/* $Id: texobj.c,v 1.67 2003/04/01 16:41:55 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 5.1 * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "colortab.h" #include "context.h" #include "enums.h" #include "hash.h" #include "imports.h" #include "macros.h" #include "teximage.h" #include "texstate.h" #include "texobj.h" #include "mtypes.h" /** * Allocate and initialize a new texture object * Called via ctx->Driver.NewTextureObject, unless overridden by a device * driver. * \param ctx the rendering context * \param name the integer name for the texture object * \param target either GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, * GL_TEXTURE_CUBE_MAP_ARB or GL_TEXTURE_RECTANGLE_NV * zero is ok for the sake of GenTextures() * \return pointer to new texture object */ struct gl_texture_object * _mesa_new_texture_object( GLcontext *ctx, GLuint name, GLenum target ) { struct gl_texture_object *obj; obj = CALLOC_STRUCT(gl_texture_object); _mesa_initialize_texture_object(obj, name, target); return obj; } /** * Initialize a texture object to default values. * \param obj the texture object * \param name the texture name * \param target the texture target */ void _mesa_initialize_texture_object( struct gl_texture_object *obj, GLuint name, GLenum target ) { ASSERT(target == 0 || target == GL_TEXTURE_1D || target == GL_TEXTURE_2D || target == GL_TEXTURE_3D || target == GL_TEXTURE_CUBE_MAP_ARB || target == GL_TEXTURE_RECTANGLE_NV); /* init the non-zero fields */ _glthread_INIT_MUTEX(obj->Mutex); obj->RefCount = 1; obj->Name = name; obj->Target = target; obj->Priority = 1.0F; if (target == GL_TEXTURE_RECTANGLE_NV) { obj->WrapS = GL_CLAMP_TO_EDGE; obj->WrapT = GL_CLAMP_TO_EDGE; obj->WrapR = GL_CLAMP_TO_EDGE; obj->MinFilter = GL_LINEAR; } else { obj->WrapS = GL_REPEAT; obj->WrapT = GL_REPEAT; obj->WrapR = GL_REPEAT; obj->MinFilter = GL_NEAREST_MIPMAP_LINEAR; } obj->MagFilter = GL_LINEAR; obj->MinLod = -1000.0; obj->MaxLod = 1000.0; obj->BaseLevel = 0; obj->MaxLevel = 1000; obj->MaxAnisotropy = 1.0; obj->CompareFlag = GL_FALSE; /* SGIX_shadow */ obj->CompareOperator = GL_TEXTURE_LEQUAL_R_SGIX; /* SGIX_shadow */ obj->CompareMode = GL_LUMINANCE; /* ARB_shadow */ obj->CompareFunc = GL_LEQUAL; /* ARB_shadow */ obj->DepthMode = GL_LUMINANCE; /* ARB_depth_texture */ obj->ShadowAmbient = 0.0F; /* ARB/SGIX_shadow_ambient */ _mesa_init_colortable(&obj->Palette); } /* * Deallocate a texture object. It should have already been removed from * the texture object pool. * \param texObj the texture object to deallocate */ void _mesa_delete_texture_object( GLcontext *ctx, struct gl_texture_object *texObj ) { GLuint i; (void) ctx; assert(texObj); _mesa_free_colortable_data(&texObj->Palette); /* free the texture images */ for (i = 0; i < MAX_TEXTURE_LEVELS; i++) { if (texObj->Image[i]) { _mesa_delete_texture_image( texObj->Image[i] ); } } /* destroy the mutex -- it may have allocated memory (eg on bsd) */ _glthread_DESTROY_MUTEX(texObj->Mutex); /* free this object */ _mesa_free(texObj); } /** * Add the given texture object to the texture object pool. */ void _mesa_save_texture_object( GLcontext *ctx, struct gl_texture_object *texObj ) { /* insert into linked list */ _glthread_LOCK_MUTEX(ctx->Shared->Mutex); texObj->Next = ctx->Shared->TexObjectList; ctx->Shared->TexObjectList = texObj; _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); if (texObj->Name > 0) { /* insert into hash table */ _mesa_HashInsert(ctx->Shared->TexObjects, texObj->Name, texObj); } } /** * Remove the given texture object from the texture object pool. * Do not deallocate the texture object though. */ void _mesa_remove_texture_object( GLcontext *ctx, struct gl_texture_object *texObj ) { struct gl_texture_object *tprev, *tcurr; _glthread_LOCK_MUTEX(ctx->Shared->Mutex); /* unlink from the linked list */ tprev = NULL; tcurr = ctx->Shared->TexObjectList; while (tcurr) { if (tcurr == texObj) { if (tprev) { tprev->Next = texObj->Next; } else { ctx->Shared->TexObjectList = texObj->Next; } break; } tprev = tcurr; tcurr = tcurr->Next; } _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); if (texObj->Name > 0) { /* remove from hash table */ _mesa_HashRemove(ctx->Shared->TexObjects, texObj->Name); } } /* * Copy texture object state from one texture object to another. */ void _mesa_copy_texture_object( struct gl_texture_object *dest, const struct gl_texture_object *src ) { dest->Name = src->Name; dest->Priority = src->Priority; dest->BorderColor[0] = src->BorderColor[0]; dest->BorderColor[1] = src->BorderColor[1]; dest->BorderColor[2] = src->BorderColor[2]; dest->BorderColor[3] = src->BorderColor[3]; dest->WrapS = src->WrapS; dest->WrapT = src->WrapT; dest->WrapR = src->WrapR; dest->MinFilter = src->MinFilter; dest->MagFilter = src->MagFilter; dest->MinLod = src->MinLod; dest->MaxLod = src->MaxLod; dest->BaseLevel = src->BaseLevel; dest->MaxLevel = src->MaxLevel; dest->MaxAnisotropy = src->MaxAnisotropy; dest->CompareFlag = src->CompareFlag; dest->CompareOperator = src->CompareOperator; dest->ShadowAmbient = src->ShadowAmbient; dest->CompareMode = src->CompareMode; dest->CompareFunc = src->CompareFunc; dest->DepthMode = src->DepthMode; dest->_MaxLevel = src->_MaxLevel; dest->_MaxLambda = src->_MaxLambda; dest->GenerateMipmap = src->GenerateMipmap; dest->Palette = src->Palette; dest->Complete = src->Complete; } /* * Report why a texture object is incomplete. (for debug only) */ #if 0 static void incomplete(const struct gl_texture_object *t, const char *why) { _mesa_printf("Texture Obj %d incomplete because: %s\n", t->Name, why); } #else #define incomplete(a, b) #endif /* * Examine a texture object to determine if it is complete. * The t->Complete flag will be set to GL_TRUE or GL_FALSE accordingly. */ void _mesa_test_texobj_completeness( const GLcontext *ctx, struct gl_texture_object *t ) { const GLint baseLevel = t->BaseLevel; GLint maxLog2 = 0, maxLevels = 0; t->Complete = GL_TRUE; /* be optimistic */ /* Always need the base level image */ if (!t->Image[baseLevel]) { incomplete(t, "Image[baseLevel] == NULL"); t->Complete = GL_FALSE; return; } /* Compute _MaxLevel */ if (t->Target == GL_TEXTURE_1D) { maxLog2 = t->Image[baseLevel]->WidthLog2; maxLevels = ctx->Const.MaxTextureLevels; } else if (t->Target == GL_TEXTURE_2D) { maxLog2 = MAX2(t->Image[baseLevel]->WidthLog2, t->Image[baseLevel]->HeightLog2); maxLevels = ctx->Const.MaxTextureLevels; } else if (t->Target == GL_TEXTURE_3D) { GLint max = MAX2(t->Image[baseLevel]->WidthLog2, t->Image[baseLevel]->HeightLog2); maxLog2 = MAX2(max, (GLint)(t->Image[baseLevel]->DepthLog2)); maxLevels = ctx->Const.Max3DTextureLevels; } else if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) { maxLog2 = MAX2(t->Image[baseLevel]->WidthLog2, t->Image[baseLevel]->HeightLog2); maxLevels = ctx->Const.MaxCubeTextureLevels; } else if (t->Target == GL_TEXTURE_RECTANGLE_NV) { maxLog2 = 0; /* not applicable */ maxLevels = 1; /* no mipmapping */ } else { _mesa_problem(ctx, "Bad t->Target in _mesa_test_texobj_completeness"); return; } ASSERT(maxLevels > 0); t->_MaxLevel = baseLevel + maxLog2; t->_MaxLevel = MIN2(t->_MaxLevel, t->MaxLevel); t->_MaxLevel = MIN2(t->_MaxLevel, maxLevels - 1); /* Compute _MaxLambda = q - b (see the 1.2 spec) used during mipmapping */ t->_MaxLambda = (GLfloat) (t->_MaxLevel - t->BaseLevel); if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) { /* make sure that all six cube map level 0 images are the same size */ const GLuint w = t->Image[baseLevel]->Width2; const GLuint h = t->Image[baseLevel]->Height2; if (!t->NegX[baseLevel] || t->NegX[baseLevel]->Width2 != w || t->NegX[baseLevel]->Height2 != h || !t->PosY[baseLevel] || t->PosY[baseLevel]->Width2 != w || t->PosY[baseLevel]->Height2 != h || !t->NegY[baseLevel] || t->NegY[baseLevel]->Width2 != w || t->NegY[baseLevel]->Height2 != h || !t->PosZ[baseLevel] || t->PosZ[baseLevel]->Width2 != w || t->PosZ[baseLevel]->Height2 != h || !t->NegZ[baseLevel] || t->NegZ[baseLevel]->Width2 != w || t->NegZ[baseLevel]->Height2 != h) { t->Complete = GL_FALSE; incomplete(t, "Non-quare cubemap image"); return; } } if (t->MinFilter != GL_NEAREST && t->MinFilter != GL_LINEAR) { /* * Mipmapping: determine if we have a complete set of mipmaps */ GLint i; GLint minLevel = baseLevel; GLint maxLevel = t->_MaxLevel; if (minLevel > maxLevel) { t->Complete = GL_FALSE; incomplete(t, "minLevel > maxLevel"); return; } /* Test dimension-independent attributes */ for (i = minLevel; i <= maxLevel; i++) { if (t->Image[i]) { if (t->Image[i]->TexFormat != t->Image[baseLevel]->TexFormat) { t->Complete = GL_FALSE; incomplete(t, "Format[i] != Format[baseLevel]"); return; } if (t->Image[i]->Border != t->Image[baseLevel]->Border) { t->Complete = GL_FALSE; incomplete(t, "Border[i] != Border[baseLevel]"); return; } } } /* Test things which depend on number of texture image dimensions */ if (t->Target == GL_TEXTURE_1D) { /* Test 1-D mipmaps */ GLuint width = t->Image[baseLevel]->Width2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (i >= minLevel && i <= maxLevel) { if (!t->Image[i]) { t->Complete = GL_FALSE; incomplete(t, "1D Image[i] == NULL"); return; } if (t->Image[i]->Width2 != width ) { t->Complete = GL_FALSE; incomplete(t, "1D Image[i] bad width"); return; } } if (width == 1) { return; /* found smallest needed mipmap, all done! */ } } } else if (t->Target == GL_TEXTURE_2D) { /* Test 2-D mipmaps */ GLuint width = t->Image[baseLevel]->Width2; GLuint height = t->Image[baseLevel]->Height2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (height > 1) { height /= 2; } if (i >= minLevel && i <= maxLevel) { if (!t->Image[i]) { t->Complete = GL_FALSE; incomplete(t, "2D Image[i] == NULL"); return; } if (t->Image[i]->Width2 != width) { t->Complete = GL_FALSE; incomplete(t, "2D Image[i] bad width"); return; } if (t->Image[i]->Height2 != height) { t->Complete = GL_FALSE; incomplete(t, "2D Image[i] bad height"); return; } if (width==1 && height==1) { return; /* found smallest needed mipmap, all done! */ } } } } else if (t->Target == GL_TEXTURE_3D) { /* Test 3-D mipmaps */ GLuint width = t->Image[baseLevel]->Width2; GLuint height = t->Image[baseLevel]->Height2; GLuint depth = t->Image[baseLevel]->Depth2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (height > 1) { height /= 2; } if (depth > 1) { depth /= 2; } if (i >= minLevel && i <= maxLevel) { if (!t->Image[i]) { incomplete(t, "3D Image[i] == NULL"); t->Complete = GL_FALSE; return; } if (t->Image[i]->Format == GL_DEPTH_COMPONENT) { t->Complete = GL_FALSE; incomplete(t, "GL_DEPTH_COMPONENT only works with 1/2D tex"); return; } if (t->Image[i]->Width2 != width) { t->Complete = GL_FALSE; incomplete(t, "3D Image[i] bad width"); return; } if (t->Image[i]->Height2 != height) { t->Complete = GL_FALSE; incomplete(t, "3D Image[i] bad height"); return; } if (t->Image[i]->Depth2 != depth) { t->Complete = GL_FALSE; incomplete(t, "3D Image[i] bad depth"); return; } } if (width == 1 && height == 1 && depth == 1) { return; /* found smallest needed mipmap, all done! */ } } } else if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) { /* make sure 6 cube faces are consistant */ GLuint width = t->Image[baseLevel]->Width2; GLuint height = t->Image[baseLevel]->Height2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (height > 1) { height /= 2; } if (i >= minLevel && i <= maxLevel) { /* check that we have images defined */ if (!t->Image[i] || !t->NegX[i] || !t->PosY[i] || !t->NegY[i] || !t->PosZ[i] || !t->NegZ[i]) { t->Complete = GL_FALSE; incomplete(t, "CubeMap Image[i] == NULL"); return; } /* Don't support GL_DEPTH_COMPONENT for cube maps */ if (t->Image[i]->Format == GL_DEPTH_COMPONENT) { t->Complete = GL_FALSE; incomplete(t, "GL_DEPTH_COMPONENT only works with 1/2D tex"); return; } /* check that all six images have same size */ if (t->NegX[i]->Width2!=width || t->NegX[i]->Height2!=height || t->PosY[i]->Width2!=width || t->PosY[i]->Height2!=height || t->NegY[i]->Width2!=width || t->NegY[i]->Height2!=height || t->PosZ[i]->Width2!=width || t->PosZ[i]->Height2!=height || t->NegZ[i]->Width2!=width || t->NegZ[i]->Height2!=height) { t->Complete = GL_FALSE; incomplete(t, "CubeMap Image[i] bad size"); return; } } if (width == 1 && height == 1) { return; /* found smallest needed mipmap, all done! */ } } } else if (t->Target == GL_TEXTURE_RECTANGLE_NV) { /* XXX special checking? */ } else { /* Target = ??? */ _mesa_problem(ctx, "Bug in gl_test_texture_object_completeness\n"); } } } _glthread_DECLARE_STATIC_MUTEX(GenTexturesLock); /* * Execute glGenTextures */ void _mesa_GenTextures( GLsizei n, GLuint *texName ) { GET_CURRENT_CONTEXT(ctx); GLuint first; GLint i; ASSERT_OUTSIDE_BEGIN_END(ctx); if (n < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glGenTextures" ); return; } if (!texName) return; /* * This must be atomic (generation and allocation of texture IDs) */ _glthread_LOCK_MUTEX(GenTexturesLock); first = _mesa_HashFindFreeKeyBlock(ctx->Shared->TexObjects, n); /* Return the texture names */ for (i=0;iDriver.NewTextureObject)( ctx, name, target); if (!texObj) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glGenTextures"); return; } _mesa_save_texture_object(ctx, texObj); } _glthread_UNLOCK_MUTEX(GenTexturesLock); } /* * Execute glDeleteTextures */ void _mesa_DeleteTextures( GLsizei n, const GLuint *texName) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* too complex */ if (!texName) return; for (i=0;i 0) { struct gl_texture_object *delObj = (struct gl_texture_object *) _mesa_HashLookup(ctx->Shared->TexObjects, texName[i]); if (delObj) { /* First check if this texture is currently bound. * If so, unbind it and decrement the reference count. */ GLuint u; for (u = 0; u < MAX_TEXTURE_IMAGE_UNITS; u++) { struct gl_texture_unit *unit = &ctx->Texture.Unit[u]; if (delObj == unit->Current1D) { unit->Current1D = ctx->Shared->Default1D; ctx->Shared->Default1D->RefCount++; delObj->RefCount--; if (delObj == unit->_Current) unit->_Current = unit->Current1D; } else if (delObj == unit->Current2D) { unit->Current2D = ctx->Shared->Default2D; ctx->Shared->Default2D->RefCount++; delObj->RefCount--; if (delObj == unit->_Current) unit->_Current = unit->Current2D; } else if (delObj == unit->Current3D) { unit->Current3D = ctx->Shared->Default3D; ctx->Shared->Default3D->RefCount++; delObj->RefCount--; if (delObj == unit->_Current) unit->_Current = unit->Current3D; } else if (delObj == unit->CurrentCubeMap) { unit->CurrentCubeMap = ctx->Shared->DefaultCubeMap; ctx->Shared->DefaultCubeMap->RefCount++; delObj->RefCount--; if (delObj == unit->_Current) unit->_Current = unit->CurrentCubeMap; } else if (delObj == unit->CurrentRect) { unit->CurrentRect = ctx->Shared->DefaultRect; ctx->Shared->DefaultRect->RefCount++; delObj->RefCount--; if (delObj == unit->_Current) unit->_Current = unit->CurrentRect; } } ctx->NewState |= _NEW_TEXTURE; /* Decrement reference count and delete if zero */ delObj->RefCount--; ASSERT(delObj->RefCount >= 0); if (delObj->RefCount == 0) { ASSERT(delObj->Name != 0); _mesa_remove_texture_object(ctx, delObj); ASSERT(ctx->Driver.DeleteTexture); (*ctx->Driver.DeleteTexture)(ctx, delObj); } } } } } /* * Execute glBindTexture */ void _mesa_BindTexture( GLenum target, GLuint texName ) { GET_CURRENT_CONTEXT(ctx); GLuint unit = ctx->Texture.CurrentUnit; struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; struct gl_texture_object *oldTexObj; struct gl_texture_object *newTexObj = 0; ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE)) _mesa_debug(ctx, "glBindTexture %s %d\n", _mesa_lookup_enum_by_nr(target), (GLint) texName); switch (target) { case GL_TEXTURE_1D: oldTexObj = texUnit->Current1D; break; case GL_TEXTURE_2D: oldTexObj = texUnit->Current2D; break; case GL_TEXTURE_3D: oldTexObj = texUnit->Current3D; break; case GL_TEXTURE_CUBE_MAP_ARB: if (!ctx->Extensions.ARB_texture_cube_map) { _mesa_error( ctx, GL_INVALID_ENUM, "glBindTexture(target)" ); return; } oldTexObj = texUnit->CurrentCubeMap; break; case GL_TEXTURE_RECTANGLE_NV: if (!ctx->Extensions.NV_texture_rectangle) { _mesa_error( ctx, GL_INVALID_ENUM, "glBindTexture(target)" ); return; } oldTexObj = texUnit->CurrentRect; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glBindTexture(target)" ); return; } if (oldTexObj->Name == texName) return; /* rebinding the same texture- no change */ /* * Get pointer to new texture object (newTexObj) */ if (texName == 0) { /* newTexObj = a default texture object */ switch (target) { case GL_TEXTURE_1D: newTexObj = ctx->Shared->Default1D; break; case GL_TEXTURE_2D: newTexObj = ctx->Shared->Default2D; break; case GL_TEXTURE_3D: newTexObj = ctx->Shared->Default3D; break; case GL_TEXTURE_CUBE_MAP_ARB: newTexObj = ctx->Shared->DefaultCubeMap; break; case GL_TEXTURE_RECTANGLE_NV: newTexObj = ctx->Shared->DefaultRect; break; default: ; /* Bad targets are caught above */ } } else { /* non-default texture object */ const struct _mesa_HashTable *hash = ctx->Shared->TexObjects; newTexObj = (struct gl_texture_object *) _mesa_HashLookup(hash, texName); if (newTexObj) { /* error checking */ if (newTexObj->Target != 0 && newTexObj->Target != target) { /* the named texture object's dimensions don't match the target */ _mesa_error( ctx, GL_INVALID_OPERATION, "glBindTexture(wrong dimensionality)" ); return; } if (newTexObj->Target == 0 && target == GL_TEXTURE_RECTANGLE_NV) { /* have to init wrap and filter state here - kind of klunky */ newTexObj->WrapS = GL_CLAMP_TO_EDGE; newTexObj->WrapT = GL_CLAMP_TO_EDGE; newTexObj->WrapR = GL_CLAMP_TO_EDGE; newTexObj->MinFilter = GL_LINEAR; } } else { /* if this is a new texture id, allocate a texture object now */ newTexObj = (*ctx->Driver.NewTextureObject)(ctx, texName, target); if (!newTexObj) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBindTexture"); return; } _mesa_save_texture_object(ctx, newTexObj); } newTexObj->Target = target; } newTexObj->RefCount++; /* do the actual binding, but first flush outstanding vertices: */ FLUSH_VERTICES(ctx, _NEW_TEXTURE); switch (target) { case GL_TEXTURE_1D: texUnit->Current1D = newTexObj; break; case GL_TEXTURE_2D: texUnit->Current2D = newTexObj; break; case GL_TEXTURE_3D: texUnit->Current3D = newTexObj; break; case GL_TEXTURE_CUBE_MAP_ARB: texUnit->CurrentCubeMap = newTexObj; break; case GL_TEXTURE_RECTANGLE_NV: texUnit->CurrentRect = newTexObj; break; default: _mesa_problem(ctx, "bad target in BindTexture"); return; } /* Pass BindTexture call to device driver */ if (ctx->Driver.BindTexture) (*ctx->Driver.BindTexture)( ctx, target, newTexObj ); oldTexObj->RefCount--; assert(oldTexObj->RefCount >= 0); if (oldTexObj->RefCount == 0) { assert(oldTexObj->Name != 0); _mesa_remove_texture_object(ctx, oldTexObj); ASSERT(ctx->Driver.DeleteTexture); (*ctx->Driver.DeleteTexture)( ctx, oldTexObj ); } } /* * Execute glPrioritizeTextures */ void _mesa_PrioritizeTextures( GLsizei n, const GLuint *texName, const GLclampf *priorities ) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (n < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glPrioritizeTextures" ); return; } if (!priorities) return; for (i = 0; i < n; i++) { if (texName[i] > 0) { struct gl_texture_object *t = (struct gl_texture_object *) _mesa_HashLookup(ctx->Shared->TexObjects, texName[i]); if (t) { t->Priority = CLAMP( priorities[i], 0.0F, 1.0F ); if (ctx->Driver.PrioritizeTexture) ctx->Driver.PrioritizeTexture( ctx, t, t->Priority ); } } } ctx->NewState |= _NEW_TEXTURE; } /* * Execute glAreTexturesResident */ GLboolean _mesa_AreTexturesResident(GLsizei n, const GLuint *texName, GLboolean *residences) { GET_CURRENT_CONTEXT(ctx); GLboolean allResident = GL_TRUE; GLint i, j; ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); if (n < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident(n)"); return GL_FALSE; } if (!texName || !residences) return GL_FALSE; for (i = 0; i < n; i++) { struct gl_texture_object *t; if (texName[i] == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident"); return GL_FALSE; } t = (struct gl_texture_object *) _mesa_HashLookup(ctx->Shared->TexObjects, texName[i]); if (!t) { _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident"); return GL_FALSE; } if (!ctx->Driver.IsTextureResident || ctx->Driver.IsTextureResident(ctx, t)) { /* The texture is resident */ if (!allResident) residences[i] = GL_TRUE; } else { /* The texture is not resident */ if (allResident) { allResident = GL_FALSE; for (j = 0; j < i; j++) residences[j] = GL_TRUE; } residences[i] = GL_FALSE; } } return allResident; } /* * Execute glIsTexture */ GLboolean _mesa_IsTexture( GLuint texture ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); return texture > 0 && _mesa_HashLookup(ctx->Shared->TexObjects, texture); }