, we can emit fewer instructions. */ static GLboolean args_match( const struct state_key *key, GLuint unit ) { GLuint i, numArgs = key->unit[unit].NumArgsRGB; for (i = 0; i < numArgs; i++) { if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source) return GL_FALSE; switch (key->unit[unit].OptA[i].Operand) { case OPR_SRC_ALPHA: switch (key->unit[unit].OptRGB[i].Operand) { case OPR_SRC_COLOR: case OPR_SRC_ALPHA: break; default: return GL_FALSE; } break; case OPR_ONE_MINUS_SRC_ALPHA: switch (key->unit[unit].OptRGB[i].Operand) { case OPR_ONE_MINUS_SRC_COLOR: case OPR_ONE_MINUS_SRC_ALPHA: break; default: return GL_FALSE; } break; default: return GL_FALSE; /* impossible */ } } return GL_TRUE; } static struct ureg emit_combine( struct texenv_fragment_program *p, struct ureg dest, GLuint mask, GLboolean saturate, GLuint unit, GLuint nr, GLuint mode, const struct mode_opt *opt) { struct ureg src[MAX_COMBINER_TERMS]; struct ureg tmp, half; GLuint i; assert(nr <= MAX_COMBINER_TERMS); for (i = 0; i < nr; i++) src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand ); switch (mode) { case MODE_REPLACE: if (mask == WRITEMASK_XYZW && !saturate) return src[0]; else return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef ); case MODE_MODULATE: return emit_arith( p, OPCODE_MUL, dest, mask, saturate, src[0], src[1], undef ); case MODE_ADD: return emit_arith( p, OPCODE_ADD, dest, mask, saturate, src[0], src[1], undef ); case MODE_ADD_SIGNED: /* tmp = arg0 + arg1 * result = tmp - .5 */ half = get_half(p); tmp = get_temp( p ); emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef ); emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef ); return dest; case MODE_INTERPOLATE: /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered: */ return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] ); case MODE_SUBTRACT: return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef ); case MODE_DOT3_RGBA: case MODE_DOT3_RGBA_EXT: case MODE_DOT3_RGB_EXT: case MODE_DOT3_RGB: { struct ureg tmp0 = get_temp( p ); struct ureg tmp1 = get_temp( p ); struct ureg neg1 = register_scalar_const(p, -1); struct ureg two = register_scalar_const(p, 2); /* tmp0 = 2*src0 - 1 * tmp1 = 2*src1 - 1 * * dst = tmp0 dot3 tmp1 */ emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0, two, src[0], neg1); if (memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0) tmp1 = tmp0; else emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0, two, src[1], neg1); emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef); return dest; } case MODE_MODULATE_ADD_ATI: /* Arg0 * Arg2 + Arg1 */ return emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[0], src[2], src[1] ); case MODE_MODULATE_SIGNED_ADD_ATI: { /* Arg0 * Arg2 + Arg1 - 0.5 */ struct ureg tmp0 = get_temp(p); half = get_half(p); emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] ); emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef ); return dest; } case MODE_MODULATE_SUBTRACT_ATI: /* Arg0 * Arg2 - Arg1 */ emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) ); return dest; case MODE_ADD_PRODUCTS: /* Arg0 * Arg1 + Arg2 * Arg3 */ { struct ureg tmp0 = get_temp(p); emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef ); emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 ); } return dest; case MODE_ADD_PRODUCTS_SIGNED: /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */ { struct ureg tmp0 = get_temp(p); half = get_half(p); emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef ); emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 ); emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef ); } return dest; case MODE_BUMP_ENVMAP_ATI: /* special - not handled here */ assert(0); return src[0]; default: assert(0); return src[0]; } } /** * Generate instructions for one texture unit's env/combiner mode. */ static struct ureg emit_texenv(struct texenv_fragment_program *p, GLuint unit) { const struct state_key *key = p->state; GLboolean rgb_saturate, alpha_saturate; GLuint rgb_shift, alpha_shift; struct ureg out, dest; if (!key->unit[unit].enabled) { return get_source(p, SRC_PREVIOUS, 0); } if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) { /* this isn't really a env stage delivering a color and handled elsewhere */ return get_source(p, SRC_PREVIOUS, 0); } switch (key->unit[unit].ModeRGB) { case MODE_DOT3_RGB_EXT: alpha_shift = key->unit[unit].ScaleShiftA; rgb_shift = 0; break; case MODE_DOT3_RGBA_EXT: alpha_shift = 0; rgb_shift = 0; break; default: rgb_shift = key->unit[unit].ScaleShiftRGB; alpha_shift = key->unit[unit].ScaleShiftA; break; } /* If we'll do rgb/alpha shifting don't saturate in emit_combine(). * We don't want to clamp twice. */ if (rgb_shift) rgb_saturate = GL_FALSE; /* saturate after rgb shift */ else if (need_saturate(key->unit[unit].ModeRGB)) rgb_saturate = GL_TRUE; else rgb_saturate = GL_FALSE; if (alpha_shift) alpha_saturate = GL_FALSE; /* saturate after alpha shift */ else if (need_saturate(key->unit[unit].ModeA)) alpha_saturate = GL_TRUE; else alpha_saturate = GL_FALSE; /* If this is the very last calculation (and various other conditions * are met), emit directly to the color output register. Otherwise, * emit to a temporary register. */ if (key->separate_specular || unit != p->last_tex_stage || alpha_shift || key->num_draw_buffers != 1 || rgb_shift) dest = get_temp( p ); else dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR); /* Emit the RGB and A combine ops */ if (key->unit[unit].ModeRGB == key->unit[unit].ModeA && args_match(key, unit)) { out = emit_combine( p, dest, WRITEMASK_XYZW, rgb_saturate, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); } else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT || key->unit[unit].ModeRGB == MODE_DOT3_RGBA) { out = emit_combine( p, dest, WRITEMASK_XYZW, rgb_saturate, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); } else { /* Need to do something to stop from re-emitting identical * argument calculations here: */ out = emit_combine( p, dest, WRITEMASK_XYZ, rgb_saturate, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); out = emit_combine( p, dest, WRITEMASK_W, alpha_saturate, unit, key->unit[unit].NumArgsA, key->unit[unit].ModeA, key->unit[unit].OptA); } /* Deal with the final shift: */ if (alpha_shift || rgb_shift) { struct ureg shift; GLboolean saturate = GL_TRUE; /* always saturate at this point */ if (rgb_shift == alpha_shift) { shift = register_scalar_const(p, (GLfloat)(1<src_texture[unit])) { const GLuint texTarget = p->state->unit[unit].source_index; struct ureg texcoord; struct ureg tmp = get_tex_temp( p ); if (is_undef(p->texcoord_tex[unit])) { texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit); } else { /* might want to reuse this reg for tex output actually */ texcoord = p->texcoord_tex[unit]; } /* TODO: Use D0_MASK_XY where possible. */ if (p->state->unit[unit].enabled) { GLboolean shadow = GL_FALSE; if (p->state->unit[unit].shadow) { p->program->Base.ShadowSamplers |= 1 << unit; shadow = GL_TRUE; } p->src_texture[unit] = emit_texld( p, OPCODE_TXP, tmp, WRITEMASK_XYZW, unit, texTarget, shadow, texcoord ); p->program->Base.SamplersUsed |= (1 << unit); /* This identity mapping should already be in place * (see _mesa_init_program_struct()) but let's be safe. */ p->program->Base.SamplerUnits[unit] = unit; } else p->src_texture[unit] = get_zero(p); if (p->state->unit[unit].texture_cyl_wrap) { /* set flag which is checked by Mesa->Gallium program translation */ p->program->Base.InputFlags[0] |= PROG_PARAM_BIT_CYL_WRAP; } } } static GLboolean load_texenv_source( struct texenv_fragment_program *p, GLuint src, GLuint unit ) { switch (src) { case SRC_TEXTURE: load_texture(p, unit); break; case SRC_TEXTURE0: case SRC_TEXTURE1: case SRC_TEXTURE2: case SRC_TEXTURE3: case SRC_TEXTURE4: case SRC_TEXTURE5: case SRC_TEXTURE6: case SRC_TEXTURE7: load_texture(p, src - SRC_TEXTURE0); break; default: /* not a texture src - do nothing */ break; } return GL_TRUE; } /** * Generate instructions for loading all texture source terms. */ static GLboolean load_texunit_sources( struct texenv_fragment_program *p, GLuint unit ) { const struct state_key *key = p->state; GLuint i; for (i = 0; i < key->unit[unit].NumArgsRGB; i++) { load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit ); } for (i = 0; i < key->unit[unit].NumArgsA; i++) { load_texenv_source( p, key->unit[unit].OptA[i].Source, unit ); } return GL_TRUE; } /** * Generate instructions for loading bump map textures. */ static GLboolean load_texunit_bumpmap( struct texenv_fragment_program *p, GLuint unit ) { const struct state_key *key = p->state; GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0; struct ureg texcDst, bumpMapRes; struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0); struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr); struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit ); struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit ); load_texenv_source( p, unit + SRC_TEXTURE0, unit ); bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit); texcDst = get_tex_temp( p ); p->texcoord_tex[bumpedUnitNr] = texcDst; /* Apply rot matrix and add coords to be available in next phase. * dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1) * note only 2 coords are affected the rest are left unchanged (mul by 0) */ emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0, swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc ); emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0, swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst ); /* Move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish * enough to access this later, should optimize away. */ emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0, constdudvcolor, undef, undef ); return GL_TRUE; } /** * Generate a new fragment program which implements the context's * current texture env/combine mode. */ static void create_new_program(struct gl_context *ctx, struct state_key *key, struct gl_fragment_program *program) { struct prog_instruction instBuffer[MAX_INSTRUCTIONS]; struct texenv_fragment_program p; GLuint unit; struct ureg cf, out; int i; memset(&p, 0, sizeof(p)); p.state = key; p.program = program; /* During code generation, use locally-allocated instruction buffer, * then alloc dynamic storage below. */ p.program->Base.Instructions = instBuffer; p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB; p.program->Base.String = NULL; p.program->Base.NumTexIndirections = 1; /* is this right? */ p.program->Base.NumTexInstructions = 0; p.program->Base.NumAluInstructions = 0; p.program->Base.NumInstructions = 0; p.program->Base.NumTemporaries = 0; p.program->Base.NumParameters = 0; p.program->Base.NumAttributes = 0; p.program->Base.NumAddressRegs = 0; p.program->Base.Parameters = _mesa_new_parameter_list(); p.program->Base.InputsRead = 0x0; if (key->num_draw_buffers == 1) p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR; else { for (i = 0; i < key->num_draw_buffers; i++) p.program->Base.OutputsWritten |= (1 << (FRAG_RESULT_DATA0 + i)); } for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { p.src_texture[unit] = undef; p.texcoord_tex[unit] = undef; } p.src_previous = undef; p.half = undef; p.zero = undef; p.one = undef; p.last_tex_stage = 0; release_temps(ctx, &p); if (key->enabled_units && key->num_draw_buffers) { GLboolean needbumpstage = GL_FALSE; /* Zeroth pass - bump map textures first */ for (unit = 0; unit < key->nr_enabled_units; unit++) if (key->unit[unit].enabled && key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) { needbumpstage = GL_TRUE; load_texunit_bumpmap( &p, unit ); } if (needbumpstage) p.program->Base.NumTexIndirections++; /* First pass - to support texture_env_crossbar, first identify * all referenced texture sources and emit texld instructions * for each: */ for (unit = 0; unit < key->nr_enabled_units; unit++) if (key->unit[unit].enabled) { load_texunit_sources( &p, unit ); p.last_tex_stage = unit; } /* Second pass - emit combine instructions to build final color: */ for (unit = 0; unit < key->nr_enabled_units; unit++) if (key->unit[unit].enabled) { p.src_previous = emit_texenv( &p, unit ); reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */ release_temps(ctx, &p); /* release all temps */ } } cf = get_source( &p, SRC_PREVIOUS, 0 ); for (i = 0; i < key->num_draw_buffers; i++) { if (key->num_draw_buffers == 1) out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR ); else { out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_DATA0 + i ); } if (key->separate_specular) { /* Emit specular add. */ struct ureg s = register_input(&p, FRAG_ATTRIB_COL1); emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef ); emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef ); } else if (memcmp(&cf, &out, sizeof(cf)) != 0) { /* Will wind up in here if no texture enabled or a couple of * other scenarios (GL_REPLACE for instance). */ emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef ); } } /* Finish up: */ emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef); if (key->fog_enabled) { /* Pull fog mode from struct gl_context, the value in the state key is * a reduced value and not what is expected in FogOption */ p.program->FogOption = ctx->Fog.Mode; p.program->Base.InputsRead |= FRAG_BIT_FOGC; } else { p.program->FogOption = GL_NONE; } if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections) program_error(&p, "Exceeded max nr indirect texture lookups"); if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions) program_error(&p, "Exceeded max TEX instructions"); if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions) program_error(&p, "Exceeded max ALU instructions"); ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS); /* Allocate final instruction array */ p.program->Base.Instructions = _mesa_alloc_instructions(p.program->Base.NumInstructions); if (!p.program->Base.Instructions) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating tex env program"); return; } _mesa_copy_instructions(p.program->Base.Instructions, instBuffer, p.program->Base.NumInstructions); if (key->num_draw_buffers && p.program->FogOption) { _mesa_append_fog_code(ctx, p.program); p.program->FogOption = GL_NONE; } /* Notify driver the fragment program has (actually) changed. */ if (ctx->Driver.ProgramStringNotify) { GLboolean ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB, &p.program->Base); /* Driver should be able to handle any texenv programs as long as * the driver correctly reported max number of texture units correctly, * etc. */ ASSERT(ok); (void) ok; /* silence unused var warning */ } if (DISASSEM) { _mesa_print_program(&p.program->Base); printf("\n"); } } extern "C" { /** * Return a fragment program which implements the current * fixed-function texture, fog and color-sum operations. */ struct gl_fragment_program * _mesa_get_fixed_func_fragment_program(struct gl_context *ctx) { struct gl_fragment_program *prog; struct state_key key; GLuint keySize; keySize = make_state_key(ctx, &key); prog = (struct gl_fragment_program *) _mesa_search_program_cache(ctx->FragmentProgram.Cache, &key, keySize); if (!prog) { prog = (struct gl_fragment_program *) ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0); create_new_program(ctx, &key, prog); _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache, &key, keySize, &prog->Base); } return prog; } }