// //Copyright (C) 2002-2005 3Dlabs Inc. Ltd. //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // // // Implement the top-level of interface to the compiler/linker, // as defined in ShaderLang.h // #include "SymbolTable.h" #include "ParseHelper.h" #include "../Include/ShHandle.h" #include "Initialisation.h" #define SH_EXPORTING #include "../Public/ShaderLangExt.h" #include "Include/ResourceLimits.h" #include "Initialize.h" extern "C" int InitPreprocessor(void); extern "C" int FinalizePreprocessor(void); extern void SetGlobalPoolAllocatorPtr(TPoolAllocator* poolAllocator); bool generateBuiltInSymbolTable(const TBuiltInResource* resources, TInfoSink&, TSymbolTable*, EShLanguage language = EShLangCount); bool initializeSymbolTable(TBuiltInStrings* BuiltInStrings, EShLanguage language, TInfoSink& infoSink, const TBuiltInResource *resources, TSymbolTable*); // // A symbol table for each language. Each has a different // set of built-ins, and we want to preserve that from // compile to compile. // TSymbolTable SymbolTables[EShLangCount]; TPoolAllocator* PerProcessGPA = 0; // // This is the platform independent interface between an OGL driver // and the shading language compiler/linker. // // // Driver must call this first, once, before doing any other // compiler/linker operations. // int ShInitialize() { TInfoSink infoSink; bool ret = true; if (!InitProcess()) return 0; // This method should be called once per process. If its called by multiple threads, then // we need to have thread synchronization code around the initialization of per process // global pool allocator if (!PerProcessGPA) { TPoolAllocator *builtInPoolAllocator = new TPoolAllocator(true); builtInPoolAllocator->push(); TPoolAllocator* gPoolAllocator = &GlobalPoolAllocator; SetGlobalPoolAllocatorPtr(builtInPoolAllocator); TSymbolTable symTables[EShLangCount]; generateBuiltInSymbolTable(0, infoSink, symTables); PerProcessGPA = new TPoolAllocator(true); PerProcessGPA->push(); SetGlobalPoolAllocatorPtr(PerProcessGPA); SymbolTables[EShLangVertex].copyTable(symTables[EShLangVertex]); SymbolTables[EShLangFragment].copyTable(symTables[EShLangFragment]); SetGlobalPoolAllocatorPtr(gPoolAllocator); symTables[EShLangVertex].pop(); symTables[EShLangFragment].pop(); builtInPoolAllocator->popAll(); delete builtInPoolAllocator; } return ret ? 1 : 0; } // // Driver calls these to create and destroy compiler/linker // objects. // ShHandle ShConstructCompiler(const EShLanguage language, int debugOptions) { if (!InitThread()) return 0; TShHandleBase* base = static_cast(ConstructCompiler(language, debugOptions)); return reinterpret_cast(base); } ShHandle ShConstructLinker(const EShExecutable executable, int debugOptions) { if (!InitThread()) return 0; TShHandleBase* base = static_cast(ConstructLinker(executable, debugOptions)); return reinterpret_cast(base); } ShHandle ShConstructUniformMap() { if (!InitThread()) return 0; TShHandleBase* base = static_cast(ConstructUniformMap()); return reinterpret_cast(base); } void ShDestruct(ShHandle handle) { if (handle == 0) return; TShHandleBase* base = static_cast(handle); if (base->getAsCompiler()) DeleteCompiler(base->getAsCompiler()); else if (base->getAsLinker()) DeleteLinker(base->getAsLinker()); else if (base->getAsUniformMap()) DeleteUniformMap(base->getAsUniformMap()); } // // Cleanup symbol tables // int __fastcall ShFinalize() { if (PerProcessGPA) { PerProcessGPA->popAll(); delete PerProcessGPA; } return 1; } // // This function should be called only once by the Master Dll. Currently, this is being called for each thread // which is incorrect. This is required to keep the Sh interface working for now and will eventually be called // from master dll once. // bool generateBuiltInSymbolTable(const TBuiltInResource* resources, TInfoSink& infoSink, TSymbolTable* symbolTables, EShLanguage language) { TBuiltIns builtIns; if (resources) { builtIns.initialize(*resources); initializeSymbolTable(builtIns.getBuiltInStrings(), language, infoSink, resources, symbolTables); } else { builtIns.initialize(); initializeSymbolTable(builtIns.getBuiltInStrings(), EShLangVertex, infoSink, resources, symbolTables); initializeSymbolTable(builtIns.getBuiltInStrings(), EShLangFragment, infoSink, resources, symbolTables); } return true; } bool initializeSymbolTable(TBuiltInStrings* BuiltInStrings, EShLanguage language, TInfoSink& infoSink, const TBuiltInResource* resources, TSymbolTable* symbolTables) { TIntermediate intermediate(infoSink); TSymbolTable* symbolTable; if (resources) symbolTable = symbolTables; else symbolTable = &symbolTables[language]; TParseContext parseContext(*symbolTable, intermediate, language, infoSink); GlobalParseContext = &parseContext; setInitialState(); assert (symbolTable->isEmpty() || symbolTable->atSharedBuiltInLevel()); // // Parse the built-ins. This should only happen once per // language symbol table. // // Push the symbol table to give it an initial scope. This // push should not have a corresponding pop, so that built-ins // are preserved, and the test for an empty table fails. // symbolTable->push(); //Initialize the Preprocessor int ret = InitPreprocessor(); if (ret) { infoSink.info.message(EPrefixInternalError, "Unable to intialize the Preprocessor"); return false; } for (TBuiltInStrings::iterator i = BuiltInStrings[parseContext.language].begin(); i != BuiltInStrings[parseContext.language].end(); ++i) { const char* builtInShaders[1]; int builtInLengths[1]; builtInShaders[0] = (*i).c_str(); builtInLengths[0] = (int) (*i).size(); if (PaParseStrings(const_cast(builtInShaders), builtInLengths, 1, parseContext) != 0) { infoSink.info.message(EPrefixInternalError, "Unable to parse built-ins"); return false; } } if (resources) { IdentifyBuiltIns(parseContext.language, *symbolTable, *resources); } else { IdentifyBuiltIns(parseContext.language, *symbolTable); } FinalizePreprocessor(); return true; } // // Do an actual compile on the given strings. The result is left // in the given compile object. // // Return: The return value of ShCompile is really boolean, indicating // success or failure. // int ShCompile( const ShHandle handle, const char* const shaderStrings[], const int numStrings, const EShOptimizationLevel optLevel, const TBuiltInResource* resources, int debugOptions ) { if (!InitThread()) return 0; if (handle == 0) return 0; TShHandleBase* base = reinterpret_cast(handle); TCompiler* compiler = base->getAsCompiler(); if (compiler == 0) return 0; GlobalPoolAllocator.push(); compiler->infoSink.info.erase(); compiler->infoSink.debug.erase(); if (numStrings == 0) return 1; TIntermediate intermediate(compiler->infoSink); TSymbolTable symbolTable(SymbolTables[compiler->getLanguage()]); generateBuiltInSymbolTable(resources, compiler->infoSink, &symbolTable, compiler->getLanguage()); TParseContext parseContext(symbolTable, intermediate, compiler->getLanguage(), compiler->infoSink); parseContext.initializeExtensionBehavior(); GlobalParseContext = &parseContext; setInitialState(); InitPreprocessor(); // // Parse the application's shaders. All the following symbol table // work will be throw-away, so push a new allocation scope that can // be thrown away, then push a scope for the current shader's globals. // bool success = true; symbolTable.push(); if (!symbolTable.atGlobalLevel()) parseContext.infoSink.info.message(EPrefixInternalError, "Wrong symbol table level"); if (parseContext.insertBuiltInArrayAtGlobalLevel()) success = false; int ret = PaParseStrings(const_cast(shaderStrings), 0, numStrings, parseContext); if (ret) success = false; if (success && parseContext.treeRoot) { if (optLevel == EShOptNoGeneration) parseContext.infoSink.info.message(EPrefixNone, "No errors. No code generation or linking was requested."); else { success = intermediate.postProcess(parseContext.treeRoot, parseContext.language); if (success) { if (debugOptions & EDebugOpIntermediate) intermediate.outputTree(parseContext.treeRoot); // // Call the machine dependent compiler // if (! compiler->compile(parseContext.treeRoot)) success = false; } } } else if (!success) { parseContext.infoSink.info.prefix(EPrefixError); parseContext.infoSink.info << parseContext.numErrors << " compilation errors. No code generated.\n\n"; success = false; if (debugOptions & EDebugOpIntermediate) intermediate.outputTree(parseContext.treeRoot); } intermediate.remove(parseContext.treeRoot); // // Ensure symbol table is returned to the built-in level, // throwing away all but the built-ins. // while (! symbolTable.atSharedBuiltInLevel()) symbolTable.pop(); FinalizePreprocessor(); // // Throw away all the temporary memory used by the compilation process. // GlobalPoolAllocator.pop(); return success ? 1 : 0; } // // Do an actual link on the given compile objects. // // Return: The return value of is really boolean, indicating // success or failure. // int ShLink( const ShHandle linkHandle, const ShHandle compHandles[], const int numHandles, ShHandle uniformMapHandle, short int** uniformsAccessed, int* numUniformsAccessed) { if (!InitThread()) return 0; TShHandleBase* base = reinterpret_cast(linkHandle); TLinker* linker = static_cast(base->getAsLinker()); if (linker == 0) return 0; int returnValue; GlobalPoolAllocator.push(); returnValue = ShLinkExt(linkHandle, compHandles, numHandles); GlobalPoolAllocator.pop(); if (returnValue) return 1; return 0; } // // This link method will be eventually used once the ICD supports the new linker interface // int ShLinkExt( const ShHandle linkHandle, const ShHandle compHandles[], const int numHandles) { if (linkHandle == 0 || numHandles == 0) return 0; THandleList cObjects; {// support MSVC++6.0 for (int i = 0; i < numHandles; ++i) { if (compHandles[i] == 0) return 0; TShHandleBase* base = reinterpret_cast(compHandles[i]); if (base->getAsLinker()) { cObjects.push_back(base->getAsLinker()); } if (base->getAsCompiler()) cObjects.push_back(base->getAsCompiler()); if (cObjects[i] == 0) return 0; } } TShHandleBase* base = reinterpret_cast(linkHandle); TLinker* linker = static_cast(base->getAsLinker()); if (linker == 0) return 0; linker->infoSink.info.erase(); {// support MSVC++6.0 for (int i = 0; i < numHandles; ++i) { if (cObjects[i]->getAsCompiler()) { if (! cObjects[i]->getAsCompiler()->linkable()) { linker->infoSink.info.message(EPrefixError, "Not all shaders have valid object code."); return 0; } } } } bool ret = linker->link(cObjects); return ret ? 1 : 0; } // // ShSetEncrpytionMethod is a place-holder for specifying // how source code is encrypted. // void ShSetEncryptionMethod(ShHandle handle) { if (handle == 0) return; } // // Return any compiler/linker/uniformmap log of messages for the application. // const char* ShGetInfoLog(const ShHandle handle) { if (!InitThread()) return 0; if (handle == 0) return 0; TShHandleBase* base = static_cast(handle); TInfoSink* infoSink; if (base->getAsCompiler()) infoSink = &(base->getAsCompiler()->getInfoSink()); else if (base->getAsLinker()) infoSink = &(base->getAsLinker()->getInfoSink()); infoSink->info << infoSink->debug.c_str(); return infoSink->info.c_str(); } // // Return the resulting binary code from the link process. Structure // is machine dependent. // const void* ShGetExecutable(const ShHandle handle) { if (!InitThread()) return 0; if (handle == 0) return 0; TShHandleBase* base = reinterpret_cast(handle); TLinker* linker = static_cast(base->getAsLinker()); if (linker == 0) return 0; return linker->getObjectCode(); } // // Let the linker know where the application said it's attributes are bound. // The linker does not use these values, they are remapped by the ICD or // hardware. It just needs them to know what's aliased. // // Return: The return value of is really boolean, indicating // success or failure. // // This is to preserve the old linker API, P20 code can use the generic // ShConstructBinding() and ShAddBinding() APIs // int ShSetVirtualAttributeBindings(const ShHandle handle, const ShBindingTable* table) { if (!InitThread()) return 0; if (handle == 0) return 0; TShHandleBase* base = reinterpret_cast(handle); TLinker* linker = static_cast(base->getAsLinker()); if (linker == 0) return 0; linker->setAppAttributeBindings(table); return 1; } // // Let the linker know where the predefined attributes have to live. // This is to preserve the old linker API, P20 code can use the generic // ShConstructBinding() and ShAddBinding() APIs // int ShSetFixedAttributeBindings(const ShHandle handle, const ShBindingTable* table) { if (!InitThread()) return 0; if (handle == 0) return 0; TShHandleBase* base = reinterpret_cast(handle); TLinker* linker = static_cast(base->getAsLinker()); if (linker == 0) return 0; linker->setFixedAttributeBindings(table); return 1; } // // Some attribute locations are off-limits to the linker... // int ShExcludeAttributes(const ShHandle handle, int *attributes, int count) { if (!InitThread()) return 0; if (handle == 0) return 0; TShHandleBase* base = reinterpret_cast(handle); TLinker* linker = static_cast(base->getAsLinker()); if (linker == 0) return 0; linker->setExcludedAttributes(attributes, count); return 1; } // // Return the index for OpenGL to use for knowing where a uniform lives. // // Return: The return value of is really boolean, indicating // success or failure. // // We dont have to change this code for now since the TUniformMap being // passed back to ICD by the linker is the same as being used for the old P10 linker // int ShGetUniformLocation(const ShHandle handle, const char* name) { if (!InitThread()) return 0; if (handle == 0) return -1; TShHandleBase* base = reinterpret_cast(handle); TUniformMap* uniformMap= base->getAsUniformMap(); if (uniformMap == 0) return -1; return uniformMap->getLocation(name); }