// // This file defines nearly all constructors and operators for built-in data types, using // extended language syntax. In general, compiler treats constructors and operators as // ordinary functions with some exceptions. For example, the language does not allow // functions to be called in constant expressions - here the exception is made to allow it. // // Each implementation provides its own version of this file. Each implementation can define // the required set of operators and constructors in its own fashion. // // The extended language syntax is only present when compiling this file. It is implicitly // included at the very beginning of the compiled shader, so no built-in functions can be // used. // // To communicate with the implementation, a special extended "__asm" keyword is used, followed // by an instruction name (any valid identifier), a destination variable identifier and a // a list of zero or more source variable identifiers. A variable identifier is a variable name // declared earlier in the code (as a function parameter, local or global variable). // An instruction name designates an instruction that must be exported by the implementation. // Each instruction receives data from destination and source variable identifiers and returns // data in the destination variable identifier. // // It is up to the implementation how to define a particular operator or constructor. If it is // expected to being used rarely, it can be defined in terms of other operators and constructors, // for example: // // ivec2 operator + (const ivec2 x, const ivec2 y) { // return ivec2 (x[0] + y[0], x[1] + y[1]); // } // // If a particular operator or constructor is expected to be used very often or is an atomic // operation (that is, an operation that cannot be expressed in terms of other operations or // would create a dependency cycle) it must be defined using one or more __asm constructs. // // Each implementation must define constructors for all scalar types (bool, float, int). // There are 9 scalar-to-scalar constructors (including identity constructors). However, // since the language introduces special constructors (like matrix constructor with a single // scalar value), implementations must also implement these cases. // The compiler provides the following algorithm when resolving a constructor: // - try to find a constructor with a prototype matching ours, // - if no constructor is found and this is a scalar-to-scalar constructor, raise an error, // - if a constructor is found, execute it and return, // - count the size of the constructor parameter list - if it is less than the size of // our constructor's type, raise an error, // - for each parameter in the list do a recursive constructor matching for appropriate // scalar fields in the constructed variable, // // Each implementation must also define a set of operators that deal with built-in data types. // There are four kinds of operators: // 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence) // and "?:" (selection). // 2) Operators that are implemented by the compiler by expressing it in terms of other operators: // - "." (field selection) - translated to subscript access, // - "&&" (logical and) - translated to " ? : false", // - "||" (logical or) - translated to " ? true : ", // 3) Operators that can be defined by the implementation and if the required prototype is not // found, standard behaviour is used: // - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one; // note that at least operators for scalar data types must be defined by the implementation // to get it work, // 4) All other operators not mentioned above. If no required prototype is found, an error is // raised. An implementation must follow the language specification to provide all valid // operator prototypes. // // // TODO: // - do something with [] operator: leave it in compiler or move it here, // - emulate bools and ints with floats (this should simplify target implementation), // - are vec*mat and mat*vec definitions correct? is the list complete? // // // From Shader Spec, ver. 1.051 // // // 5.4.1 Conversion and Scalar Constructors // // // When constructors are used to convert a float to an int, the fractional part of the // floating-point value is dropped. // int constructor (const float _f) { int _i; __asm float_to_int _i, _f; return _i; } // // When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to // false, and nonzero values are converted to true. // bool constructor (const int _i) { return _i != 0; } bool constructor (const float _f) { return _f != 0.0; } // // When a constructor is used to convert a bool to an int or float, false is converted to 0 or // 0.0, and true is converted to 1 or 1.0. // int constructor (const bool _b) { return _b ? 1 : 0; } float constructor (const bool _b) { return _b ? 1.0 : 0.0; } // // Int to float constructor. // float constructor (const int _i) { float _f; __asm int_to_float _f, _i; return _f; } // // Identity constructors, like float(float) are also legal, but of little use. // bool constructor (const bool _b) { return _b; } int constructor (const int _i) { return _i; } float constructor (const float _f) { return _f; } // // Scalar constructors with non-scalar parameters can be used to take the first element from // a non-scalar. For example, the constructor float(vec3) will select the first component of the // vec3 parameter. // // [These scalar conversions will be handled internally by the compiler.] // // 5.4.2 Vector and Matrix Constructors // // Constructors can be used to create vectors or matrices from a set of scalars, vectors, // or matrices. This includes the ability to shorten vectors or matrices. // // // If there is a single scalar parameter to a vector constructor, it is used to initialize all // components of the constructed vector to that scalar’s value. // // If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic // type of the object being constructed, the scalar construction rules (above) are used to convert // the parameters. // vec2 constructor (const float _f) { return vec2 (_f, _f); } vec2 constructor (const int _i) { return vec2 (_i, _i); } vec2 constructor (const bool _b) { return vec2 (_b, _b); } vec3 constructor (const float _f) { return vec3 (_f, _f, _f); } vec3 constructor (const int _i) { return vec3 (_i, _i, _i); } vec3 constructor (const bool _b) { return vec3 (_b, _b, _b); } vec4 constructor (const float _f) { return vec4 (_f, _f, _f, _f); } vec4 constructor (const int _i) { return vec4 (_i, _i, _i, _i); } vec4 constructor (const bool _b) { return vec4 (_b, _b, _b, _b); } ivec2 constructor (const int _i) { return ivec2 (_i, _i); } ivec2 constructor (const float _f) { return ivec2 (_f, _f); } ivec2 constructor (const bool _b) { return ivec2 (_b, _b); } ivec3 constructor (const int _i) { return ivec3 (_i, _i, _i); } ivec3 constructor (const float _f) { return ivec3 (_f, _f, _f); } ivec3 constructor (const bool _b) { return ivec3 (_b, _b, _b); } ivec4 constructor (const int _i) { return ivec4 (_i, _i, _i, _i); } ivec4 constructor (const float _f) { return ivec4 (_f, _f, _f, _f); } ivec4 constructor (const bool _b) { return ivec4 (_b, _b, _b, _b); } bvec2 constructor (const bool _b) { return bvec2 (_b, _b); } bvec2 constructor (const float _f) { return bvec2 (_f, _f); } bvec2 constructor (const int _i) { return bvec2 (_i, _i); } bvec3 constructor (const bool _b) { return bvec3 (_b, _b, _b); } bvec3 constructor (const float _f) { return bvec3 (_f, _f, _f); } bvec3 constructor (const int _i) { return bvec3 (_i, _i, _i); } bvec4 constructor (const bool _b) { return bvec4 (_b, _b, _b, _b); } bvec4 constructor (const float _f) { return bvec4 (_f, _f, _f, _f); } bvec4 constructor (const int _i) { return bvec4 (_i, _i, _i, _i); } // // If there is a single scalar parameter to a matrix constructor, it is used to initialize all the // components on the matrix’s diagonal, with the remaining components initialized to 0.0. // (...) Matrices will be constructed in column major order. // // If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic // type of the object being constructed, the scalar construction rules (above) are used to convert // the parameters. // mat2 constructor (const float _f) { return mat2 ( _f, .0, .0, _f ); } mat2 constructor (const int _i) { return mat2 ( _i, .0, .0, _i ); } mat2 constructor (const bool _b) { return mat2 ( _b, .0, .0, _b ); } mat3 constructor (const float _f) { return mat3 ( _f, .0, .0, .0, _f, .0, .0, .0, _f ); } mat3 constructor (const int _i) { return mat3 ( _i, .0, .0, .0, _i, .0, .0, .0, _i ); } mat3 constructor (const bool _b) { return mat3 ( _b, .0, .0, .0, _b, .0, .0, .0, _b ); } mat4 constructor (const float _f) { return mat4 ( _f, .0, .0, .0, .0, _f, .0, .0, .0, .0, _f, .0, .0, .0, .0, _f ); } mat4 constructor (const int _i) { return mat4 ( _i, .0, .0, .0, .0, _i, .0, .0, .0, .0, _i, .0, .0, .0, .0, _i ); } mat4 constructor (const bool _b) { return mat4 ( _b, .0, .0, .0, .0, _b, .0, .0, .0, .0, _b, .0, .0, .0, .0, _b ); } // // 5.8 Assignments // // Assignments of values to variable names are done with the assignment operator ( = ), like // // lvalue = expression // // The assignment operator stores the value of expression into lvalue. It will compile only if // expression and lvalue have the same type. All desired type-conversions must be specified // explicitly via a constructor. Lvalues must be writable. Variables that are built-in types, // entire structures, structure fields, l-values with the field selector ( . ) applied to select // components or swizzles without repeated fields, and l-values dereferenced with the array // subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions, // non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot // be l-values. // // Expressions on the left of an assignment are evaluated before expressions on the right of the // assignment. // void operator = (inout float a, const float b) { __asm float_copy a, b; } void operator = (inout int a, const int b) { __asm int_copy a, b; } void operator = (inout bool a, const bool b) { __asm bool_copy a, b; } void operator = (inout vec2 v, const vec2 u) { v.x = u.x, v.y = u.y; } void operator = (inout vec3 v, const vec3 u) { v.x = u.x, v.y = u.y, v.z = u.z; } void operator = (inout vec4 v, const vec4 u) { v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; } void operator = (inout ivec2 v, const ivec2 u) { v.x = u.x, v.y = u.y; } void operator = (inout ivec3 v, const ivec3 u) { v.x = u.x, v.y = u.y, v.z = u.z; } void operator = (inout ivec4 v, const ivec4 u) { v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; } void operator = (inout bvec2 v, const bvec2 u) { v.x = u.x, v.y = u.y; } void operator = (inout bvec3 v, const bvec3 u) { v.x = u.x, v.y = u.y, v.z = u.z; } void operator = (inout bvec4 v, const bvec4 u) { v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; } void operator = (inout mat2 m, const mat2 n) { m[0] = n[0], m[1] = n[1]; } void operator = (inout mat3 m, const mat3 n) { m[0] = n[0], m[1] = n[1], m[2] = n[2]; } void operator = (inout mat4 m, const mat4 n) { m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3]; } // // • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide // into (/=). The variable and expression must be the same floating-point or integer type, ... // void operator += (inout float a, const float b) { __asm float_add a, b; } void operator -= (inout float a, const float b) { a += -b; } void operator *= (inout float a, const float b) { __asm float_multiply a, b; } void operator /= (inout float a, const float b) { __asm float_divide a, b; } void operator += (inout int x, const int y) { __asm int_add x, y; } void operator -= (inout int x, const int y) { x += -y; } void operator *= (inout int x, const int y) { __asm int_multiply x, y; } void operator /= (inout int x, const int y) { __asm int_divide x, y; } void operator += (inout vec2 v, const vec2 u) { v.x += u.x, v.y += u.y; } void operator -= (inout vec2 v, const vec2 u) { v.x -= u.x, v.y -= u.y; } void operator *= (inout vec2 v, const vec2 u) { v.x *= u.x, v.y *= u.y; } void operator /= (inout vec2 v, const vec2 u) { v.x /= u.x, v.y /= u.y; } void operator += (inout vec3 v, const vec3 u) { v.x += u.x, v.y += u.y, v.z += u.z; } void operator -= (inout vec3 v, const vec3 u) { v.x -= u.x, v.y -= u.y, v.z -= u.z; } void operator *= (inout vec3 v, const vec3 u) { v.x *= u.x, v.y *= u.y, v.z *= u.z; } void operator /= (inout vec3 v, const vec3 u) { v.x /= u.x, v.y /= u.y, v.z /= u.z; } void operator += (inout vec4 v, const vec4 u) { v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; } void operator -= (inout vec4 v, const vec4 u) { v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; } void operator *= (inout vec4 v, const vec4 u) { v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; } void operator /= (inout vec4 v, const vec4 u) { v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; } void operator += (inout ivec2 v, const ivec2 u) { v.x += u.x, v.y += u.y; } void operator -= (inout ivec2 v, const ivec2 u) { v.x -= u.x, v.y -= u.y; } void operator *= (inout ivec2 v, const ivec2 u) { v.x *= u.x, v.y *= u.y; } void operator /= (inout ivec2 v, const ivec2 u) { v.x /= u.x, v.y /= u.y; } void operator += (inout ivec3 v, const ivec3 u) { v.x += u.x, v.y += u.y, v.z += u.z; } void operator -= (inout ivec3 v, const ivec3 u) { v.x -= u.x, v.y -= u.y, v.z -= u.z; } void operator *= (inout ivec3 v, const ivec3 u) { v.x *= u.x, v.y *= u.y, v.z *= u.z; } void operator /= (inout ivec3 v, const ivec3 u) { v.x /= u.x, v.y /= u.y, v.z /= u.z; } void operator += (inout ivec4 v, const ivec4 u) { v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; } void operator -= (inout ivec4 v, const ivec4 u) { v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; } void operator *= (inout ivec4 v, const ivec4 u) { v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; } void operator /= (inout ivec4 v, const ivec4 u) { v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; } void operator += (inout mat2 m, const mat2 n) { m[0] += n[0], m[1] += n[1]; } void operator -= (inout mat2 v, const mat2 n) { m[0] -= n[0], m[1] -= n[1]; } void operator *= (inout mat2 m, const mat2 n) { m = m * n; } void operator /= (inout mat2 m, const mat2 n) { m[0] /= n[0], m[1] /= n[1]; } void operator += (inout mat3 m, const mat3 n) { m[0] += n[0], m[1] += n[1], m[2] += n[2]; } void operator -= (inout mat3 m, const mat3 n) { m[0] -= n[0], m[1] -= n[1], m[2] -= n[2]; } void operator *= (inout mat3 m, const mat3 n) { m = m * n; } void operator /= (inout mat3 m, const mat3 n) { m[0] /= n[0], m[1] /= n[1], m[2] /= n[2]; } void operator += (inout mat4 m, const mat4 n) { m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3]; } void operator -= (inout mat4 m, const mat4 n) { m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3]; } void operator *= (inout mat4 m, const mat4 n) { m = m * n; } void operator /= (inout mat4 m, const mat4 n) { m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3]; } // // ... or if the expression is a float, then the variable can be floating-point, a vector, or // a matrix, ... // void operator += (inout vec2 v, const float a) { v.x += a, v.y += a; } void operator -= (inout vec2 v, const float a) { v.x -= a, v.y -= a; } void operator *= (inout vec2 v, const float a) { v.x *= a, v.y *= a; } void operator /= (inout vec2 v, const float a) { v.x /= a, v.y /= a; } void operator += (inout vec3 v, const float a) { v.x += a, v.y += a, v.z += a; } void operator -= (inout vec3 v, const float a) { v.x -= a, v.y -= a, v.z -= a; } void operator *= (inout vec3 v, const float a) { v.x *= a, v.y *= a, v.z *= a; } void operator /= (inout vec3 v, const float a) { v.x /= a, v.y /= a, v.z /= a; } void operator += (inout vec4 v, const float a) { v.x += a, v.y += a, v.z += a, v.w += a; } void operator -= (inout vec4 v, const float a) { v.x -= a, v.y -= a, v.z -= a, v.w -= a; } void operator *= (inout vec4 v, const float a) { v.x *= a, v.y *= a, v.z *= a, v.w *= a; } void operator /= (inout vec4 v, const float a) { v.x /= a, v.y /= a, v.z /= a, v.w /= a; } void operator += (inout mat2 m, const float a) { m[0] += a, m[1] += a; } void operator -= (inout mat2 m, const float a) { m[0] -= a, m[1] -= a; } void operator *= (inout mat2 m, const float a) { m[0] *= a, m[1] *= a; } void operator /= (inout mat2 m, const float a) { m[0] /= a, m[1] /= a; } void operator += (inout mat3 m, const float a) { m[0] += a, m[1] += a, m[2] += a; } void operator -= (inout mat3 m, const float a) { m[0] -= a, m[1] -= a, m[2] -= a; } void operator *= (inout mat3 m, const float a) { m[0] *= a, m[1] *= a, m[2] *= a; } void operator /= (inout mat3 m, const float a) { m[0] /= a, m[1] /= a, m[2] /= a; } void operator += (inout mat4 m, const float a) { m[0] += a, m[1] += a, m[2] += a, m[3] += a; } void operator -= (inout mat4 m, const float a) { m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a; } void operator *= (inout mat4 m, const float a) { m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a; } void operator /= (inout mat4 m, const float a) { m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a; } // // ... or if the operation is multiply into (*=), then the variable can be a vector and the // expression can be a matrix of matching size. // void operator *= (inout vec2 v, const mat2 m) { v = v * m; } void operator *= (inout vec3 v, const mat3 m) { v = v * m; } void operator *= (inout vec4 v, const mat4 m) { v = v * m; } // // 5.9 Expressions // // Expressions in the shading language include the following: // // // • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that // operate on integer and floating-point typed expressions (including vectors and matrices). // The two operands must be the same type, ... // float operator + (const float a, const float b) { float c = a; return c += b; } float operator - (const float a, const float b) { return a + -b; } float operator * (const float a, const float b) { float c = a; return c *= b; } float operator / (const float a, const float b) { float c = a; return c /= b; } int operator + (const int a, const int b) { int c = a; return c += b; } int operator - (const int x, const int y) { return x + -y; } int operator * (const int x, const int y) { int z = x; return z *= y; } int operator / (const int x, const int y) { int z = x; return z /= y; } vec2 operator + (const vec2 v, const vec2 u) { return vec2 (v.x + u.x, v.y + u.y); } vec2 operator - (const vec2 v, const vec2 u) { return vec2 (v.x - u.x, v.y - u.y); } vec3 operator + (const vec3 v, const vec3 u) { return vec3 (v.x + u.x, v.y + u.y, v.z + u.z); } vec3 operator - (const vec3 v, const vec3 u) { return vec3 (v.x - u.x, v.y - u.y, v.z - u.z); } vec4 operator + (const vec4 v, const vec4 u) { return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); } vec4 operator - (const vec4 v, const vec4 u) { return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); } ivec2 operator + (const ivec2 v, const ivec2 u) { return ivec2 (v.x + u.x, v.y + u.y); } ivec2 operator - (const ivec2 v, const ivec2 u) { return ivec2 (v.x - u.x, v.y - u.y); } ivec3 operator + (const ivec3 v, const ivec3 u) { return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z); } ivec3 operator - (const ivec3 v, const ivec3 u) { return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z); } ivec4 operator + (const ivec4 v, const ivec4 u) { return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); } ivec4 operator - (const ivec4 v, const ivec4 u) { return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); } mat2 operator + (const mat2 m, const mat2 n) { return mat2 (m[0] + n[0], m[1] + n[1]); } mat2 operator - (const mat2 m, const mat2 n) { return mat2 (m[0] - n[0], m[1] - n[1]); } mat3 operator + (const mat3 m, const mat3 n) { return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]); } mat3 operator - (const mat3 m, const mat3 n) { return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]); } mat4 operator + (const mat4 m, const mat4 n) { return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]); } mat4 operator - (const mat4 m, const mat4 n) { return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]); } // // ... or one must be a scalar float and the other a vector or matrix, ... // vec2 operator + (const float a, const vec2 u) { return vec2 (a + u.x, a + u.y); } vec2 operator + (const vec2 v, const float b) { return vec2 (v.x + b, v.y + b); } vec2 operator - (const float a, const vec2 u) { return vec2 (a - u.x, a - u.y); } vec2 operator - (const vec2 v, const float b) { return vec2 (v.x - b, v.y - b); } vec2 operator * (const float a, const vec2 u) { return vec2 (a * u.x, a * u.y); } vec2 operator * (const vec2 v, const float b) { return vec2 (v.x * b, v.y * b); } vec2 operator / (const float a, const vec2 u) { return vec2 (a / u.x, a / u.y); } vec2 operator / (const vec2 v, const float b) { return vec2 (v.x / b, v.y / b); } vec3 operator + (const float a, const vec3 u) { return vec3 (a + u.x, a + u.y, a + u.z); } vec3 operator + (const vec3 v, const float b) { return vec3 (v.x + b, v.y + b, v.z + b); } vec3 operator - (const float a, const vec3 u) { return vec3 (a - u.x, a - u.y, a - u.z); } vec3 operator - (const vec3 v, const float b) { return vec3 (v.x - b, v.y - b, v.z - b); } vec3 operator * (const float a, const vec3 u) { return vec3 (a * u.x, a * u.y, a * u.z); } vec3 operator * (const vec3 v, const float b) { return vec3 (v.x * b, v.y * b, v.z * b); } vec3 operator / (const float a, const vec3 u) { return vec3 (a / u.x, a / u.y, a / u.z); } vec3 operator / (const vec3 v, const float b) { return vec3 (v.x / b, v.y / b, v.z / b); } vec4 operator + (const float a, const vec4 u) { return vec4 (a + u.x, a + u.y, a + u.z, a + u.w); } vec4 operator + (const vec4 v, const float b) { return vec4 (v.x + b, v.y + b, v.z + b, v.w + b); } vec4 operator - (const float a, const vec4 u) { return vec4 (a - u.x, a - u.y, a - u.z, a - u.w); } vec4 operator - (const vec4 v, const float b) { return vec4 (v.x - b, v.y - b, v.z - b, v.w - b); } vec4 operator * (const float a, const vec4 u) { return vec4 (a * u.x, a * u.y, a * u.z, a * u.w); } vec4 operator * (const vec4 v, const float b) { return vec4 (v.x * b, v.y * b, v.z * b, v.w * b); } vec4 operator / (const float a, const vec4 u) { return vec4 (a / u.x, a / u.y, a / u.z, a / u.w); } vec4 operator / (const vec4 v, const float b) { return vec4 (v.x / b, v.y / b, v.z / b, v.w / b); } mat2 operator + (const float a, const mat2 n) { return mat2 (a + n[0], a + n[1]); } mat2 operator + (const mat2 m, const float b) { return mat2 (m[0] + b, m[1] + b); } mat2 operator - (const float a, const mat2 n) { return mat2 (a - n[0], a - n[1]); } mat2 operator - (const mat2 m, const float b) { return mat2 (m[0] - b, m[1] - b); } mat2 operator * (const float a, const mat2 n) { return mat2 (a * n[0], a * n[1]); } mat2 operator * (const mat2 m, const float b) { return mat2 (m[0] * b, m[1] * b); } mat2 operator / (const float a, const mat2 n) { return mat2 (a / n[0], a / n[1]); } mat2 operator / (const mat2 m, const float b) { return mat2 (m[0] / b, m[1] / b); } mat3 operator + (const float a, const mat3 n) { return mat3 (a + n[0], a + n[1], a + n[2]); } mat3 operator + (const mat3 m, const float b) { return mat3 (m[0] + b, m[1] + b, m[2] + b); } mat3 operator - (const float a, const mat3 n) { return mat3 (a - n[0], a - n[1], a - n[2]); } mat3 operator - (const mat3 m, const float b) { return mat3 (m[0] - b, m[1] - b, m[2] - b); } mat3 operator * (const float a, const mat3 n) { return mat3 (a * n[0], a * n[1], a * n[2]); } mat3 operator * (const mat3 m, const float b) { return mat3 (m[0] * b, m[1] * b, m[2] * b); } mat3 operator / (const float a, const mat3 n) { return mat3 (a / n[0], a / n[1], a / n[2]); } mat3 operator / (const mat3 m, const float b) { return mat3 (m[0] / b, m[1] / b, m[2] / b); } mat4 operator + (const float a, const mat4 n) { return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]); } mat4 operator + (const mat4 m, const float b) { return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b); } mat4 operator - (const float a, const mat4 n) { return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]); } mat4 operator - (const mat4 m, const float b) { return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b); } mat4 operator * (const float a, const mat4 n) { return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]); } mat4 operator * (const mat4 m, const float b) { return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b); } mat4 operator / (const float a, const mat4 n) { return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]); } mat4 operator / (const mat4 m, const float b) { return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b); } // // ... or for multiply (*) one can be a vector and the other a matrix with the same dimensional // size of the vector. // // [When:] // • the left argument is a floating-point vector and the right is a matrix with a compatible // dimension in which case the * operator will do a row vector matrix multiplication. // • the left argument is a matrix and the right is a floating-point vector with a compatible // dimension in which case the * operator will do a column vector matrix multiplication. // vec2 operator * (const mat2 m, const vec2 v) { return vec2 ( v.x * m[0].x + v.y * m[1].x, v.x * m[0].y + v.y * m[1].y ); } vec2 operator * (const vec2 v, const mat2 m) { return vec2 ( v.x * m[0].x + v.y * m[0].y, v.x * m[1].x + v.y * m[1].y ); } vec3 operator * (const mat3 m, const vec3 v) { return vec3 ( v.x * m[0].x + v.y * m[1].x + v.z * m[2].x, v.x * m[0].y + v.y * m[1].y + v.z * m[2].y, v.x * m[0].z + v.y * m[1].z + v.z * m[2].z ); } vec3 operator * (const vec3 v, const mat3 m) { return vec3 ( v.x * m[0].x + v.y * m[0].y + v.z * m[0].z, v.x * m[1].x + v.y * m[1].y + v.z * m[1].z, v.x * m[2].x + v.y * m[2].y + v.z * m[2].z ); } vec4 operator * (const mat4 m, const vec4 v) { return vec4 ( v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x, v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y, v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z, v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w ); } vec4 operator * (const vec4 v, const mat4 m) { return vec4 ( v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w, v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w, v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w, v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w ); } // // Multiply (*) applied to two vectors yields a component-wise multiply. // vec2 operator * (const vec2 v, const vec2 u) { return vec2 (v.x * u.x, v.y * u.y); } vec3 operator * (const vec3 v, const vec3 u) { return vec3 (v.x * u.x, v.y * u.y, v.z * u.z); } vec4 operator * (const vec4 v, const vec4 u) { return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); } ivec2 operator * (const ivec2 v, const ivec2 u) { return ivec2 (v.x * u.x, v.y * u.y); } ivec3 operator * (const ivec3 v, const ivec3 u) { return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z); } ivec4 operator * (const ivec4 v, const ivec4 u) { return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); } // // Dividing by zero does not cause an exception but does result in an unspecified value. // vec2 operator / (const vec2 v, const vec2 u) { return vec2 (v.x / u.x, v.y / u.y); } vec3 operator / (const vec3 v, const vec3 u) { return vec3 (v.x / u.x, v.y / u.y, v.z / u.z); } vec4 operator / (const vec4 v, const vec4 u) { return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); } ivec2 operator / (const ivec2 v, const ivec2 u) { return ivec2 (v.x / u.x, v.y / u.y); } ivec3 operator / (const ivec3 v, const ivec3 u) { return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z); } ivec4 operator / (const ivec4 v, const ivec4 u) { return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); } mat2 operator / (const mat2 m, const mat2 n) { return mat2 (m[0] / n[0], m[1] / n[1]); } mat3 operator / (const mat3 m, const mat3 n) { return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]); } mat4 operator / (const mat4 m, const mat4 n) { return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]); } // // Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not // a component-wise multiply. // mat2 operator * (const mat2 m, const mat2 n) { return mat2 (m * n[0], m * n[1]); } mat3 operator * (const mat3 m, const mat3 n) { return mat3 (m * n[0], m * n[1], m * n[2]); } mat4 operator * (const mat4 m, const mat4 n) { return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]); } // // • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and // ++) that operate on integer or floating-point values (including vectors and matrices). These // result with the same type they operated on. For post- and pre-increment and decrement, the // expression must be one that could be assigned to (an l-value). Pre-increment and predecrement // add or subtract 1 or 1.0 to the contents of the expression they operate on, and the // value of the pre-increment or pre-decrement expression is the resulting value of that // modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to // the contents of the expression they operate on, but the resulting expression has the // expression’s value before the post-increment or post-decrement was executed. // // [NOTE: postfix increment and decrement operators take additional dummy int parameter to // distinguish their prototypes from prefix ones.] // float operator - (const float a) { float c = a; __asm float_negate c; return c; } int operator - (const int a) { int c = a; __asm int_negate c; return c; } vec2 operator - (const vec2 v) { return vec2 (-v.x, -v.y); } vec3 operator - (const vec3 v) { return vec3 (-v.x, -v.y, -v.z); } vec4 operator - (const vec4 v) { return vec4 (-v.x, -v.y, -v.z, -v.w); } ivec2 operator - (const ivec2 v) { return ivec2 (-v.x, -v.y); } ivec3 operator - (const ivec3 v) { return ivec3 (-v.x, -v.y, -v.z); } ivec4 operator - (const ivec4 v) { return ivec4 (-v.x, -v.y, -v.z, -v.w); } mat2 operator - (const mat2 m) { return mat2 (-m[0], -m[1]); } mat3 operator - (const mat3 m) { return mat3 (-m[0], -m[1], -m[2]); } mat4 operator - (const mat4 m) { return mat4 (-m[0], -m[1], -m[2], -m[3]); } void operator -- (inout float a) { a -= 1.0; } void operator -- (inout int a) { a -= 1; } void operator -- (inout vec2 v) { --v.x, --v.y; } void operator -- (inout vec3 v) { --v.x, --v.y, --v.z; } void operator -- (inout vec4 v) { --v.x, --v.y, --v.z, --v.w; } void operator -- (inout ivec2 v) { --v.x, --v.y; } void operator -- (inout ivec3 v) { --v.x, --v.y, --v.z; } void operator -- (inout ivec4 v) { --v.x, --v.y, --v.z, --v.w; } void operator -- (inout mat2 m) { --m[0], --m[1]; } void operator -- (inout mat3 m) { --m[0], --m[1], --m[2]; } void operator -- (inout mat4 m) { --m[0], --m[1], --m[2], --m[3]; } void operator ++ (inout float a) { a += 1.0; } void operator ++ (inout int a) { a += 1; } void operator ++ (inout vec2 v) { ++v.x, ++v.y; } void operator ++ (inout vec3 v) { ++v.x, ++v.y, ++v.z; } void operator ++ (inout vec4 v) { ++v.x, ++v.y, ++v.z, ++v.w; } void operator ++ (inout ivec2 v) { ++v.x, ++v.y; } void operator ++ (inout ivec3 v) { ++v.x, ++v.y, ++v.z; } void operator ++ (inout ivec4 v) { ++v.x, ++v.y, ++v.z, ++v.w; } void operator ++ (inout mat2 m) { ++m[0], ++m[1]; } void operator ++ (inout mat3 m) { ++m[0], ++m[1], ++m[2]; } void operator ++ (inout mat4 m) { ++m[0], ++m[1], ++m[2], ++m[3]; } float operator -- (inout float a, const int) { const float c = a; --a; return c; } int operator -- (inout int a, const int) { const int c = a; --a; return c; } vec2 operator -- (inout vec2 v, const int) { return vec2 (v.x--, v.y--); } vec3 operator -- (inout vec3 v, const int) { return vec3 (v.x--, v.y--, v.z--); } vec4 operator -- (inout vec4 v, const int) { return vec4 (v.x--, v.y--, v.z--, v.w--); } ivec2 operator -- (inout ivec2 v, const int) { return ivec2 (v.x--, v.y--); } ivec3 operator -- (inout ivec3 v, const int) { return ivec3 (v.x--, v.y--, v.z--); } ivec4 operator -- (inout ivec4 v, const int) { return ivec4 (v.x--, v.y--, v.z--, v.w--); } mat2 operator -- (inout mat2 m, const int) { return mat2 (m[0]--, m[1]--); } mat3 operator -- (inout mat3 m, const int) { return mat3 (m[0]--, m[1]--, m[2]--); } mat4 operator -- (inout mat4 m, const int) { return mat4 (m[0]--, m[1]--, m[2]--, m[3]--); } float operator ++ (inout float a, const int) { const float c = a; ++a; return c; } int operator ++ (inout int a, const int) { const int c = a; ++a; return c; } vec2 operator ++ (inout vec2 v, const int) { return vec2 (v.x++, v.y++); } vec3 operator ++ (inout vec3 v, const int) { return vec3 (v.x++, v.y++, v.z++); } vec4 operator ++ (inout vec4 v, const int) { return vec4 (v.x++, v.y++, v.z++, v.w++); } ivec2 operator ++ (inout ivec2 v, const int) { return ivec2 (v.x++, v.y++); } ivec3 operator ++ (inout ivec3 v, const int) { return ivec3 (v.x++, v.y++, v.z++); } ivec4 operator ++ (inout ivec4 v, const int) { return ivec4 (v.x++, v.y++, v.z++, v.w++); } mat2 operator ++ (inout mat2 m, const int) { return mat2 (m[0]++, m[1]++); } mat3 operator ++ (inout mat3 m, const int) { return mat3 (m[0]++, m[1]++, m[2]++); } mat4 operator ++ (inout mat4 m, const int) { return mat4 (m[0]++, m[1]++, m[2]++, m[3]++); } // // • The relational operators greater than (>), less than (<), greater than or equal (>=), and less // than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The // result is scalar Boolean. The operands’ types must match. To do component-wise // comparisons on vectors, use the built-in functions lessThan, lessThanEqual, // greaterThan, and greaterThanEqual. // bool operator < (const float a, const float b) { bool c; __asm float_less c, a, b; return c; } bool operator < (const int a, const int b) { bool c; __asm int_less c, a, b; return c; } bool operator > (const float a, const float b) { return b < a; } bool operator > (const int a, const int b) { return b < a; } bool operator >= (const float a, const float b) { return a > b || a == b; } bool operator >= (const int a, const int b) { return a > b || a == b; } bool operator <= (const float a, const float b) { return a < b || a == b; } bool operator <= (const int a, const int b) { return a < b || a == b; } // // • The equality operators equal (==), and not equal (!=) operate on all types except arrays. // They result in a scalar Boolean. For vectors, matrices, and structures, all components of the // operands must be equal for the operands to be considered equal. To get component-wise // equality results for vectors, use the built-in functions equal and notEqual. // bool operator == (const float a, const float b) { bool c; __asm float_equal c, a, b; return c; } bool operator == (const int a, const int b) { bool c; __asm int_equal c, a, b; return c; } bool operator == (const bool a, const bool b) { bool c; __asm bool_equal c, a, b; return c; } bool operator == (const vec2 v, const vec2 u) { return v.x == u.x && v.y == u.y; } bool operator == (const vec3 v, const vec3 u) { return v.x == u.x && v.y == u.y && v.z == u.z; } bool operator == (const vec4 v, const vec4 u) { return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; } bool operator == (const ivec2 v, const ivec2 u) { return v.x == u.x && v.y == u.y; } bool operator == (const ivec3 v, const ivec3 u) { return v.x == u.x && v.y == u.y && v.z == u.z; } bool operator == (const ivec4 v, const ivec4 u) { return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; } bool operator == (const bvec2 v, const bvec2 u) { return v.x == u.x && v.y == u.y; } bool operator == (const bvec3 v, const bvec3 u) { return v.x == u.x && v.y == u.y && v.z == u.z; } bool operator == (const bvec4 v, const bvec4 u) { return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; } bool operator == (const mat2 m, const mat2 n) { return m[0] == n[0] && m[1] == n[1]; } bool operator == (const mat3 m, const mat3 n) { return m[0] == n[0] && m[1] == n[1] && m[2] == n[2]; } bool operator == (const mat4 m, const mat4 n) { return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3]; } bool operator != (const float a, const float b) { return !(a == b); } bool operator != (const int a, const int b) { return !(a == b); } bool operator != (const bool a, const bool b) { return !(a == b); } bool operator != (const vec2 v, const vec2 u) { return v.x != u.x || v.y != u.y; } bool operator != (const vec3 v, const vec3 u) { return v.x != u.x || v.y != u.y || v.z != u.z; } bool operator != (const vec4 v, const vec4 u) { return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; } bool operator != (const ivec2 v, const ivec2 u) { return v.x != u.x || v.y != u.y; } bool operator != (const ivec3 v, const ivec3 u) { return v.x != u.x || v.y != u.y || v.z != u.z; } bool operator != (const ivec4 v, const ivec4 u) { return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; } bool operator != (const bvec2 v, const bvec2 u) { return v.x != u.x || v.y != u.y; } bool operator != (const bvec3 v, const bvec3 u) { return v.x != u.x || v.y != u.y || v.z != u.z; } bool operator != (const bvec4 v, const bvec4 u) { return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; } bool operator != (const mat2 m, const mat2 n) { return m[0] != n[0] || m[1] != n[1]; } bool operator != (const mat3 m, const mat3 n) { return m[0] != n[0] || m[1] != n[1] || m[2] != n[2]; } bool operator != (const mat4 m, const mat4 n) { return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3]; } // // • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only // on two Boolean expressions and result in a Boolean expression. And (&&) will only // evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will // only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or // (^^) will always evaluate both operands. // bool operator ^^ (const bool a, const bool b) { return a != b; } // // [These operators are handled internally by the compiler:] // // bool operator && (bool a, bool b) { // return a ? b : false; // } // bool operator || (bool a, bool b) { // return a ? true : b; // } // // // • The logical unary operator not (!). It operates only on a Boolean expression and results in a // Boolean expression. To operate on a vector, use the built-in function not. // bool operator ! (const bool a) { return a == false; }