/* $Id: rastpos.c,v 1.22 2001/03/12 00:48:38 gareth Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifdef PC_HEADER #include "all.h" #else #include "glheader.h" #include "clip.h" #include "colormac.h" #include "context.h" #include "feedback.h" #include "light.h" #include "macros.h" #include "mmath.h" #include "rastpos.h" #include "state.h" #include "simple_list.h" #include "mtypes.h" #include "math/m_matrix.h" #include "math/m_xform.h" #endif /* * Clip a point against the view volume. * Input: v - vertex-vector describing the point to clip * Return: 0 = outside view volume * 1 = inside view volume */ static GLuint viewclip_point( const GLfloat v[] ) { if ( v[0] > v[3] || v[0] < -v[3] || v[1] > v[3] || v[1] < -v[3] || v[2] > v[3] || v[2] < -v[3] ) { return 0; } else { return 1; } } /* * Clip a point against the user clipping planes. * Input: v - vertex-vector describing the point to clip. * Return: 0 = point was clipped * 1 = point not clipped */ static GLuint userclip_point( GLcontext* ctx, const GLfloat v[] ) { GLuint p; for (p = 0; p < ctx->Const.MaxClipPlanes; p++) { if (ctx->Transform.ClipEnabled[p]) { GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0] + v[1] * ctx->Transform._ClipUserPlane[p][1] + v[2] * ctx->Transform._ClipUserPlane[p][2] + v[3] * ctx->Transform._ClipUserPlane[p][3]; if (dot < 0.0F) { return 0; } } } return 1; } /* This has been split off to allow the normal shade routines to * get a little closer to the vertex buffer, and to use the * GLvector objects directly. */ static void shade_rastpos(GLcontext *ctx, const GLfloat vertex[4], const GLfloat normal[3], GLfloat Rcolor[4], GLuint *index) { GLfloat (*base)[3] = ctx->Light._BaseColor; const GLchan *sumA = ctx->Light._BaseAlpha; struct gl_light *light; GLfloat color[4]; GLfloat diffuse = 0, specular = 0; COPY_3V(color, base[0]); color[3] = CHAN_TO_FLOAT( sumA[0] ); foreach (light, &ctx->Light.EnabledList) { GLfloat n_dot_h; GLfloat attenuation = 1.0; GLfloat VP[3]; GLfloat n_dot_VP; GLfloat *h; GLfloat contrib[3]; GLboolean normalized; if (!(light->_Flags & LIGHT_POSITIONAL)) { COPY_3V(VP, light->_VP_inf_norm); attenuation = light->_VP_inf_spot_attenuation; } else { GLfloat d; SUB_3V(VP, light->_Position, vertex); d = LEN_3FV( VP ); if ( d > 1e-6) { GLfloat invd = 1.0F / d; SELF_SCALE_SCALAR_3V(VP, invd); } attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); if (light->_Flags & LIGHT_SPOT) { GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection); if (PV_dot_dir_CosCutoff) { continue; } else { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0] + (x-k)*light->_SpotExpTable[k][1]); attenuation *= spot; } } } if (attenuation < 1e-3) continue; n_dot_VP = DOT3( normal, VP ); if (n_dot_VP < 0.0F) { ACC_SCALE_SCALAR_3V(color, attenuation, light->_MatAmbient[0]); continue; } COPY_3V(contrib, light->_MatAmbient[0]); ACC_SCALE_SCALAR_3V(contrib, n_dot_VP, light->_MatDiffuse[0]); diffuse += n_dot_VP * light->_dli * attenuation; { if (ctx->Light.Model.LocalViewer) { GLfloat v[3]; COPY_3V(v, vertex); NORMALIZE_3FV(v); SUB_3V(VP, VP, v); h = VP; normalized = 0; } else if (light->_Flags & LIGHT_POSITIONAL) { h = VP; ACC_3V(h, ctx->_EyeZDir); normalized = 0; } else { h = light->_h_inf_norm; normalized = 1; } n_dot_h = DOT3(normal, h); if (n_dot_h > 0.0F) { struct gl_material *mat = &ctx->Light.Material[0]; GLfloat spec_coef; GLfloat shininess = mat->Shininess; if (!normalized) { n_dot_h *= n_dot_h; n_dot_h /= LEN_SQUARED_3FV( h ); shininess *= .5; } GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec_coef ); if (spec_coef > 1.0e-10) { ACC_SCALE_SCALAR_3V( contrib, spec_coef, light->_MatSpecular[0]); specular += spec_coef * light->_sli * attenuation; } } } ACC_SCALE_SCALAR_3V( color, attenuation, contrib ); } if (ctx->Visual.rgbMode) { Rcolor[0] = CLAMP(color[0], 0.0F, 1.0F); Rcolor[1] = CLAMP(color[1], 0.0F, 1.0F); Rcolor[2] = CLAMP(color[2], 0.0F, 1.0F); Rcolor[3] = CLAMP(color[3], 0.0F, 1.0F); } else { struct gl_material *mat = &ctx->Light.Material[0]; GLfloat d_a = mat->DiffuseIndex - mat->AmbientIndex; GLfloat s_a = mat->SpecularIndex - mat->AmbientIndex; GLfloat ind = mat->AmbientIndex + diffuse * (1.0F-specular) * d_a + specular * s_a; if (ind > mat->SpecularIndex) { ind = mat->SpecularIndex; } *index = (GLuint) (GLint) ind; } } /* * Caller: context->API.RasterPos4f */ static void raster_pos4f(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GLfloat v[4], eye[4], clip[4], ndc[3], d; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); FLUSH_CURRENT(ctx, 0); if (ctx->NewState) _mesa_update_state( ctx ); ASSIGN_4V( v, x, y, z, w ); TRANSFORM_POINT( eye, ctx->ModelView.m, v ); /* raster color */ if (ctx->Light.Enabled) { GLfloat *norm, eyenorm[3]; GLfloat *objnorm = ctx->Current.Normal; if (ctx->_NeedEyeCoords) { GLfloat *inv = ctx->ModelView.inv; TRANSFORM_NORMAL( eyenorm, objnorm, inv ); norm = eyenorm; } else { norm = objnorm; } shade_rastpos( ctx, v, norm, ctx->Current.RasterColor, &ctx->Current.RasterIndex ); } else { /* use current color or index */ if (ctx->Visual.rgbMode) { ctx->Current.RasterColor[0] = CHAN_TO_FLOAT(ctx->Current.Color[0]); ctx->Current.RasterColor[1] = CHAN_TO_FLOAT(ctx->Current.Color[1]); ctx->Current.RasterColor[2] = CHAN_TO_FLOAT(ctx->Current.Color[2]); ctx->Current.RasterColor[3] = CHAN_TO_FLOAT(ctx->Current.Color[3]); } else { ctx->Current.RasterIndex = ctx->Current.Index; } } /* compute raster distance */ ctx->Current.RasterDistance = (GLfloat) GL_SQRT( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] ); /* apply projection matrix: clip = Proj * eye */ TRANSFORM_POINT( clip, ctx->ProjectionMatrix.m, eye ); /* clip to view volume */ if (viewclip_point( clip )==0) { ctx->Current.RasterPosValid = GL_FALSE; return; } /* clip to user clipping planes */ if (ctx->Transform._AnyClip && userclip_point(ctx, clip) == 0) { ctx->Current.RasterPosValid = GL_FALSE; return; } /* ndc = clip / W */ ASSERT( clip[3]!=0.0 ); d = 1.0F / clip[3]; ndc[0] = clip[0] * d; ndc[1] = clip[1] * d; ndc[2] = clip[2] * d; ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX] + ctx->Viewport._WindowMap.m[MAT_TX]); ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY] + ctx->Viewport._WindowMap.m[MAT_TY]); ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ] + ctx->Viewport._WindowMap.m[MAT_TZ]) / ctx->DepthMaxF; ctx->Current.RasterPos[3] = clip[3]; ctx->Current.RasterPosValid = GL_TRUE; /* FOG??? */ { GLuint texSet; for (texSet = 0; texSet < ctx->Const.MaxTextureUnits; texSet++) { COPY_4FV( ctx->Current.RasterMultiTexCoord[texSet], ctx->Current.Texcoord[texSet] ); } } if (ctx->RenderMode==GL_SELECT) { _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] ); } } void _mesa_RasterPos2d(GLdouble x, GLdouble y) { _mesa_RasterPos4f(x, y, 0.0F, 1.0F); } void _mesa_RasterPos2f(GLfloat x, GLfloat y) { _mesa_RasterPos4f(x, y, 0.0F, 1.0F); } void _mesa_RasterPos2i(GLint x, GLint y) { _mesa_RasterPos4f(x, y, 0.0F, 1.0F); } void _mesa_RasterPos2s(GLshort x, GLshort y) { _mesa_RasterPos4f(x, y, 0.0F, 1.0F); } void _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z) { _mesa_RasterPos4f(x, y, z, 1.0F); } void _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z) { _mesa_RasterPos4f(x, y, z, 1.0F); } void _mesa_RasterPos3i(GLint x, GLint y, GLint z) { _mesa_RasterPos4f(x, y, z, 1.0F); } void _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z) { _mesa_RasterPos4f(x, y, z, 1.0F); } void _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w) { _mesa_RasterPos4f(x, y, z, w); } void _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); raster_pos4f(ctx, x, y, z, w); } void _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w) { _mesa_RasterPos4f(x, y, z, w); } void _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w) { _mesa_RasterPos4f(x, y, z, w); } void _mesa_RasterPos2dv(const GLdouble *v) { _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } void _mesa_RasterPos2fv(const GLfloat *v) { _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } void _mesa_RasterPos2iv(const GLint *v) { _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } void _mesa_RasterPos2sv(const GLshort *v) { _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } void _mesa_RasterPos3dv(const GLdouble *v) { _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F); } void _mesa_RasterPos3fv(const GLfloat *v) { _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F); } void _mesa_RasterPos3iv(const GLint *v) { _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F); } void _mesa_RasterPos3sv(const GLshort *v) { _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F); } void _mesa_RasterPos4dv(const GLdouble *v) { _mesa_RasterPos4f(v[0], v[1], v[2], v[3]); } void _mesa_RasterPos4fv(const GLfloat *v) { _mesa_RasterPos4f(v[0], v[1], v[2], v[3]); } void _mesa_RasterPos4iv(const GLint *v) { _mesa_RasterPos4f(v[0], v[1], v[2], v[3]); } void _mesa_RasterPos4sv(const GLshort *v) { _mesa_RasterPos4f(v[0], v[1], v[2], v[3]); }