/* * Mesa 3-D graphics library * Version: 6.5 * * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Vertices are just an array of floats, with all the attributes * packed. We currently assume a layout like: * * attr[0][0..3] - window position * attr[1..n][0..3] - remaining attributes. * * Attributes are assumed to be 4 floats wide but are packed so that * all the enabled attributes run contiguously. */ #include "glheader.h" #include "g_context.h" #include "g_headers.h" #include "g_tile.h" struct exec_machine { const struct setup_coefficient *coef; GLfloat attr[FRAG_ATTRIB_MAX][4][QUAD_SIZE]; }; /** * Compute quad's attributes values, as constants (GL_FLAT shading). */ static INLINE void cinterp( struct exec_machine *exec, GLuint attrib, GLuint i ) { GLuint j; for (j = 0; j < QUAD_SIZE; j++) { exec->attr[attrib][i][j] = exec->coef[attrib].a0[i]; } } /** * Compute quad's attribute values by linear interpolation. * * Push into the fp: * * INPUT[attr] = MAD COEF_A0[attr], COEF_DADX[attr], INPUT_WPOS.xxxx * INPUT[attr] = MAD INPUT[attr], COEF_DADY[attr], INPUT_WPOS.yyyy */ static INLINE void linterp( struct exec_machine *exec, GLuint attrib, GLuint i ) { GLuint j; for (j = 0; j < QUAD_SIZE; j++) { const GLfloat x = exec->attr[FRAG_ATTRIB_WPOS][0][j]; const GLfloat y = exec->attr[FRAG_ATTRIB_WPOS][1][j]; exec->attr[attrib][i][j] = (exec->coef[attrib].a0[i] + exec->coef[attrib].dadx[i] * x + exec->coef[attrib].dady[i] * y); } } /** * Compute quad's attribute values by linear interpolation with * perspective correction. * * Push into the fp: * * INPUT[attr] = MAD COEF_A0[attr], COEF_DADX[attr], INPUT_WPOS.xxxx * INPUT[attr] = MAD INPUT[attr], COEF_DADY[attr], INPUT_WPOS.yyyy * INPUT[attr] = MUL INPUT[attr], INPUT_WPOS.wwww * * (Or should that be 1/w ???) */ static INLINE void pinterp( struct exec_machine *exec, GLuint attrib, GLuint i ) { GLuint j; for (j = 0; j < QUAD_SIZE; j++) { const GLfloat x = exec->attr[FRAG_ATTRIB_WPOS][0][j]; const GLfloat y = exec->attr[FRAG_ATTRIB_WPOS][1][j]; const GLfloat invW = exec->attr[FRAG_ATTRIB_WPOS][3][j]; exec->attr[attrib][i][j] = ((exec->coef[attrib].a0[i] + exec->coef[attrib].dadx[i] * x + exec->coef[attrib].dady[i] * y) * invW); } } /* This should be done by the fragment shader execution unit (code * generated from the decl instructions). Do it here for now. */ void quad_shade( struct generic_context *generic, struct quad_header *quad ) { struct exec_machine exec; GLfloat fx = quad->x0; GLfloat fy = quad->y0; GLuint i, j; exec.coef = quad->coef; /* Position: */ exec.attr[FRAG_ATTRIB_WPOS][0][0] = fx; exec.attr[FRAG_ATTRIB_WPOS][0][1] = fx + 1.0; exec.attr[FRAG_ATTRIB_WPOS][0][2] = fx; exec.attr[FRAG_ATTRIB_WPOS][0][3] = fx + 1.0; exec.attr[FRAG_ATTRIB_WPOS][1][0] = fy; exec.attr[FRAG_ATTRIB_WPOS][1][1] = fy; exec.attr[FRAG_ATTRIB_WPOS][1][2] = fy + 1.0; exec.attr[FRAG_ATTRIB_WPOS][1][3] = fy + 1.0; /* Z and W are done by linear interpolation: * XXX we'll probably have to use integers for Z */ if (generic->need_z) { linterp(&exec, 0, 2); } if (generic->need_w) { linterp(&exec, 0, 3); // invert(&exec, 0, 3); } /* Interpolate all the remaining attributes. This will get pushed * into the fragment program's responsibilities at some point. */ for (i = 1; i < quad->nr_attrs; i++) { #if 1 for (j = 0; j < NUM_CHANNELS; j++) linterp(&exec, i, j); #else switch (quad->interp[i]) { case INTERP_CONSTANT: for (j = 0; j < NUM_CHANNELS; j++) cinterp(&exec, i, j); break; case INTERP_LINEAR: for (j = 0; j < NUM_CHANNELS; j++) linterp(&exec, i, j); break; case INTERP_PERSPECTIVE: for (j = 0; j < NUM_CHANNELS; j++) pinterp(&exec, i, j); break; } #endif } #if 0 generic->run_fs( tri->fp, quad, &tri->outputs ); #else { GLuint attr = generic->fp_attr_to_slot[FRAG_ATTRIB_COL0]; assert(attr); memcpy(quad->outputs.color, exec.attr[attr], sizeof(quad->outputs.color)); } #endif if (quad->mask) quad_output( generic, quad ); }