/** * \file imports.h * Standard C library function wrappers. * * This file provides wrappers for all the standard C library functions * like malloc(), free(), printf(), getenv(), etc. */ /* * Mesa 3-D graphics library * Version: 5.1 * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef IMPORTS_H #define IMPORTS_H /* XXX some of the stuff in glheader.h should be moved into this file. */ #include "glheader.h" #ifdef __cplusplus extern "C" { #endif /**********************************************************************/ /** \name General macros */ /*@{*/ #ifndef NULL #define NULL 0 #endif /*@}*/ /**********************************************************************/ /** Memory macros */ /*@{*/ /** Allocate \p BYTES bytes */ #define MALLOC(BYTES) _mesa_malloc(BYTES) /** Allocate and zero \p BYTES bytes */ #define CALLOC(BYTES) _mesa_calloc(BYTES) /** Allocate a structure of type \p T */ #define MALLOC_STRUCT(T) (struct T *) _mesa_malloc(sizeof(struct T)) /** Allocate and zero a structure of type \p T */ #define CALLOC_STRUCT(T) (struct T *) _mesa_calloc(sizeof(struct T)) /** Free memory */ #define FREE(PTR) _mesa_free(PTR) /** Allocate \p BYTES aligned at \p N bytes */ #define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N) /** Allocate and zero \p BYTES bytes aligned at \p N bytes */ #define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N) /** Allocate a structure of type \p T aligned at \p N bytes */ #define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N) /** Allocate and zero a structure of type \p T aligned at \p N bytes */ #define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N) /** Free aligned memory */ #define ALIGN_FREE(PTR) _mesa_align_free(PTR) /** Copy \p BYTES bytes from \p SRC into \p DST */ #define MEMCPY( DST, SRC, BYTES) _mesa_memcpy(DST, SRC, BYTES) /** Set \p N bytes in \p DST to \p VAL */ #define MEMSET( DST, VAL, N ) _mesa_memset(DST, VAL, N) #define MEMSET16( DST, VAL, N ) _mesa_memset16( (DST), (VAL), (size_t) (N) ) /*@}*/ /* * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers * as offsets into buffer stores. Since the vertex array pointer and * buffer store pointer are both pointers and we need to add them, we use * this macro. * Both pointers/offsets are expressed in bytes. */ #define ADD_POINTERS(A, B) ( (A) + (unsigned long) (B) ) /**********************************************************************/ /** \name [Pseudo] static array declaration. * * MACs and BeOS don't support static larger than 32kb, so ... */ /*@{*/ /** * \def DEFARRAY * Define a [static] unidimensional array */ /** * \def DEFMARRAY * Define a [static] bi-dimensional array */ /** * \def DEFMNARRAY * Define a [static] tri-dimensional array */ /** * \def CHECKARRAY * Verifies a [static] array was properly allocated. */ /** * \def UNDEFARRAY * Undefine (free) a [static] array. */ #if defined(macintosh) && !defined(__MRC__) /*extern char *AGLAlloc(int size);*/ /*extern void AGLFree(char* ptr);*/ # define DEFARRAY(TYPE,NAME,SIZE) TYPE *NAME = (TYPE*)_mesa_alloc(sizeof(TYPE)*(SIZE)) # define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])_mesa_alloc(sizeof(TYPE)*(SIZE1)*(SIZE2)) # define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE (*NAME)[SIZE2][SIZE3] = (TYPE(*)[SIZE2][SIZE3])_mesa_alloc(sizeof(TYPE)*(SIZE1)*(SIZE2)*(SIZE3)) # define CHECKARRAY(NAME,CMD) do {if (!(NAME)) {CMD;}} while (0) # define UNDEFARRAY(NAME) do {if ((NAME)) {_mesa_free((char*)NAME);} }while (0) #elif defined(__BEOS__) # define DEFARRAY(TYPE,NAME,SIZE) TYPE *NAME = (TYPE*)_mesa_malloc(sizeof(TYPE)*(SIZE)) # define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])_mesa_malloc(sizeof(TYPE)*(SIZE1)*(SIZE2)) # define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE (*NAME)[SIZE2][SIZE3] = (TYPE(*)[SIZE2][SIZE3])_mesa_malloc(sizeof(TYPE)*(SIZE1)*(SIZE2)*(SIZE3)) # define CHECKARRAY(NAME,CMD) do {if (!(NAME)) {CMD;}} while (0) # define UNDEFARRAY(NAME) do {if ((NAME)) {_mesa_free((char*)NAME);} }while (0) #else # define DEFARRAY(TYPE,NAME,SIZE) TYPE NAME[SIZE] # define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE NAME[SIZE1][SIZE2] # define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE NAME[SIZE1][SIZE2][SIZE3] # define CHECKARRAY(NAME,CMD) do {} while(0) # define UNDEFARRAY(NAME) #endif /*@}*/ /**********************************************************************/ /** \name External pixel buffer allocation. * * If you want Mesa's depth/stencil/accum/etc buffers to be allocated with a * specialized allocator you can define MESA_EXTERNAL_BUFFERALLOC and implement * _ext_mesa_alloc_pixelbuffer() _ext_mesa_free_pixelbuffer() in your * application. * * \author * Contributed by Gerk Huisma (gerk@five-d.demon.nl). */ /*@{*/ /** * \def MESA_PBUFFER_ALLOC * Allocate a pixel buffer. */ /** * \def MESA_PBUFFER_FREE * Free a pixel buffer. */ #ifdef MESA_EXTERNAL_BUFFERALLOC extern void *_ext_mesa_alloc_pixelbuffer( unsigned int size ); extern void _ext_mesa_free_pixelbuffer( void *pb ); #define MESA_PBUFFER_ALLOC(BYTES) (void *) _ext_mesa_alloc_pixelbuffer(BYTES) #define MESA_PBUFFER_FREE(PTR) _ext_mesa_free_pixelbuffer(PTR) #else /* Default buffer allocation uses the aligned allocation routines: */ #define MESA_PBUFFER_ALLOC(BYTES) (void *) _mesa_align_malloc(BYTES, 512) #define MESA_PBUFFER_FREE(PTR) _mesa_align_free(PTR) #endif /*@}*/ /********************************************************************** * Math macros */ #define MAX_GLUSHORT 0xffff #define MAX_GLUINT 0xffffffff #ifndef M_PI #define M_PI (3.1415926536) #endif /* Degrees to radians conversion: */ #define DEG2RAD (M_PI/180.0) /*** *** USE_IEEE: Determine if we're using IEEE floating point ***/ #if defined(__i386__) || defined(__386__) || defined(__sparc__) || \ defined(__s390x__) || defined(__powerpc__) || \ ( defined(__alpha__) && ( defined(__IEEE_FLOAT) || !defined(VMS) ) ) #define USE_IEEE #define IEEE_ONE 0x3f800000 #endif /*** *** SQRTF: single-precision square root ***/ #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */ # define SQRTF(X) _mesa_sqrtf(X) #elif defined(XFree86LOADER) && defined(IN_MODULE) # define SQRTF(X) (float) xf86sqrt((float) (X)) #else # define SQRTF(X) (float) sqrt((float) (X)) #endif /*** *** INV_SQRTF: single-precision inverse square root ***/ #if 0 #define INV_SQRTF(X) _mesa_inv_sqrt(X) #else #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */ #endif /*** *** LOG2: Log base 2 of float ***/ #ifdef USE_IEEE #if 0 /* This is pretty fast, but not accurate enough (only 2 fractional bits). * Based on code from http://www.stereopsis.com/log2.html */ static INLINE GLfloat LOG2(GLfloat x) { const GLfloat y = x * x * x * x; const GLuint ix = *((GLuint *) &y); const GLuint exp = (ix >> 23) & 0xFF; const GLint log2 = ((GLint) exp) - 127; return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */ } #endif /* Pretty fast, and accurate. * Based on code from http://www.flipcode.com/totd/ */ static INLINE GLfloat LOG2(GLfloat val) { fi_type num; GLint log_2; num.f = val; log_2 = ((num.i >> 23) & 255) - 128; num.i &= ~(255 << 23); num.i += 127 << 23; num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3; return num.f + log_2; } #elif defined(XFree86LOADER) && defined(IN_MODULE) #define LOG2(x) ((GLfloat) (xf86log(x) * 1.442695)) #else /* * NOTE: log_base_2(x) = log(x) / log(2) * NOTE: 1.442695 = 1/log(2). */ #define LOG2(x) ((GLfloat) (log(x) * 1.442695F)) #endif /*** *** IS_INF_OR_NAN: test if float is infinite or NaN ***/ #ifdef USE_IEEE static INLINE int IS_INF_OR_NAN( float x ) { fi_type tmp; tmp.f = x; return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31); } #elif defined(isfinite) #define IS_INF_OR_NAN(x) (!isfinite(x)) #elif defined(finite) #define IS_INF_OR_NAN(x) (!finite(x)) #elif __VMS #define IS_INF_OR_NAN(x) (!finite(x)) #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define IS_INF_OR_NAN(x) (!isfinite(x)) #else #define IS_INF_OR_NAN(x) (!finite(x)) #endif /*** *** IS_NEGATIVE: test if float is negative ***/ #if defined(USE_IEEE) #define GET_FLOAT_BITS(x) ((fi_type *) &(x))->i #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) & (1<<31)) #else #define IS_NEGATIVE(x) (x < 0.0F) #endif /*** *** DIFFERENT_SIGNS: test if two floats have opposite signs ***/ #if defined(USE_IEEE) #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31)) #else /* Could just use (x*y<0) except for the flatshading requirements. * Maybe there's a better way? */ #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F) #endif /*** *** CEILF: ceiling of float *** FLOORF: floor of float *** FABSF: absolute value of float ***/ #if defined(XFree86LOADER) && defined(IN_MODULE) #define CEILF(x) ((GLfloat) xf86ceil(x)) #define FLOORF(x) ((GLfloat) xf86floor(x)) #define FABSF(x) ((GLfloat) xf86fabs(x)) #elif defined(__gnu_linux__) /* C99 functions */ #define CEILF(x) ceilf(x) #define FLOORF(x) floorf(x) #define FABSF(x) fabsf(x) #else #define CEILF(x) ((GLfloat) ceil(x)) #define FLOORF(x) ((GLfloat) floor(x)) #define FABSF(x) ((GLfloat) fabs(x)) #endif /*** *** IROUND: return (as an integer) float rounded to nearest integer ***/ #if defined(USE_SPARC_ASM) && defined(__GNUC__) && defined(__sparc__) static INLINE int iround(float f) { int r; __asm__ ("fstoi %1, %0" : "=f" (r) : "f" (f)); return r; } #define IROUND(x) iround(x) #elif defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) static INLINE int iround(float f) { int r; __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); return r; } #define IROUND(x) iround(x) #elif defined(USE_X86_ASM) && defined(__MSC__) && defined(__WIN32__) static INLINE int iround(float f) { int r; _asm { fld f fistp r } return r; } #define IROUND(x) iround(x) #elif defined(USE_X86_ASM) && defined(__WATCOMC__) long iround(float f); #pragma aux iround = \ "push eax" \ "fistp dword ptr [esp]" \ "pop eax" \ parm [8087] \ value [eax] \ modify exact [eax]; #define IROUND(x) iround(x) #elif defined(__OS2__) #ifndef FIST_MAGIC #define FIST_MAGIC ((((65536.0 * 65536.0 * 16)+(65536.0 * 0.5))* 65536.0)) #endif static INLINE int iround(float x) { double dtemp = FIST_MAGIC + x; return ((*(int *)&dtemp) - 0x80000000); } #define IROUND(f) iround((float)f) #else #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F))) #endif /*** *** IROUND_POS: return (as an integer) positive float rounded to nearest int ***/ #ifdef DEBUG #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f)) #else #define IROUND_POS(f) (IROUND(f)) #endif /*** *** IFLOOR: return (as an integer) floor of float ***/ #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) /* * IEEE floor for computers that round to nearest or even. * 'f' must be between -4194304 and 4194303. * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", * but uses some IEEE specific tricks for better speed. * Contributed by Josh Vanderhoof */ static INLINE int ifloor(float f) { int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; /* GCC generates an extra fstp/fld without this. */ __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi) >> 1; } #define IFLOOR(x) ifloor(x) #elif defined(USE_IEEE) static INLINE int ifloor(float f) { int ai, bi; double af, bf; fi_type u; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi) >> 1; } #define IFLOOR(x) ifloor(x) #else static INLINE int ifloor(float f) { int i = IROUND(f); return (i > f) ? i - 1 : i; } #define IFLOOR(x) ifloor(x) #endif /*** *** ICEIL: return (as an integer) ceiling of float ***/ #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) /* * IEEE ceil for computers that round to nearest or even. * 'f' must be between -4194304 and 4194303. * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1", * but uses some IEEE specific tricks for better speed. * Contributed by Josh Vanderhoof */ static INLINE int iceil(float f) { int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; /* GCC generates an extra fstp/fld without this. */ __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi + 1) >> 1; } #define ICEIL(x) iceil(x) #elif defined(USE_IEEE) static INLINE int iceil(float f) { int ai, bi; double af, bf; fi_type u; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi + 1) >> 1; } #define ICEIL(x) iceil(x) #else static INLINE int iceil(float f) { int i = IROUND(f); return (i < f) ? i + 1 : i; } #define ICEIL(x) iceil(x) #endif /*** *** UNCLAMPED_FLOAT_TO_UBYTE: map float from {0,1} to ubyte in [0,255] *** CLAMPED_FLOAT_TO_UBYTE: map float in [0,1] to ubyte in [0,255] ***/ #if defined(USE_IEEE) && !defined(DEBUG) #define IEEE_0996 0x3f7f0000 /* 0.996 or so */ /* This function/macro is sensitive to precision. Test very carefully * if you change it! */ #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \ do { \ fi_type __tmp; \ __tmp.f = (F); \ UB = ((__tmp.i >= IEEE_0996) \ ? ((GLint)__tmp.i < 0) ? (GLubyte)0 : (GLubyte)255 \ : (__tmp.f = __tmp.f*(255.0F/256.0F) + 32768.0F, \ (GLubyte)__tmp.i)); \ } while (0) #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ UNCLAMPED_FLOAT_TO_UBYTE(ub, f) #else #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F)) #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ ub = ((GLubyte) IROUND((f) * 255.0F)) #endif /*** *** COPY_FLOAT: copy a float from src to dest, avoid slow FP regs if possible ***/ #if defined(USE_IEEE) && !defined(DEBUG) #define COPY_FLOAT( dst, src ) \ ((fi_type *) &(dst))->i = ((fi_type *) &(src))->i #else #define COPY_FLOAT( dst, src ) (dst) = (src) #endif /*** *** START_FAST_MATH: Set x86 FPU to faster, 32-bit precision mode (and save *** original mode to a temporary). *** END_FAST_MATH: Restore x86 FPU to original mode. ***/ #if defined(__GNUC__) && defined(__i386__) /* * Set the x86 FPU control word to guarentee only 32 bits of precision * are stored in registers. Allowing the FPU to store more introduces * differences between situations where numbers are pulled out of memory * vs. situations where the compiler is able to optimize register usage. * * In the worst case, we force the compiler to use a memory access to * truncate the float, by specifying the 'volatile' keyword. */ /* Hardware default: All exceptions masked, extended double precision, * round to nearest (IEEE compliant): */ #define DEFAULT_X86_FPU 0x037f /* All exceptions masked, single precision, round to nearest: */ #define FAST_X86_FPU 0x003f /* The fldcw instruction will cause any pending FP exceptions to be * raised prior to entering the block, and we clear any pending * exceptions before exiting the block. Hence, asm code has free * reign over the FPU while in the fast math block. */ #if defined(NO_FAST_MATH) #define START_FAST_MATH(x) \ do { \ static GLuint mask = DEFAULT_X86_FPU; \ __asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \ __asm__ ( "fldcw %0" : : "m" (mask) ); \ } while (0) #else #define START_FAST_MATH(x) \ do { \ static GLuint mask = FAST_X86_FPU; \ __asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \ __asm__ ( "fldcw %0" : : "m" (mask) ); \ } while (0) #endif /* Restore original FPU mode, and clear any exceptions that may have * occurred in the FAST_MATH block. */ #define END_FAST_MATH(x) \ do { \ __asm__ ( "fnclex ; fldcw %0" : : "m" (*&(x)) ); \ } while (0) #elif defined(__WATCOMC__) && defined(__386__) #define DEFAULT_X86_FPU 0x037f /* See GCC comments above */ #define FAST_X86_FPU 0x003f /* See GCC comments above */ void _watcom_start_fast_math(unsigned short *x,unsigned short *mask); #pragma aux _watcom_start_fast_math = \ "fnstcw word ptr [eax]" \ "fldcw word ptr [ecx]" \ parm [eax ecx] \ modify exact []; void _watcom_end_fast_math(unsigned short *x); #pragma aux _watcom_end_fast_math = \ "fnclex" \ "fldcw word ptr [eax]" \ parm [eax] \ modify exact []; #if defined(NO_FAST_MATH) #define START_FAST_MATH(x) \ do { \ static GLushort mask = DEFAULT_X86_FPU; \ _watcom_start_fast_math(&x,&mask); \ } while (0) #else #define START_FAST_MATH(x) \ do { \ static GLushort mask = FAST_X86_FPU; \ _watcom_start_fast_math(&x,&mask); \ } while (0) #endif #define END_FAST_MATH(x) _watcom_end_fast_math(&x) #else #define START_FAST_MATH(x) x = 0 #define END_FAST_MATH(x) (void)(x) #endif /********************************************************************** * Functions */ extern void * _mesa_malloc( size_t bytes ); extern void * _mesa_calloc( size_t bytes ); extern void _mesa_free( void *ptr ); extern void * _mesa_align_malloc( size_t bytes, unsigned long alignment ); extern void * _mesa_align_calloc( size_t bytes, unsigned long alignment ); extern void _mesa_align_free( void *ptr ); extern void * _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize ); extern void * _mesa_memcpy( void *dest, const void *src, size_t n ); extern void _mesa_memset( void *dst, int val, size_t n ); extern void _mesa_memset16( unsigned short *dst, unsigned short val, size_t n ); extern void _mesa_bzero( void *dst, size_t n ); extern double _mesa_sin(double a); extern double _mesa_cos(double a); extern double _mesa_sqrtd(double x); extern float _mesa_sqrtf(float x); extern float _mesa_inv_sqrtf(float x); extern double _mesa_pow(double x, double y); extern float _mesa_log2(float x); extern unsigned int _mesa_bitcount(unsigned int n); extern char * _mesa_getenv( const char *var ); extern char * _mesa_strstr( const char *haystack, const char *needle ); extern char * _mesa_strncat( char *dest, const char *src, size_t n ); extern char * _mesa_strcpy( char *dest, const char *src ); extern char * _mesa_strncpy( char *dest, const char *src, size_t n ); extern size_t _mesa_strlen( const char *s ); extern int _mesa_strcmp( const char *s1, const char *s2 ); extern int _mesa_strncmp( const char *s1, const char *s2, size_t n ); extern char * _mesa_strdup( const char *s ); extern int _mesa_atoi( const char *s ); extern double _mesa_strtod( const char *s, char **end ); extern int _mesa_sprintf( char *str, const char *fmt, ... ); extern void _mesa_printf( const char *fmtString, ... ); extern void _mesa_warning( __GLcontext *gc, const char *fmtString, ... ); extern void _mesa_problem( const __GLcontext *ctx, const char *fmtString, ... ); extern void _mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... ); extern void _mesa_debug( const __GLcontext *ctx, const char *fmtString, ... ); extern void _mesa_init_default_imports( __GLimports *imports, void *driverCtx ); #ifdef __cplusplus } #endif #endif /* IMPORTS_H */