/** * \file macros.h * A collection of useful macros. */ /* * Mesa 3-D graphics library * Version: 6.5.2 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef MACROS_H #define MACROS_H #include "imports.h" /** * \name Integer / float conversion for colors, normals, etc. */ /*@{*/ /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */ extern GLfloat _mesa_ubyte_to_float_color_tab[256]; #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)] /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */ #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F)) /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */ #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F)) /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */ #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 ) /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */ #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F)) /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */ #define FLOAT_TO_BYTE_TEX(X) ( (GLint) (127.0F * (X)) ) /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */ #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F)) /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */ #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F)) /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */ #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F)) /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */ #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 ) /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */ #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F)) /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */ #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) ) /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */ #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0))) /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */ #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0)) /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */ #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0))) /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */ /* causes overflow: #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 ) */ /* a close approximation: */ #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) ) /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */ #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) ) /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */ #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0)) /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */ #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) ) #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b))) #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7))) #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8)) #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23))) #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24)) #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255))) #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b)) #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767)))) #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15))) #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16))) #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \ us = ( (GLushort) IROUND( CLAMP((f), 0.0F, 1.0F) * 65535.0F) ) #define CLAMPED_FLOAT_TO_USHORT(us, f) \ us = ( (GLushort) IROUND( (f) * 65535.0F) ) #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \ s = ( (GLshort) IROUND( CLAMP((f), -1.0F, 1.0F) * 32767.0F) ) /*** *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255] *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255] ***/ #if defined(USE_IEEE) && !defined(DEBUG) #define IEEE_0996 0x3f7f0000 /* 0.996 or so */ /* This function/macro is sensitive to precision. Test very carefully * if you change it! */ #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \ do { \ fi_type __tmp; \ __tmp.f = (F); \ if (__tmp.i < 0) \ UB = (GLubyte) 0; \ else if (__tmp.i >= IEEE_0996) \ UB = (GLubyte) 255; \ else { \ __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \ UB = (GLubyte) __tmp.i; \ } \ } while (0) #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \ do { \ fi_type __tmp; \ __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \ UB = (GLubyte) __tmp.i; \ } while (0) #else #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F)) #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ ub = ((GLubyte) IROUND((f) * 255.0F)) #endif /*@}*/ /** Stepping a GLfloat pointer by a byte stride */ #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i)) /** Stepping a GLuint pointer by a byte stride */ #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i)) /** Stepping a GLubyte[4] pointer by a byte stride */ #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i)) /** Stepping a GLfloat[4] pointer by a byte stride */ #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i)) /** Stepping a GLchan[4] pointer by a byte stride */ #define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i)) /** Stepping a GLchan pointer by a byte stride */ #define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i)) /** Stepping a \p t pointer by a byte stride */ #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i)) /**********************************************************************/ /** \name 4-element vector operations */ /*@{*/ /** Zero */ #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0 /** Test for equality */ #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \ (a)[1] == (b)[1] && \ (a)[2] == (b)[2] && \ (a)[3] == (b)[3]) /** Test for equality (unsigned bytes) */ #if defined(__i386__) #define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC)) #else #define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC) #endif /** Copy a 4-element vector */ #define COPY_4V( DST, SRC ) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ (DST)[2] = (SRC)[2]; \ (DST)[3] = (SRC)[3]; \ } while (0) /** Copy a 4-element vector with cast */ #define COPY_4V_CAST( DST, SRC, CAST ) \ do { \ (DST)[0] = (CAST)(SRC)[0]; \ (DST)[1] = (CAST)(SRC)[1]; \ (DST)[2] = (CAST)(SRC)[2]; \ (DST)[3] = (CAST)(SRC)[3]; \ } while (0) /** Copy a 4-element unsigned byte vector */ #if defined(__i386__) #define COPY_4UBV(DST, SRC) \ do { \ *((GLuint*)(DST)) = *((GLuint*)(SRC)); \ } while (0) #else /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */ #define COPY_4UBV(DST, SRC) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ (DST)[2] = (SRC)[2]; \ (DST)[3] = (SRC)[3]; \ } while (0) #endif /** * Copy a 4-element float vector * memcpy seems to be most efficient */ #define COPY_4FV( DST, SRC ) \ do { \ memcpy(DST, SRC, sizeof(GLfloat) * 4); \ } while (0) /** Copy \p SZ elements into a 4-element vector */ #define COPY_SZ_4V(DST, SZ, SRC) \ do { \ switch (SZ) { \ case 4: (DST)[3] = (SRC)[3]; \ case 3: (DST)[2] = (SRC)[2]; \ case 2: (DST)[1] = (SRC)[1]; \ case 1: (DST)[0] = (SRC)[0]; \ } \ } while(0) /** Copy \p SZ elements into a homegeneous (4-element) vector, giving * default values to the remaining */ #define COPY_CLEAN_4V(DST, SZ, SRC) \ do { \ ASSIGN_4V( DST, 0, 0, 0, 1 ); \ COPY_SZ_4V( DST, SZ, SRC ); \ } while (0) /** Subtraction */ #define SUB_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ (DST)[3] = (SRCA)[3] - (SRCB)[3]; \ } while (0) /** Addition */ #define ADD_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ (DST)[3] = (SRCA)[3] + (SRCB)[3]; \ } while (0) /** Element-wise multiplication */ #define SCALE_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ (DST)[3] = (SRCA)[3] * (SRCB)[3]; \ } while (0) /** In-place addition */ #define ACC_4V( DST, SRC ) \ do { \ (DST)[0] += (SRC)[0]; \ (DST)[1] += (SRC)[1]; \ (DST)[2] += (SRC)[2]; \ (DST)[3] += (SRC)[3]; \ } while (0) /** Element-wise multiplication and addition */ #define ACC_SCALE_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ (DST)[3] += (SRCA)[3] * (SRCB)[3]; \ } while (0) /** In-place scalar multiplication and addition */ #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \ do { \ (DST)[0] += S * (SRCB)[0]; \ (DST)[1] += S * (SRCB)[1]; \ (DST)[2] += S * (SRCB)[2]; \ (DST)[3] += S * (SRCB)[3]; \ } while (0) /** Scalar multiplication */ #define SCALE_SCALAR_4V( DST, S, SRCB ) \ do { \ (DST)[0] = S * (SRCB)[0]; \ (DST)[1] = S * (SRCB)[1]; \ (DST)[2] = S * (SRCB)[2]; \ (DST)[3] = S * (SRCB)[3]; \ } while (0) /** In-place scalar multiplication */ #define SELF_SCALE_SCALAR_4V( DST, S ) \ do { \ (DST)[0] *= S; \ (DST)[1] *= S; \ (DST)[2] *= S; \ (DST)[3] *= S; \ } while (0) /** Assignment */ #define ASSIGN_4V( V, V0, V1, V2, V3 ) \ do { \ V[0] = V0; \ V[1] = V1; \ V[2] = V2; \ V[3] = V3; \ } while(0) /*@}*/ /**********************************************************************/ /** \name 3-element vector operations*/ /*@{*/ /** Zero */ #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0 /** Test for equality */ #define TEST_EQ_3V(a,b) \ ((a)[0] == (b)[0] && \ (a)[1] == (b)[1] && \ (a)[2] == (b)[2]) /** Copy a 3-element vector */ #define COPY_3V( DST, SRC ) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ (DST)[2] = (SRC)[2]; \ } while (0) /** Copy a 3-element vector with cast */ #define COPY_3V_CAST( DST, SRC, CAST ) \ do { \ (DST)[0] = (CAST)(SRC)[0]; \ (DST)[1] = (CAST)(SRC)[1]; \ (DST)[2] = (CAST)(SRC)[2]; \ } while (0) /** Copy a 3-element float vector */ #define COPY_3FV( DST, SRC ) \ do { \ const GLfloat *_tmp = (SRC); \ (DST)[0] = _tmp[0]; \ (DST)[1] = _tmp[1]; \ (DST)[2] = _tmp[2]; \ } while (0) /** Subtraction */ #define SUB_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ } while (0) /** Addition */ #define ADD_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ } while (0) /** In-place scalar multiplication */ #define SCALE_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ } while (0) /** In-place element-wise multiplication */ #define SELF_SCALE_3V( DST, SRC ) \ do { \ (DST)[0] *= (SRC)[0]; \ (DST)[1] *= (SRC)[1]; \ (DST)[2] *= (SRC)[2]; \ } while (0) /** In-place addition */ #define ACC_3V( DST, SRC ) \ do { \ (DST)[0] += (SRC)[0]; \ (DST)[1] += (SRC)[1]; \ (DST)[2] += (SRC)[2]; \ } while (0) /** Element-wise multiplication and addition */ #define ACC_SCALE_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ } while (0) /** Scalar multiplication */ #define SCALE_SCALAR_3V( DST, S, SRCB ) \ do { \ (DST)[0] = S * (SRCB)[0]; \ (DST)[1] = S * (SRCB)[1]; \ (DST)[2] = S * (SRCB)[2]; \ } while (0) /** In-place scalar multiplication and addition */ #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \ do { \ (DST)[0] += S * (SRCB)[0]; \ (DST)[1] += S * (SRCB)[1]; \ (DST)[2] += S * (SRCB)[2]; \ } while (0) /** In-place scalar multiplication */ #define SELF_SCALE_SCALAR_3V( DST, S ) \ do { \ (DST)[0] *= S; \ (DST)[1] *= S; \ (DST)[2] *= S; \ } while (0) /** In-place scalar addition */ #define ACC_SCALAR_3V( DST, S ) \ do { \ (DST)[0] += S; \ (DST)[1] += S; \ (DST)[2] += S; \ } while (0) /** Assignment */ #define ASSIGN_3V( V, V0, V1, V2 ) \ do { \ V[0] = V0; \ V[1] = V1; \ V[2] = V2; \ } while(0) /*@}*/ /**********************************************************************/ /** \name 2-element vector operations*/ /*@{*/ /** Zero */ #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0 /** Copy a 2-element vector */ #define COPY_2V( DST, SRC ) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ } while (0) /** Copy a 2-element vector with cast */ #define COPY_2V_CAST( DST, SRC, CAST ) \ do { \ (DST)[0] = (CAST)(SRC)[0]; \ (DST)[1] = (CAST)(SRC)[1]; \ } while (0) /** Copy a 2-element float vector */ #define COPY_2FV( DST, SRC ) \ do { \ const GLfloat *_tmp = (SRC); \ (DST)[0] = _tmp[0]; \ (DST)[1] = _tmp[1]; \ } while (0) /** Subtraction */ #define SUB_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ } while (0) /** Addition */ #define ADD_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ } while (0) /** In-place scalar multiplication */ #define SCALE_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ } while (0) /** In-place addition */ #define ACC_2V( DST, SRC ) \ do { \ (DST)[0] += (SRC)[0]; \ (DST)[1] += (SRC)[1]; \ } while (0) /** Element-wise multiplication and addition */ #define ACC_SCALE_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ } while (0) /** Scalar multiplication */ #define SCALE_SCALAR_2V( DST, S, SRCB ) \ do { \ (DST)[0] = S * (SRCB)[0]; \ (DST)[1] = S * (SRCB)[1]; \ } while (0) /** In-place scalar multiplication and addition */ #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \ do { \ (DST)[0] += S * (SRCB)[0]; \ (DST)[1] += S * (SRCB)[1]; \ } while (0) /** In-place scalar multiplication */ #define SELF_SCALE_SCALAR_2V( DST, S ) \ do { \ (DST)[0] *= S; \ (DST)[1] *= S; \ } while (0) /** In-place scalar addition */ #define ACC_SCALAR_2V( DST, S ) \ do { \ (DST)[0] += S; \ (DST)[1] += S; \ } while (0) /** Assign scalers to short vectors */ #define ASSIGN_2V( V, V0, V1 ) \ do { \ V[0] = V0; \ V[1] = V1; \ } while(0) /*@}*/ /** \name Linear interpolation macros */ /*@{*/ /** * Linear interpolation * * \note \p OUT argument is evaluated twice! * \note Be wary of using *coord++ as an argument to any of these macros! */ #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT))) /* Can do better with integer math */ #define INTERP_UB( t, dstub, outub, inub ) \ do { \ GLfloat inf = UBYTE_TO_FLOAT( inub ); \ GLfloat outf = UBYTE_TO_FLOAT( outub ); \ GLfloat dstf = LINTERP( t, outf, inf ); \ UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \ } while (0) #define INTERP_CHAN( t, dstc, outc, inc ) \ do { \ GLfloat inf = CHAN_TO_FLOAT( inc ); \ GLfloat outf = CHAN_TO_FLOAT( outc ); \ GLfloat dstf = LINTERP( t, outf, inf ); \ UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \ } while (0) #define INTERP_UI( t, dstui, outui, inui ) \ dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) ) #define INTERP_F( t, dstf, outf, inf ) \ dstf = LINTERP( t, outf, inf ) #define INTERP_4F( t, dst, out, in ) \ do { \ dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \ dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \ dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \ dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \ } while (0) #define INTERP_3F( t, dst, out, in ) \ do { \ dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \ dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \ dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \ } while (0) #define INTERP_4CHAN( t, dst, out, in ) \ do { \ INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \ INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \ INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \ INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \ } while (0) #define INTERP_3CHAN( t, dst, out, in ) \ do { \ INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \ INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \ INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \ } while (0) #define INTERP_SZ( t, vec, to, out, in, sz ) \ do { \ switch (sz) { \ case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \ case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \ case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \ case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \ } \ } while(0) /*@}*/ /** Clamp X to [MIN,MAX] */ #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) ) /** Minimum of two values: */ #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) ) /** Maximum of two values: */ #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) ) /** Dot product of two 2-element vectors */ #define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] ) /** Dot product of two 3-element vectors */ #define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] ) /** Dot product of two 4-element vectors */ #define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \ (a)[2]*(b)[2] + (a)[3]*(b)[3] ) /** Dot product of two 4-element vectors */ #define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d)) /** Cross product of two 3-element vectors */ #define CROSS3(n, u, v) \ do { \ (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \ (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \ (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \ } while (0) /* Normalize a 3-element vector to unit length. */ #define NORMALIZE_3FV( V ) \ do { \ GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \ if (len) { \ len = INV_SQRTF(len); \ (V)[0] = (GLfloat) ((V)[0] * len); \ (V)[1] = (GLfloat) ((V)[1] * len); \ (V)[2] = (GLfloat) ((V)[2] * len); \ } \ } while(0) #define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])) #define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1])) #define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]) #define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]) /** casts to silence warnings with some compilers */ #define ENUM_TO_INT(E) ((GLint)(E)) #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E)) #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E)) #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE) #endif