/* $Id: imports.c,v 1.33 2003/03/04 16:33:53 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 5.1 * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Imports are services which the device driver or window system or * operating system provides to the core renderer. The core renderer (Mesa) * will call these functions in order to do memory allocation, simple I/O, * etc. * * Some drivers will want to override/replace this file with something * specialized, but that'll be rare. * * Eventually, I want to move roll the glheader.h file into this. * * The OpenGL SI's __GLimports structure allows per-context specification of * replacements for the standard C lib functions. In practice that's probably * never needed; compile-time replacements are far more likely. * * The _mesa_foo() functions defined here don't in general take a context * parameter. I guess we can change that someday, if need be. * So for now, the __GLimports stuff really isn't used. */ #include "imports.h" #include "context.h" #define MAXSTRING 4000 /* for vsnprintf() */ #ifdef WIN32 #define vsnprintf _vsnprintf #elif defined(__IBMC__) || defined(__IBMCPP__) || defined(VMS) extern int vsnprintf(char *str, size_t count, const char *fmt, va_list arg); #endif /**********************************************************************/ /* Wrappers for standard C library functions */ /**********************************************************************/ /* * Functions still needed: * scanf * qsort * bsearch * rand and RAND_MAX */ /********************************************************************** * Memory */ void * _mesa_malloc(size_t bytes) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86malloc(bytes); #else return malloc(bytes); #endif } void * _mesa_calloc(size_t bytes) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86calloc(1, bytes); #else return calloc(1, bytes); #endif } void _mesa_free(void *ptr) { #if defined(XFree86LOADER) && defined(IN_MODULE) xf86free(ptr); #else free(ptr); #endif } void * _mesa_align_malloc(size_t bytes, unsigned long alignment) { unsigned long ptr, buf; ASSERT( alignment > 0 ); /* Allocate extra memory to accomodate rounding up the address for * alignment and to record the real malloc address. */ ptr = (unsigned long) _mesa_malloc(bytes + alignment + sizeof(void *)); if (!ptr) return NULL; buf = (ptr + alignment + sizeof(void *)) & ~(unsigned long)(alignment - 1); *(unsigned long *)(buf - sizeof(void *)) = ptr; #ifdef DEBUG /* mark the non-aligned area */ while ( ptr < buf - sizeof(void *) ) { *(unsigned long *)ptr = 0xcdcdcdcd; ptr += sizeof(unsigned long); } #endif return (void *) buf; } void * _mesa_align_calloc(size_t bytes, unsigned long alignment) { unsigned long ptr, buf; ASSERT( alignment > 0 ); ptr = (unsigned long) _mesa_calloc(bytes + alignment + sizeof(void *)); if (!ptr) return NULL; buf = (ptr + alignment + sizeof(void *)) & ~(unsigned long)(alignment - 1); *(unsigned long *)(buf - sizeof(void *)) = ptr; #ifdef DEBUG /* mark the non-aligned area */ while ( ptr < buf - sizeof(void *) ) { *(unsigned long *)ptr = 0xcdcdcdcd; ptr += sizeof(unsigned long); } #endif return (void *)buf; } void _mesa_align_free(void *ptr) { #if 0 _mesa_free( (void *)(*(unsigned long *)((unsigned long)ptr - sizeof(void *))) ); #else /* The actuall address to free is stuffed in the word immediately * before the address the client sees. */ void **cubbyHole = (void **) ((char *) ptr - sizeof(void *)); void *realAddr = *cubbyHole; _mesa_free(realAddr); #endif } void * _mesa_memcpy(void *dest, const void *src, size_t n) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86memcpy(dest, src, n); #elif defined(SUNOS4) return memcpy((char *) dest, (char *) src, (int) n); #else return memcpy(dest, src, n); #endif } void _mesa_memset( void *dst, int val, size_t n ) { #if defined(XFree86LOADER) && defined(IN_MODULE) xf86memset( dst, val, n ); #elif defined(SUNOS4) memset( (char *) dst, (int) val, (int) n ); #else memset(dst, val, n); #endif } void _mesa_memset16( unsigned short *dst, unsigned short val, size_t n ) { while (n-- > 0) *dst++ = val; } void _mesa_bzero( void *dst, size_t n ) { #if defined(XFree86LOADER) && defined(IN_MODULE) xf86memset( dst, 0, n ); #elif defined(__FreeBSD__) bzero( dst, n ); #else memset( dst, 0, n ); #endif } /********************************************************************** * Math */ double _mesa_sin(double a) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86sin(a); #else return sin(a); #endif } double _mesa_cos(double a) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86cos(a); #else return cos(a); #endif } double _mesa_sqrtd(double x) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86sqrt(x); #else return sqrt(x); #endif } /* * A High Speed, Low Precision Square Root * by Paul Lalonde and Robert Dawson * from "Graphics Gems", Academic Press, 1990 * * SPARC implementation of a fast square root by table * lookup. * SPARC floating point format is as follows: * * BIT 31 30 23 22 0 * sign exponent mantissa */ static short sqrttab[0x100]; /* declare table of square roots */ static void init_sqrt_table(void) { #if defined(USE_IEEE) && !defined(DEBUG) unsigned short i; fi_type fi; /* to access the bits of a float in C quickly */ /* we use a union defined in glheader.h */ for(i=0; i<= 0x7f; i++) { fi.i = 0; /* * Build a float with the bit pattern i as mantissa * and an exponent of 0, stored as 127 */ fi.i = (i << 16) | (127 << 23); fi.f = _mesa_sqrtd(fi.f); /* * Take the square root then strip the first 7 bits of * the mantissa into the table */ sqrttab[i] = (fi.i & 0x7fffff) >> 16; /* * Repeat the process, this time with an exponent of * 1, stored as 128 */ fi.i = 0; fi.i = (i << 16) | (128 << 23); fi.f = sqrt(fi.f); sqrttab[i+0x80] = (fi.i & 0x7fffff) >> 16; } #else (void) sqrttab; /* silence compiler warnings */ #endif /*HAVE_FAST_MATH*/ } float _mesa_sqrtf( float x ) { #if defined(USE_IEEE) && !defined(DEBUG) fi_type num; /* to access the bits of a float in C * we use a union from glheader.h */ short e; /* the exponent */ if (x == 0.0F) return 0.0F; /* check for square root of 0 */ num.f = x; e = (num.i >> 23) - 127; /* get the exponent - on a SPARC the */ /* exponent is stored with 127 added */ num.i &= 0x7fffff; /* leave only the mantissa */ if (e & 0x01) num.i |= 0x800000; /* the exponent is odd so we have to */ /* look it up in the second half of */ /* the lookup table, so we set the */ /* high bit */ e >>= 1; /* divide the exponent by two */ /* note that in C the shift */ /* operators are sign preserving */ /* for signed operands */ /* Do the table lookup, based on the quaternary mantissa, * then reconstruct the result back into a float */ num.i = ((sqrttab[num.i >> 16]) << 16) | ((e + 127) << 23); return num.f; #else return (float) _mesa_sqrtd((double) x); #endif } /** inv_sqrt - A single precision 1/sqrt routine for IEEE format floats. written by Josh Vanderhoof, based on newsgroup posts by James Van Buskirk and Vesa Karvonen. */ float _mesa_inv_sqrtf(float n) { #if defined(USE_IEEE) && !defined(DEBUG) float r0, x0, y0; float r1, x1, y1; float r2, x2, y2; #if 0 /* not used, see below -BP */ float r3, x3, y3; #endif union { float f; unsigned int i; } u; unsigned int magic; /* Exponent part of the magic number - We want to: 1. subtract the bias from the exponent, 2. negate it 3. divide by two (rounding towards -inf) 4. add the bias back Which is the same as subtracting the exponent from 381 and dividing by 2. floor(-(x - 127) / 2) + 127 = floor((381 - x) / 2) */ magic = 381 << 23; /* Significand part of magic number - With the current magic number, "(magic - u.i) >> 1" will give you: for 1 <= u.f <= 2: 1.25 - u.f / 4 for 2 <= u.f <= 4: 1.00 - u.f / 8 This isn't a bad approximation of 1/sqrt. The maximum difference from 1/sqrt will be around .06. After three Newton-Raphson iterations, the maximum difference is less than 4.5e-8. (Which is actually close enough to make the following bias academic...) To get a better approximation you can add a bias to the magic number. For example, if you subtract 1/2 of the maximum difference in the first approximation (.03), you will get the following function: for 1 <= u.f <= 2: 1.22 - u.f / 4 for 2 <= u.f <= 3.76: 0.97 - u.f / 8 for 3.76 <= u.f <= 4: 0.72 - u.f / 16 (The 3.76 to 4 range is where the result is < .5.) This is the closest possible initial approximation, but with a maximum error of 8e-11 after three NR iterations, it is still not perfect. If you subtract 0.0332281 instead of .03, the maximum error will be 2.5e-11 after three NR iterations, which should be about as close as is possible. for 1 <= u.f <= 2: 1.2167719 - u.f / 4 for 2 <= u.f <= 3.73: 0.9667719 - u.f / 8 for 3.73 <= u.f <= 4: 0.7167719 - u.f / 16 */ magic -= (int)(0.0332281 * (1 << 25)); u.f = n; u.i = (magic - u.i) >> 1; /* Instead of Newton-Raphson, we use Goldschmidt's algorithm, which allows more parallelism. From what I understand, the parallelism comes at the cost of less precision, because it lets error accumulate across iterations. */ x0 = 1.0f; y0 = 0.5f * n; r0 = u.f; x1 = x0 * r0; y1 = y0 * r0 * r0; r1 = 1.5f - y1; x2 = x1 * r1; y2 = y1 * r1 * r1; r2 = 1.5f - y2; #if 1 return x2 * r2; /* we can stop here, and be conformant -BP */ #else x3 = x2 * r2; y3 = y2 * r2 * r2; r3 = 1.5f - y3; return x3 * r3; #endif #elif defined(XFree86LOADER) && defined(IN_MODULE) return 1.0F / xf86sqrt(n); #else return 1.0F / sqrt(n); #endif } double _mesa_pow(double x, double y) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86pow(x, y); #else return pow(x, y); #endif } /* * Return number of bits set in given GLuint. */ unsigned int _mesa_bitcount(unsigned int n) { unsigned int bits; for (bits = 0; n > 0; n = n >> 1) { bits += (n & 1); } return bits; } /********************************************************************** * Environment vars */ char * _mesa_getenv( const char *var ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86getenv(var); #else return getenv(var); #endif } /********************************************************************** * String */ char * _mesa_strstr( const char *haystack, const char *needle ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strstr(haystack, needle); #else return strstr(haystack, needle); #endif } char * _mesa_strncat( char *dest, const char *src, size_t n ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strncat(dest, src, n); #else return strncat(dest, src, n); #endif } char * _mesa_strcpy( char *dest, const char *src ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strcpy(dest, src); #else return strcpy(dest, src); #endif } char * _mesa_strncpy( char *dest, const char *src, size_t n ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strncpy(dest, src, n); #else return strncpy(dest, src, n); #endif } size_t _mesa_strlen( const char *s ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strlen(s); #else return strlen(s); #endif } int _mesa_strcmp( const char *s1, const char *s2 ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strcmp(s1, s2); #else return strcmp(s1, s2); #endif } int _mesa_strncmp( const char *s1, const char *s2, size_t n ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strncmp(s1, s2, n); #else return strncmp(s1, s2, n); #endif } char * _mesa_strdup( const char *s ) { int l = _mesa_strlen(s); char *s2 = (char *) _mesa_malloc(l + 1); if (s2) _mesa_strcpy(s2, s); return s2; } int _mesa_atoi(const char *s) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86atoi(s); #else return atoi(s); #endif } double _mesa_strtod( const char *s, char **end ) { #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86strtod(s, end); #else return strtod(s, end); #endif } /********************************************************************** * I/O */ int _mesa_sprintf( char *str, const char *fmt, ... ) { int r; va_list args; va_start( args, fmt ); va_end( args ); #if defined(XFree86LOADER) && defined(IN_MODULE) r = xf86vsprintf( str, fmt, args ); #else r = vsprintf( str, fmt, args ); #endif return r; } void _mesa_printf( const char *fmtString, ... ) { char s[MAXSTRING]; va_list args; va_start( args, fmtString ); vsnprintf(s, MAXSTRING, fmtString, args); va_end( args ); #if defined(XFree86LOADER) && defined(IN_MODULE) xf86printf("%s", s); #else printf("%s", s); #endif } /********************************************************************** * Diagnostics */ void _mesa_warning( GLcontext *ctx, const char *fmtString, ... ) { GLboolean debug; char str[MAXSTRING]; va_list args; (void) ctx; va_start( args, fmtString ); (void) vsnprintf( str, MAXSTRING, fmtString, args ); va_end( args ); #ifdef DEBUG debug = GL_TRUE; /* always print warning */ #else debug = _mesa_getenv("MESA_DEBUG") ? GL_TRUE : GL_FALSE; #endif if (debug) { #if defined(XFree86LOADER) && defined(IN_MODULE) xf86fprintf(stderr, "Mesa warning: %s\n", str); #else fprintf(stderr, "Mesa warning: %s\n", str); #endif } } /* * This function is called when the Mesa user has stumbled into a code * path which may not be implemented fully or correctly. */ void _mesa_problem( const GLcontext *ctx, const char *fmtString, ... ) { va_list args; char str[MAXSTRING]; (void) ctx; va_start( args, fmtString ); vsnprintf( str, MAXSTRING, fmtString, args ); va_end( args ); #if defined(XFree86LOADER) && defined(IN_MODULE) xf86fprintf(stderr, "Mesa implementation error: %s\n", str); xf86fprintf(stderr, "Please report to the DRI project at dri.sourceforge.net\n"); #else fprintf(stderr, "Mesa implementation error: %s\n", str); fprintf(stderr, "Please report to the Mesa bug database at www.mesa3d.org\n" ); #endif } /* * If in debug mode, print error message to stdout. * Also, record the error code by calling _mesa_record_error(). * Input: ctx - the GL context * error - the error value * fmtString - printf-style format string, followed by optional args */ void _mesa_error( GLcontext *ctx, GLenum error, const char *fmtString, ... ) { const char *debugEnv; GLboolean debug; debugEnv = _mesa_getenv("MESA_DEBUG"); #ifdef DEBUG if (debugEnv && _mesa_strstr(debugEnv, "silent")) debug = GL_FALSE; else debug = GL_TRUE; #else if (debugEnv) debug = GL_TRUE; else debug = GL_FALSE; #endif if (debug) { va_list args; char where[MAXSTRING]; const char *errstr; va_start( args, fmtString ); vsnprintf( where, MAXSTRING, fmtString, args ); va_end( args ); switch (error) { case GL_NO_ERROR: errstr = "GL_NO_ERROR"; break; case GL_INVALID_VALUE: errstr = "GL_INVALID_VALUE"; break; case GL_INVALID_ENUM: errstr = "GL_INVALID_ENUM"; break; case GL_INVALID_OPERATION: errstr = "GL_INVALID_OPERATION"; break; case GL_STACK_OVERFLOW: errstr = "GL_STACK_OVERFLOW"; break; case GL_STACK_UNDERFLOW: errstr = "GL_STACK_UNDERFLOW"; break; case GL_OUT_OF_MEMORY: errstr = "GL_OUT_OF_MEMORY"; break; case GL_TABLE_TOO_LARGE: errstr = "GL_TABLE_TOO_LARGE"; break; default: errstr = "unknown"; break; } _mesa_debug(ctx, "Mesa user error: %s in %s\n", errstr, where); } _mesa_record_error(ctx, error); } /* * Call this to report debug information. Uses stderr. */ void _mesa_debug( const GLcontext *ctx, const char *fmtString, ... ) { char s[MAXSTRING]; va_list args; va_start(args, fmtString); vsnprintf(s, MAXSTRING, fmtString, args); va_end(args); #if defined(XFree86LOADER) && defined(IN_MODULE) xf86fprintf(stderr, "Mesa: %s", s); #else fprintf(stderr, "Mesa: %s", s); #endif } /**********************************************************************/ /* Default Imports Wrapper */ /**********************************************************************/ static void * default_malloc(__GLcontext *gc, size_t size) { (void) gc; return _mesa_malloc(size); } static void * default_calloc(__GLcontext *gc, size_t numElem, size_t elemSize) { (void) gc; return _mesa_calloc(numElem * elemSize); } static void * default_realloc(__GLcontext *gc, void *oldAddr, size_t newSize) { (void) gc; #if defined(XFree86LOADER) && defined(IN_MODULE) return xf86realloc(oldAddr, newSize); #else return realloc(oldAddr, newSize); #endif } static void default_free(__GLcontext *gc, void *addr) { (void) gc; _mesa_free(addr); } static char * CAPI default_getenv( __GLcontext *gc, const char *var ) { (void) gc; return _mesa_getenv(var); } static void default_warning(__GLcontext *gc, char *str) { _mesa_warning(gc, str); } static void default_fatal(__GLcontext *gc, char *str) { _mesa_problem(gc, str); abort(); } static int CAPI default_atoi(__GLcontext *gc, const char *str) { (void) gc; return atoi(str); } static int CAPI default_sprintf(__GLcontext *gc, char *str, const char *fmt, ...) { int r; va_list args; va_start( args, fmt ); r = vsprintf( str, fmt, args ); va_end( args ); return r; } static void * CAPI default_fopen(__GLcontext *gc, const char *path, const char *mode) { return fopen(path, mode); } static int CAPI default_fclose(__GLcontext *gc, void *stream) { return fclose((FILE *) stream); } static int CAPI default_fprintf(__GLcontext *gc, void *stream, const char *fmt, ...) { int r; va_list args; va_start( args, fmt ); r = vfprintf( (FILE *) stream, fmt, args ); va_end( args ); return r; } /* XXX this really is driver-specific and can't be here */ static __GLdrawablePrivate * default_GetDrawablePrivate(__GLcontext *gc) { return NULL; } /* * Initialize a __GLimports object to point to the functions in * this file. This is to be called from device drivers. * Also, do some one-time initializations. * Input: imports - the object to init * driverCtx - pointer to device driver-specific data */ void _mesa_init_default_imports(__GLimports *imports, void *driverCtx) { /* XXX maybe move this one-time init stuff into context.c */ static GLboolean initialized = GL_FALSE; if (!initialized) { init_sqrt_table(); #if defined(_FPU_GETCW) && defined(_FPU_SETCW) { const char *debug = _mesa_getenv("MESA_DEBUG"); if (debug && _mesa_strcmp(debug, "FP")==0) { /* die on FP exceptions */ fpu_control_t mask; _FPU_GETCW(mask); mask &= ~(_FPU_MASK_IM | _FPU_MASK_DM | _FPU_MASK_ZM | _FPU_MASK_OM | _FPU_MASK_UM); _FPU_SETCW(mask); } } #endif initialized = GL_TRUE; } imports->malloc = default_malloc; imports->calloc = default_calloc; imports->realloc = default_realloc; imports->free = default_free; imports->warning = default_warning; imports->fatal = default_fatal; imports->getenv = default_getenv; /* not used for now */ imports->atoi = default_atoi; imports->sprintf = default_sprintf; imports->fopen = default_fopen; imports->fclose = default_fclose; imports->fprintf = default_fprintf; imports->getDrawablePrivate = default_GetDrawablePrivate; imports->other = driverCtx; }