/* $Id: m_eval.c,v 1.1 2000/12/26 05:09:31 keithw Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * eval.c was written by * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). * * My original implementation of evaluators was simplistic and didn't * compute surface normal vectors properly. Bernd and Volker applied * used more sophisticated methods to get better results. * * Thanks guys! */ #include "glheader.h" #include "config.h" #include "m_eval.h" static GLfloat inv_tab[MAX_EVAL_ORDER]; /* * Horner scheme for Bezier curves * * Bezier curves can be computed via a Horner scheme. * Horner is numerically less stable than the de Casteljau * algorithm, but it is faster. For curves of degree n * the complexity of Horner is O(n) and de Casteljau is O(n^2). * Since stability is not important for displaying curve * points I decided to use the Horner scheme. * * A cubic Bezier curve with control points b0, b1, b2, b3 can be * written as * * (([3] [3] ) [3] ) [3] * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 * * [n] * where s=1-t and the binomial coefficients [i]. These can * be computed iteratively using the identity: * * [n] [n ] [n] * [i] = (n-i+1)/i * [i-1] and [0] = 1 */ void _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, GLuint dim, GLuint order) { GLfloat s, powert; GLuint i, k, bincoeff; if(order >= 2) { bincoeff = order-1; s = 1.0-t; for(k=0; k<dim; k++) out[k] = s*cp[k] + bincoeff*t*cp[dim+k]; for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim) { bincoeff *= order-i; bincoeff *= inv_tab[i]; for(k=0; k<dim; k++) out[k] = s*out[k] + bincoeff*powert*cp[k]; } } else /* order=1 -> constant curve */ { for(k=0; k<dim; k++) out[k] = cp[k]; } } /* * Tensor product Bezier surfaces * * Again the Horner scheme is used to compute a point on a * TP Bezier surface. First a control polygon for a curve * on the surface in one parameter direction is computed, * then the point on the curve for the other parameter * direction is evaluated. * * To store the curve control polygon additional storage * for max(uorder,vorder) points is needed in the * control net cn. */ void _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { GLfloat *cp = cn + uorder*vorder*dim; GLuint i, uinc = vorder*dim; if(vorder > uorder) { if(uorder >= 2) { GLfloat s, poweru; GLuint j, k, bincoeff; /* Compute the control polygon for the surface-curve in u-direction */ for(j=0; j<vorder; j++) { GLfloat *ucp = &cn[j*dim]; /* Each control point is the point for parameter u on a */ /* curve defined by the control polygons in u-direction */ bincoeff = uorder-1; s = 1.0-u; for(k=0; k<dim; k++) cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k]; for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; i++, poweru*=u, ucp +=uinc) { bincoeff *= uorder-i; bincoeff *= inv_tab[i]; for(k=0; k<dim; k++) cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k]; } } /* Evaluate curve point in v */ _math_horner_bezier_curve(cp, out, v, dim, vorder); } else /* uorder=1 -> cn defines a curve in v */ _math_horner_bezier_curve(cn, out, v, dim, vorder); } else /* vorder <= uorder */ { if(vorder > 1) { GLuint i; /* Compute the control polygon for the surface-curve in u-direction */ for(i=0; i<uorder; i++, cn += uinc) { /* For constant i all cn[i][j] (j=0..vorder) are located */ /* on consecutive memory locations, so we can use */ /* horner_bezier_curve to compute the control points */ _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder); } /* Evaluate curve point in u */ _math_horner_bezier_curve(cp, out, u, dim, uorder); } else /* vorder=1 -> cn defines a curve in u */ _math_horner_bezier_curve(cn, out, u, dim, uorder); } } /* * The direct de Casteljau algorithm is used when a point on the * surface and the tangent directions spanning the tangent plane * should be computed (this is needed to compute normals to the * surface). In this case the de Casteljau algorithm approach is * nicer because a point and the partial derivatives can be computed * at the same time. To get the correct tangent length du and dv * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. * Since only the directions are needed, this scaling step is omitted. * * De Casteljau needs additional storage for uorder*vorder * values in the control net cn. */ void _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { GLfloat *dcn = cn + uorder*vorder*dim; GLfloat us = 1.0-u, vs = 1.0-v; GLuint h, i, j, k; GLuint minorder = uorder < vorder ? uorder : vorder; GLuint uinc = vorder*dim; GLuint dcuinc = vorder; /* Each component is evaluated separately to save buffer space */ /* This does not drasticaly decrease the performance of the */ /* algorithm. If additional storage for (uorder-1)*(vorder-1) */ /* points would be available, the components could be accessed */ /* in the innermost loop which could lead to less cache misses. */ #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] #define DCN(I, J) dcn[(I)*dcuinc+(J)] if(minorder < 3) { if(uorder==vorder) { for(k=0; k<dim; k++) { /* Derivative direction in u */ du[k] = vs*(CN(1,0,k) - CN(0,0,k)) + v*(CN(1,1,k) - CN(0,1,k)); /* Derivative direction in v */ dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + u*(CN(1,1,k) - CN(1,0,k)); /* bilinear de Casteljau step */ out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) + u*(vs*CN(1,0,k) + v*CN(1,1,k)); } } else if(minorder == uorder) { for(k=0; k<dim; k++) { /* bilinear de Casteljau step */ DCN(1,0) = CN(1,0,k) - CN(0,0,k); DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k); for(j=0; j<vorder-1; j++) { /* for the derivative in u */ DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k); DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); /* for the `point' */ DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k); DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); } /* remaining linear de Casteljau steps until the second last step */ for(h=minorder; h<vorder-1; h++) for(j=0; j<vorder-h; j++) { /* for the derivative in u */ DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); /* for the `point' */ DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); } /* derivative direction in v */ dv[k] = DCN(0,1) - DCN(0,0); /* derivative direction in u */ du[k] = vs*DCN(1,0) + v*DCN(1,1); /* last linear de Casteljau step */ out[k] = vs*DCN(0,0) + v*DCN(0,1); } } else /* minorder == vorder */ { for(k=0; k<dim; k++) { /* bilinear de Casteljau step */ DCN(0,1) = CN(0,1,k) - CN(0,0,k); DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k); for(i=0; i<uorder-1; i++) { /* for the derivative in v */ DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k); DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); /* for the `point' */ DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k); DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); } /* remaining linear de Casteljau steps until the second last step */ for(h=minorder; h<uorder-1; h++) for(i=0; i<uorder-h; i++) { /* for the derivative in v */ DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); /* for the `point' */ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); } /* derivative direction in u */ du[k] = DCN(1,0) - DCN(0,0); /* derivative direction in v */ dv[k] = us*DCN(0,1) + u*DCN(1,1); /* last linear de Casteljau step */ out[k] = us*DCN(0,0) + u*DCN(1,0); } } } else if(uorder == vorder) { for(k=0; k<dim; k++) { /* first bilinear de Casteljau step */ for(i=0; i<uorder-1; i++) { DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); for(j=0; j<vorder-1; j++) { DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); } } /* remaining bilinear de Casteljau steps until the second last step */ for(h=2; h<minorder-1; h++) for(i=0; i<uorder-h; i++) { DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); for(j=0; j<vorder-h; j++) { DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); } } /* derivative direction in u */ du[k] = vs*(DCN(1,0) - DCN(0,0)) + v*(DCN(1,1) - DCN(0,1)); /* derivative direction in v */ dv[k] = us*(DCN(0,1) - DCN(0,0)) + u*(DCN(1,1) - DCN(1,0)); /* last bilinear de Casteljau step */ out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) + u*(vs*DCN(1,0) + v*DCN(1,1)); } } else if(minorder == uorder) { for(k=0; k<dim; k++) { /* first bilinear de Casteljau step */ for(i=0; i<uorder-1; i++) { DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); for(j=0; j<vorder-1; j++) { DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); } } /* remaining bilinear de Casteljau steps until the second last step */ for(h=2; h<minorder-1; h++) for(i=0; i<uorder-h; i++) { DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); for(j=0; j<vorder-h; j++) { DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); } } /* last bilinear de Casteljau step */ DCN(2,0) = DCN(1,0) - DCN(0,0); DCN(0,0) = us*DCN(0,0) + u*DCN(1,0); for(j=0; j<vorder-1; j++) { /* for the derivative in u */ DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1); DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); /* for the `point' */ DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1); DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); } /* remaining linear de Casteljau steps until the second last step */ for(h=minorder; h<vorder-1; h++) for(j=0; j<vorder-h; j++) { /* for the derivative in u */ DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); /* for the `point' */ DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); } /* derivative direction in v */ dv[k] = DCN(0,1) - DCN(0,0); /* derivative direction in u */ du[k] = vs*DCN(2,0) + v*DCN(2,1); /* last linear de Casteljau step */ out[k] = vs*DCN(0,0) + v*DCN(0,1); } } else /* minorder == vorder */ { for(k=0; k<dim; k++) { /* first bilinear de Casteljau step */ for(i=0; i<uorder-1; i++) { DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); for(j=0; j<vorder-1; j++) { DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); } } /* remaining bilinear de Casteljau steps until the second last step */ for(h=2; h<minorder-1; h++) for(i=0; i<uorder-h; i++) { DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); for(j=0; j<vorder-h; j++) { DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); } } /* last bilinear de Casteljau step */ DCN(0,2) = DCN(0,1) - DCN(0,0); DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1); for(i=0; i<uorder-1; i++) { /* for the derivative in v */ DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0); DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); /* for the `point' */ DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1); DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); } /* remaining linear de Casteljau steps until the second last step */ for(h=minorder; h<uorder-1; h++) for(i=0; i<uorder-h; i++) { /* for the derivative in v */ DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); /* for the `point' */ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); } /* derivative direction in u */ du[k] = DCN(1,0) - DCN(0,0); /* derivative direction in v */ dv[k] = us*DCN(0,2) + u*DCN(1,2); /* last linear de Casteljau step */ out[k] = us*DCN(0,0) + u*DCN(1,0); } } #undef DCN #undef CN } /* * Do one-time initialization for evaluators. */ void _math_init_eval( void ) { GLuint i; /* KW: precompute 1/x for useful x. */ for (i = 1 ; i < MAX_EVAL_ORDER ; i++) inv_tab[i] = 1.0 / i; }