/* $Id: m_xform.c,v 1.2 2000/11/17 21:01:49 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Matrix/vertex/vector transformation stuff * * * NOTES: * 1. 4x4 transformation matrices are stored in memory in column major order. * 2. Points/vertices are to be thought of as column vectors. * 3. Transformation of a point p by a matrix M is: p' = M * p */ #include "glheader.h" #include "macros.h" #include "mmath.h" #include "m_matrix.h" #include "m_translate.h" #include "m_xform.h" #ifdef DEBUG #include "m_debug_xform.h" #endif #ifdef USE_X86_ASM #include "X86/common_x86_asm.h" #endif clip_func gl_clip_tab[5]; dotprod_func gl_dotprod_tab[2][5]; vec_copy_func gl_copy_tab[2][0x10]; normal_func gl_normal_tab[0xf][0x4]; transform_func **(gl_transform_tab[2]); static transform_func *cull_transform_tab[5]; static transform_func *raw_transform_tab[5]; /* Raw data format used for: * - Object-to-eye transform prior to culling, although this too * could be culled under some circumstances. * - Eye-to-clip transform (via the function above). * - Cliptesting * - And everything else too, if culling happens to be disabled. */ #define TAG(x) x##_raw #define TAG2(x,y) x##y##_raw #define IDX 0 #define STRIDE_LOOP for (i=0;istride; const GLfloat *from = (GLfloat *)clip_vec->start; const GLuint count = clip_vec->count; GLfloat (*vProj)[4] = (GLfloat (*)[4])proj_vec->start; GLuint i; for (i = 0 ; i < count ; i++, STRIDE_F(from, stride)) { GLfloat oow = 1.0F / from[3]; vProj[i][3] = oow; vProj[i][0] = from[0] * oow; vProj[i][1] = from[1] * oow; vProj[i][2] = from[2] * oow; } proj_vec->flags |= VEC_SIZE_4; proj_vec->size = 3; proj_vec->count = clip_vec->count; return proj_vec; } /* * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This * function is used for transforming clipping plane equations and spotlight * directions. * Mathematically, u = v * m. * Input: v - input vector * m - transformation matrix * Output: u - transformed vector */ void gl_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) { GLfloat v0=v[0], v1=v[1], v2=v[2], v3=v[3]; #define M(row,col) m[row + col*4] u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); #undef M } /* Useful for one-off point transformations, as in clipping. * Note that because the matrix isn't analyzed we do too many * multiplies, and that the result is always 4-clean. */ void gl_transform_point_sz( GLfloat Q[4], const GLfloat M[16], const GLfloat P[4], GLuint sz ) { if (Q == P) return; if (sz == 4) { Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] * P[2] + M[12] * P[3]; Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] * P[2] + M[13] * P[3]; Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14] * P[3]; Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15] * P[3]; } else if (sz == 3) { Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] * P[2] + M[12]; Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] * P[2] + M[13]; Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14]; Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15]; } else if (sz == 2) { Q[0] = M[0] * P[0] + M[4] * P[1] + M[12]; Q[1] = M[1] * P[0] + M[5] * P[1] + M[13]; Q[2] = M[2] * P[0] + M[6] * P[1] + M[14]; Q[3] = M[3] * P[0] + M[7] * P[1] + M[15]; } else if (sz == 1) { Q[0] = M[0] * P[0] + M[12]; Q[1] = M[1] * P[0] + M[13]; Q[2] = M[2] * P[0] + M[14]; Q[3] = M[3] * P[0] + M[15]; } } /* * This is called only once. It initializes several tables with pointers * to optimized transformation functions. This is where we can test for * AMD 3Dnow! capability, Intel Katmai, etc. and hook in the right code. */ void _math_init_transformation( void ) { gl_transform_tab[0] = raw_transform_tab; gl_transform_tab[1] = cull_transform_tab; init_c_transformations_raw(); init_c_transformations_masked(); init_c_norm_transform_raw(); init_c_norm_transform_masked(); init_c_cliptest_raw(); init_copy0_raw(); init_copy0_masked(); init_dotprod_raw(); init_dotprod_masked(); #ifdef DEBUG gl_test_all_transform_functions( "default" ); gl_test_all_normal_transform_functions( "default" ); #endif #ifdef USE_X86_ASM gl_init_all_x86_transform_asm(); #endif } void _math_init( void ) { _math_init_transformation(); _math_init_translate(); _math_init_vertices(); }