/************************************************************************** * * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * **************************************************************************/ /** * Code to implement GL_OES_query_matrix. See the spec at: * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt */ #include #include #include "GLES/gl.h" #include "GLES/glext.h" /** * This is from the GL_OES_query_matrix extension specification: * * GLbitfield glQueryMatrixxOES( GLfixed mantissa[16], * GLint exponent[16] ) * mantissa[16] contains the contents of the current matrix in GLfixed * format. exponent[16] contains the unbiased exponents applied to the * matrix components, so that the internal representation of component i * is close to mantissa[i] * 2^exponent[i]. The function returns a status * word which is zero if all the components are valid. If * status & (1< enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL} fpclassify(double x) { switch(_fpclass(x)) { case _FPCLASS_SNAN: /* signaling NaN */ case _FPCLASS_QNAN: /* quiet NaN */ return FP_NAN; case _FPCLASS_NINF: /* negative infinity */ case _FPCLASS_PINF: /* positive infinity */ return FP_INFINITE; case _FPCLASS_NN: /* negative normal */ case _FPCLASS_PN: /* positive normal */ return FP_NORMAL; case _FPCLASS_ND: /* negative denormalized */ case _FPCLASS_PD: /* positive denormalized */ return FP_SUBNORMAL; case _FPCLASS_NZ: /* negative zero */ case _FPCLASS_PZ: /* positive zero */ return FP_ZERO; default: /* Should never get here; but if we do, this will guarantee * that the pattern is not treated like a number. */ return FP_NAN; } } #elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \ (defined(__sun) && defined(__C99FEATURES__)) /* fpclassify is available. */ #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL} fpclassify(double x) { /* XXX do something better someday */ return FP_NORMAL; } #endif extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]); /* The Mesa functions we'll need */ extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params); extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params); GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]) { GLfloat matrix[16]; GLint tmp; GLenum currentMode = GL_FALSE; GLenum desiredMatrix = GL_FALSE; /* The bitfield returns 1 for each component that is invalid (i.e. * NaN or Inf). In case of error, everything is invalid. */ GLbitfield rv; register unsigned int i; unsigned int bit; /* This data structure defines the mapping between the current matrix * mode and the desired matrix identifier. */ static struct { GLenum currentMode; GLenum desiredMatrix; } modes[] = { {GL_MODELVIEW, GL_MODELVIEW_MATRIX}, {GL_PROJECTION, GL_PROJECTION_MATRIX}, {GL_TEXTURE, GL_TEXTURE_MATRIX}, #if 0 /* this doesn't exist in GLES */ {GL_COLOR, GL_COLOR_MATRIX}, #endif }; /* Call Mesa to get the current matrix in floating-point form. First, * we have to figure out what the current matrix mode is. */ _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp); currentMode = (GLenum) tmp; /* The mode is either GL_FALSE, if for some reason we failed to query * the mode, or a given mode from the above table. Search for the * returned mode to get the desired matrix; if we don't find it, * we can return immediately, as _mesa_GetInteger() will have * logged the necessary error already. */ for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) { if (modes[i].currentMode == currentMode) { desiredMatrix = modes[i].desiredMatrix; break; } } if (desiredMatrix == GL_FALSE) { /* Early error means all values are invalid. */ return 0xffff; } /* Now pull the matrix itself. */ _mesa_GetFloatv(desiredMatrix, matrix); rv = 0; for (i = 0, bit = 1; i < 16; i++, bit<<=1) { float normalizedFraction; int exp; switch (fpclassify(matrix[i])) { /* A "subnormal" or denormalized number is too small to be * represented in normal format; but despite that it's a * valid floating point number. FP_ZERO and FP_NORMAL * are both valid as well. We should be fine treating * these three cases as legitimate floating-point numbers. */ case FP_SUBNORMAL: case FP_NORMAL: case FP_ZERO: normalizedFraction = (GLfloat)frexp(matrix[i], &exp); mantissa[i] = FLOAT_TO_FIXED(normalizedFraction); exponent[i] = (GLint) exp; break; /* If the entry is not-a-number or an infinity, then the * matrix component is invalid. The invalid flag for * the component is already set; might as well set the * other return values to known values. We'll set * distinct values so that a savvy end user could determine * whether the matrix component was a NaN or an infinity, * but this is more useful for debugging than anything else * since the standard doesn't specify any such magic * values to return. */ case FP_NAN: mantissa[i] = INT_TO_FIXED(0); exponent[i] = (GLint) 0; rv |= bit; break; case FP_INFINITE: /* Return +/- 1 based on whether it's a positive or * negative infinity. */ if (matrix[i] > 0) { mantissa[i] = INT_TO_FIXED(1); } else { mantissa[i] = -INT_TO_FIXED(1); } exponent[i] = (GLint) 0; rv |= bit; break; /* We should never get here; but here's a catching case * in case fpclassify() is returnings something unexpected. */ default: mantissa[i] = INT_TO_FIXED(2); exponent[i] = (GLint) 0; rv |= bit; break; } } /* for each component */ /* All done */ return rv; }