/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: * Brian Paul */ #include "main/imports.h" #include "main/image.h" #include "main/macros.h" #include "main/texformat.h" #include "shader/program.h" #include "shader/prog_parameter.h" #include "shader/prog_print.h" #include "st_context.h" #include "st_atom.h" #include "st_atom_constbuf.h" #include "st_cache.h" #include "st_draw.h" #include "st_program.h" #include "st_cb_drawpixels.h" #include "st_cb_readpixels.h" #include "st_cb_fbo.h" #include "st_cb_texture.h" #include "st_draw.h" #include "st_format.h" #include "st_mesa_to_tgsi.h" #include "st_texture.h" #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_inlines.h" #include "pipe/p_winsys.h" #include "util/p_tile.h" #include "shader/prog_instruction.h" /** * Check if the given program is: * 0: MOVE result.color, fragment.color; * 1: END; */ static GLboolean is_passthrough_program(const struct gl_fragment_program *prog) { if (prog->Base.NumInstructions == 2) { const struct prog_instruction *inst = prog->Base.Instructions; if (inst[0].Opcode == OPCODE_MOV && inst[1].Opcode == OPCODE_END && inst[0].DstReg.File == PROGRAM_OUTPUT && inst[0].DstReg.Index == FRAG_RESULT_COLR && inst[0].DstReg.WriteMask == WRITEMASK_XYZW && inst[0].SrcReg[0].File == PROGRAM_INPUT && inst[0].SrcReg[0].Index == FRAG_ATTRIB_COL0 && inst[0].SrcReg[0].Swizzle == SWIZZLE_XYZW) { return GL_TRUE; } } return GL_FALSE; } /** * Make fragment program for glBitmap: * Sample the texture and kill the fragment if the bit is 0. * This program will be combined with the user's fragment program. */ static struct st_fragment_program * make_bitmap_fragment_program(GLcontext *ctx) { struct st_fragment_program *stfp; struct gl_program *p; GLuint ic = 0; p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0); if (!p) return NULL; p->NumInstructions = 5; p->Instructions = _mesa_alloc_instructions(p->NumInstructions); if (!p->Instructions) { ctx->Driver.DeleteProgram(ctx, p); return NULL; } _mesa_init_instructions(p->Instructions, p->NumInstructions); /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */ p->Instructions[ic].Opcode = OPCODE_TEX; p->Instructions[ic].DstReg.File = PROGRAM_TEMPORARY; p->Instructions[ic].DstReg.Index = 0; p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0; p->Instructions[ic].TexSrcUnit = 0; p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX; ic++; /* SWZ tmp0.x, tmp0.x, 1111; # tmp0.x = 1.0 */ p->Instructions[ic].Opcode = OPCODE_SWZ; p->Instructions[ic].DstReg.File = PROGRAM_TEMPORARY; p->Instructions[ic].DstReg.Index = 0; p->Instructions[ic].DstReg.WriteMask = WRITEMASK_X; p->Instructions[ic].SrcReg[0].File = PROGRAM_TEMPORARY; p->Instructions[ic].SrcReg[0].Index = 0; p->Instructions[ic].SrcReg[0].Swizzle = MAKE_SWIZZLE4(SWIZZLE_ONE, SWIZZLE_ONE, SWIZZLE_ONE, SWIZZLE_ONE ); ic++; /* SUB tmp0, tmp0.wwww, tmp0.xxxx; # tmp0.w -= 1 */ p->Instructions[ic].Opcode = OPCODE_SUB; p->Instructions[ic].DstReg.File = PROGRAM_TEMPORARY; p->Instructions[ic].DstReg.Index = 0; p->Instructions[ic].SrcReg[0].File = PROGRAM_TEMPORARY; p->Instructions[ic].SrcReg[0].Index = 0; p->Instructions[ic].SrcReg[0].Swizzle = SWIZZLE_WWWW; p->Instructions[ic].SrcReg[1].File = PROGRAM_TEMPORARY; p->Instructions[ic].SrcReg[1].Index = 0; p->Instructions[ic].SrcReg[1].Swizzle = SWIZZLE_XXXX; /* 1.0 */ ic++; /* KIL if tmp0 < 0 */ p->Instructions[ic].Opcode = OPCODE_KIL; p->Instructions[ic].SrcReg[0].File = PROGRAM_TEMPORARY; p->Instructions[ic].SrcReg[0].Index = 0; ic++; /* END; */ p->Instructions[ic++].Opcode = OPCODE_END; assert(ic == p->NumInstructions); p->InputsRead = FRAG_BIT_TEX0; p->OutputsWritten = 0x0; stfp = (struct st_fragment_program *) p; stfp->Base.UsesKill = GL_TRUE; st_translate_fragment_program(ctx->st, stfp, NULL, stfp->tokens, ST_MAX_SHADER_TOKENS); return stfp; } /** * Combine basic bitmap fragment program with the user-defined program. */ static struct st_fragment_program * combined_bitmap_fragment_program(GLcontext *ctx) { struct st_context *st = ctx->st; struct st_fragment_program *stfp; if (!st->bitmap.program) { /* create the basic bitmap fragment program */ st->bitmap.program = make_bitmap_fragment_program(ctx); } if (st->bitmap.user_prog_sn == st->fp->serialNo) { /* re-use */ stfp = st->bitmap.combined_prog; } else { /* Concatenate the bitmap program with the current user-defined program. */ stfp = (struct st_fragment_program *) _mesa_combine_programs(ctx, &st->bitmap.program->Base.Base, &st->fp->Base.Base); #if 0 { struct gl_program *p = &stfp->Base.Base; printf("Combined bitmap program:\n"); _mesa_print_program(p); printf("InputsRead: 0x%x\n", p->InputsRead); printf("OutputsWritten: 0x%x\n", p->OutputsWritten); _mesa_print_parameter_list(p->Parameters); } #endif /* translate to TGSI tokens */ st_translate_fragment_program(st, stfp, NULL, stfp->tokens, ST_MAX_SHADER_TOKENS); /* save new program, update serial numbers */ st->bitmap.user_prog_sn = st->fp->serialNo; st->bitmap.combined_prog = stfp; } /* Ideally we'd have updated the pipe constants during the normal * st/atom mechanism. But we can't since this is specific to glBitmap. */ st_upload_constants(st, stfp->Base.Base.Parameters, PIPE_SHADER_FRAGMENT); return stfp; } /** * Make fragment shader for glDraw/CopyPixels. This shader is made * by combining the pixel transfer shader with the user-defined shader. */ static struct st_fragment_program * combined_drawpix_fragment_program(GLcontext *ctx) { struct st_context *st = ctx->st; struct st_fragment_program *stfp; if (st->pixel_xfer.program->serialNo == st->pixel_xfer.xfer_prog_sn && st->fp->serialNo == st->pixel_xfer.user_prog_sn) { /* the pixel tranfer program has not changed and the user-defined * program has not changed, so re-use the combined program. */ stfp = st->pixel_xfer.combined_prog; } else { /* Concatenate the pixel transfer program with the current user- * defined program. */ if (is_passthrough_program(&st->fp->Base)) { stfp = (struct st_fragment_program *) _mesa_clone_program(ctx, &st->pixel_xfer.program->Base.Base); } else { stfp = (struct st_fragment_program *) _mesa_combine_programs(ctx, &st->pixel_xfer.program->Base.Base, &st->fp->Base.Base); } #if 0 { struct gl_program *p = &stfp->Base.Base; printf("Combined DrawPixels program:\n"); _mesa_print_program(p); printf("InputsRead: 0x%x\n", p->InputsRead); printf("OutputsWritten: 0x%x\n", p->OutputsWritten); _mesa_print_parameter_list(p->Parameters); } #endif /* translate to TGSI tokens */ st_translate_fragment_program(st, stfp, NULL, stfp->tokens, ST_MAX_SHADER_TOKENS); /* save new program, update serial numbers */ st->pixel_xfer.xfer_prog_sn = st->pixel_xfer.program->serialNo; st->pixel_xfer.user_prog_sn = st->fp->serialNo; st->pixel_xfer.combined_prog_sn = stfp->serialNo; st->pixel_xfer.combined_prog = stfp; } /* Ideally we'd have updated the pipe constants during the normal * st/atom mechanism. But we can't since this is specific to glDrawPixels. */ st_upload_constants(st, stfp->Base.Base.Parameters, PIPE_SHADER_FRAGMENT); return stfp; } /** * Create fragment shader that does a TEX() instruction to get a Z * value, then writes to FRAG_RESULT_DEPR. * Pass fragment color through as-is. */ static struct st_fragment_program * make_fragment_shader_z(struct st_context *st) { GLcontext *ctx = st->ctx; /* only make programs once and re-use */ static struct st_fragment_program *stfp = NULL; struct gl_program *p; GLuint ic = 0; if (stfp) return stfp; p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0); if (!p) return NULL; p->NumInstructions = 3; p->Instructions = _mesa_alloc_instructions(p->NumInstructions); if (!p->Instructions) { ctx->Driver.DeleteProgram(ctx, p); return NULL; } _mesa_init_instructions(p->Instructions, p->NumInstructions); /* TEX result.depth, fragment.texcoord[0], texture[0], 2D; */ p->Instructions[ic].Opcode = OPCODE_TEX; p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT; p->Instructions[ic].DstReg.Index = FRAG_RESULT_DEPR; p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Z; p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0; p->Instructions[ic].TexSrcUnit = 0; p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX; ic++; /* MOV result.color, fragment.color */ p->Instructions[ic].Opcode = OPCODE_MOV; p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT; p->Instructions[ic].DstReg.Index = FRAG_RESULT_COLR; p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_COL0; ic++; /* END; */ p->Instructions[ic++].Opcode = OPCODE_END; assert(ic == p->NumInstructions); p->InputsRead = FRAG_BIT_TEX0 | FRAG_BIT_COL0; p->OutputsWritten = (1 << FRAG_RESULT_COLR) | (1 << FRAG_RESULT_DEPR); stfp = (struct st_fragment_program *) p; st_translate_fragment_program(st, stfp, NULL, stfp->tokens, ST_MAX_SHADER_TOKENS); return stfp; } /** * Create a simple vertex shader that just passes through the * vertex position and texcoord (and optionally, color). */ struct st_vertex_program * st_make_passthrough_vertex_shader(struct st_context *st, GLboolean passColor) { /* only make programs once and re-use */ static struct st_vertex_program *progs[2] = { NULL, NULL }; GLcontext *ctx = st->ctx; struct st_vertex_program *stvp; struct gl_program *p; GLuint ic = 0; if (progs[passColor]) return progs[passColor]; p = ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0); if (!p) return NULL; if (passColor) p->NumInstructions = 4; else p->NumInstructions = 3; p->Instructions = _mesa_alloc_instructions(p->NumInstructions); if (!p->Instructions) { ctx->Driver.DeleteProgram(ctx, p); return NULL; } _mesa_init_instructions(p->Instructions, p->NumInstructions); /* MOV result.pos, vertex.pos; */ p->Instructions[0].Opcode = OPCODE_MOV; p->Instructions[0].DstReg.File = PROGRAM_OUTPUT; p->Instructions[0].DstReg.Index = VERT_RESULT_HPOS; p->Instructions[0].SrcReg[0].File = PROGRAM_INPUT; p->Instructions[0].SrcReg[0].Index = VERT_ATTRIB_POS; /* MOV result.texcoord0, vertex.texcoord0; */ p->Instructions[1].Opcode = OPCODE_MOV; p->Instructions[1].DstReg.File = PROGRAM_OUTPUT; p->Instructions[1].DstReg.Index = VERT_RESULT_TEX0; p->Instructions[1].SrcReg[0].File = PROGRAM_INPUT; p->Instructions[1].SrcReg[0].Index = VERT_ATTRIB_TEX0; ic = 2; if (passColor) { /* MOV result.color0, vertex.color0; */ p->Instructions[ic].Opcode = OPCODE_MOV; p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT; p->Instructions[ic].DstReg.Index = VERT_RESULT_COL0; p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; p->Instructions[ic].SrcReg[0].Index = VERT_ATTRIB_COLOR0; ic++; } /* END; */ p->Instructions[ic].Opcode = OPCODE_END; ic++; assert(ic == p->NumInstructions); p->InputsRead = VERT_BIT_POS | VERT_BIT_TEX0; p->OutputsWritten = ((1 << VERT_RESULT_TEX0) | (1 << VERT_RESULT_HPOS)); if (passColor) { p->InputsRead |= VERT_BIT_COLOR0; p->OutputsWritten |= (1 << VERT_RESULT_COL0); } stvp = (struct st_vertex_program *) p; st_translate_vertex_program(st, stvp, NULL, stvp->tokens, ST_MAX_SHADER_TOKENS); progs[passColor] = stvp; return stvp; } static GLenum _mesa_base_format(GLenum format) { switch (format) { case GL_DEPTH_COMPONENT: return GL_DEPTH_COMPONENT; case GL_STENCIL_INDEX: return GL_STENCIL_INDEX; default: return GL_RGBA; } } /** * Make texture containing an image for glDrawPixels image. * If 'pixels' is NULL, leave the texture image data undefined. */ static struct pipe_texture * make_texture(struct st_context *st, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels) { GLcontext *ctx = st->ctx; struct pipe_context *pipe = st->pipe; const struct gl_texture_format *mformat; struct pipe_texture *pt; enum pipe_format pipeFormat; GLuint cpp; GLenum baseFormat; baseFormat = _mesa_base_format(format); mformat = st_ChooseTextureFormat(ctx, baseFormat, format, type); assert(mformat); pipeFormat = st_mesa_format_to_pipe_format(mformat->MesaFormat); assert(pipeFormat); cpp = st_sizeof_format(pipeFormat); pt = st_texture_create(st, PIPE_TEXTURE_2D, pipeFormat, 0, width, height, 1, 0); if (!pt) return NULL; if (unpack->BufferObj && unpack->BufferObj->Name) { /* pt->region = buffer_object_region(unpack->BufferObj); */ printf("st_DrawPixels (sourcing from PBO not implemented yet)\n"); } { struct pipe_surface *surface; static const GLuint dstImageOffsets = 0; GLboolean success; GLubyte *dest; const GLbitfield imageTransferStateSave = ctx->_ImageTransferState; /* we'll do pixel transfer in a fragment shader */ ctx->_ImageTransferState = 0x0; surface = pipe->get_tex_surface(pipe, pt, 0, 0, 0); /* map texture surface */ dest = pipe_surface_map(surface); /* Put image into texture surface. * Note that the image is actually going to be upside down in * the texture. We deal with that with texcoords. */ success = mformat->StoreImage(ctx, 2, /* dims */ baseFormat, /* baseInternalFormat */ mformat, /* gl_texture_format */ dest, /* dest */ 0, 0, 0, /* dstX/Y/Zoffset */ surface->pitch * cpp, /* dstRowStride, bytes */ &dstImageOffsets, /* dstImageOffsets */ width, height, 1, /* size */ format, type, /* src format/type */ pixels, /* data source */ unpack); /* unmap */ pipe_surface_unmap(surface); pipe_surface_reference(&surface, NULL); assert(success); /* restore */ ctx->_ImageTransferState = imageTransferStateSave; } return pt; } /** * Draw textured quad. * Coords are window coords with y=0=bottom. */ static void draw_quad(GLcontext *ctx, GLfloat x0, GLfloat y0, GLfloat z, GLfloat x1, GLfloat y1, GLboolean invertTex) { GLfloat verts[4][2][4]; /* four verts, two attribs, XYZW */ GLuint i; GLfloat sLeft = 0.0, sRight = 1.0; GLfloat tTop = invertTex, tBot = 1.0 - tTop; /* upper-left */ verts[0][0][0] = x0; /* attr[0].x */ verts[0][0][1] = y0; /* attr[0].y */ verts[0][1][0] = sLeft; /* attr[1].s */ verts[0][1][1] = tTop; /* attr[1].t */ /* upper-right */ verts[1][0][0] = x1; verts[1][0][1] = y0; verts[1][1][0] = sRight; verts[1][1][1] = tTop; /* lower-right */ verts[2][0][0] = x1; verts[2][0][1] = y1; verts[2][1][0] = sRight; verts[2][1][1] = tBot; /* lower-left */ verts[3][0][0] = x0; verts[3][0][1] = y1; verts[3][1][0] = sLeft; verts[3][1][1] = tBot; /* same for all verts: */ for (i = 0; i < 4; i++) { verts[i][0][2] = z; /*Z*/ verts[i][0][3] = 1.0; /*W*/ verts[i][1][2] = 0.0; /*R*/ verts[i][1][3] = 1.0; /*Q*/ } st_draw_vertices(ctx, PIPE_PRIM_QUADS, 4, (float *) verts, 2, GL_FALSE); } static void draw_quad_colored(GLcontext *ctx, GLfloat x0, GLfloat y0, GLfloat z, GLfloat x1, GLfloat y1, const GLfloat *color, GLboolean invertTex) { GLfloat bias = ctx->st->bitmap_texcoord_bias; GLfloat verts[4][3][4]; /* four verts, three attribs, XYZW */ GLuint i; GLfloat xBias = bias / (x1-x0); GLfloat yBias = bias / (y1-y0); GLfloat sLeft = 0.0 + xBias, sRight = 1.0 + xBias; GLfloat tTop = invertTex - yBias, tBot = 1.0 - tTop - yBias; /* upper-left */ verts[0][0][0] = x0; /* attr[0].x */ verts[0][0][1] = y0; /* attr[0].y */ verts[0][2][0] = sLeft; /* attr[2].s */ verts[0][2][1] = tTop; /* attr[2].t */ /* upper-right */ verts[1][0][0] = x1; verts[1][0][1] = y0; verts[1][2][0] = sRight; verts[1][2][1] = tTop; /* lower-right */ verts[2][0][0] = x1; verts[2][0][1] = y1; verts[2][2][0] = sRight; verts[2][2][1] = tBot; /* lower-left */ verts[3][0][0] = x0; verts[3][0][1] = y1; verts[3][2][0] = sLeft; verts[3][2][1] = tBot; /* same for all verts: */ for (i = 0; i < 4; i++) { verts[i][0][2] = z; /*Z*/ verts[i][0][3] = 1.0; /*W*/ verts[i][1][0] = color[0]; verts[i][1][1] = color[1]; verts[i][1][2] = color[2]; verts[i][1][3] = color[3]; verts[i][2][2] = 0.0; /*R*/ verts[i][2][3] = 1.0; /*Q*/ } st_draw_vertices(ctx, PIPE_PRIM_QUADS, 4, (float *) verts, 3, GL_FALSE); } static void draw_textured_quad(GLcontext *ctx, GLint x, GLint y, GLfloat z, GLsizei width, GLsizei height, GLfloat zoomX, GLfloat zoomY, struct pipe_texture *pt, struct st_vertex_program *stvp, struct st_fragment_program *stfp, const GLfloat *color, GLboolean invertTex) { const GLuint unit = 0; struct pipe_context *pipe = ctx->st->pipe; GLfloat x0, y0, x1, y1; GLuint maxSize; /* limit checks */ /* XXX if DrawPixels image is larger than max texture size, break * it up into chunks. */ maxSize = 1 << (pipe->get_param(pipe, PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1); assert(width <= maxSize); assert(height <= maxSize); /* setup state: just scissor */ { struct pipe_rasterizer_state setup; const struct cso_rasterizer *cso; memset(&setup, 0, sizeof(setup)); if (ctx->Scissor.Enabled) setup.scissor = 1; cso = st_cached_rasterizer_state(ctx->st, &setup); pipe->bind_rasterizer_state(pipe, cso->data); } /* fragment shader state: TEX lookup program */ pipe->bind_fs_state(pipe, stfp->cso->data); /* vertex shader state: position + texcoord pass-through */ pipe->bind_vs_state(pipe, stvp->cso->data); /* texture sampling state: */ { struct pipe_sampler_state sampler; const struct cso_sampler *cso; memset(&sampler, 0, sizeof(sampler)); sampler.wrap_s = PIPE_TEX_WRAP_CLAMP; sampler.wrap_t = PIPE_TEX_WRAP_CLAMP; sampler.wrap_r = PIPE_TEX_WRAP_CLAMP; sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST; sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE; sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST; sampler.normalized_coords = 1; cso = st_cached_sampler_state(ctx->st, &sampler); pipe->bind_sampler_state(pipe, unit, cso->data); } /* viewport state: viewport matching window dims */ { const float width = ctx->DrawBuffer->Width; const float height = ctx->DrawBuffer->Height; struct pipe_viewport_state vp; vp.scale[0] = 0.5 * width; vp.scale[1] = -0.5 * height; vp.scale[2] = 1.0; vp.scale[3] = 1.0; vp.translate[0] = 0.5 * width; vp.translate[1] = 0.5 * height; vp.translate[2] = 0.0; vp.translate[3] = 0.0; pipe->set_viewport_state(pipe, &vp); } /* texture state: */ { pipe->set_sampler_texture(pipe, unit, pt); } /* Compute window coords (y=0=bottom) with pixel zoom. * Recall that these coords are transformed by the current * vertex shader and viewport transformation. */ x0 = x; x1 = x + width * ctx->Pixel.ZoomX; y0 = y; y1 = y + height * ctx->Pixel.ZoomY; /* draw textured quad */ if (color) draw_quad_colored(ctx, x0, y0, z, x1, y1, color, invertTex); else draw_quad(ctx, x0, y0, z, x1, y1, invertTex); /* restore GL state */ pipe->bind_rasterizer_state(pipe, ctx->st->state.rasterizer->data); pipe->bind_fs_state(pipe, ctx->st->state.fs->data); pipe->bind_vs_state(pipe, ctx->st->state.vs->cso->data); pipe->set_sampler_texture(pipe, unit, ctx->st->state.sampler_texture[unit]); pipe->bind_sampler_state(pipe, unit, ctx->st->state.sampler[unit]->data); pipe->set_viewport_state(pipe, &ctx->st->state.viewport); } /** * Check if a GL format/type combination is a match to the given pipe format. * XXX probably move this to a re-usable place. */ static GLboolean compatible_formats(GLenum format, GLenum type, enum pipe_format pipeFormat) { static const GLuint one = 1; GLubyte littleEndian = *((GLubyte *) &one); if (pipeFormat == PIPE_FORMAT_R8G8B8A8_UNORM && format == GL_RGBA && type == GL_UNSIGNED_BYTE && !littleEndian) { return GL_TRUE; } else if (pipeFormat == PIPE_FORMAT_R8G8B8A8_UNORM && format == GL_ABGR_EXT && type == GL_UNSIGNED_BYTE && littleEndian) { return GL_TRUE; } else if (pipeFormat == PIPE_FORMAT_A8R8G8B8_UNORM && format == GL_BGRA && type == GL_UNSIGNED_BYTE && littleEndian) { return GL_TRUE; } else if (pipeFormat == PIPE_FORMAT_R5G6B5_UNORM && format == GL_RGB && type == GL_UNSIGNED_SHORT_5_6_5) { /* endian don't care */ return GL_TRUE; } else if (pipeFormat == PIPE_FORMAT_R5G6B5_UNORM && format == GL_BGR && type == GL_UNSIGNED_SHORT_5_6_5_REV) { /* endian don't care */ return GL_TRUE; } else if (pipeFormat == PIPE_FORMAT_S8_UNORM && format == GL_STENCIL_INDEX && type == GL_UNSIGNED_BYTE) { return GL_TRUE; } else if (pipeFormat == PIPE_FORMAT_Z32_UNORM && format == GL_DEPTH_COMPONENT && type == GL_UNSIGNED_INT) { return GL_TRUE; } /* XXX add more cases */ else { return GL_FALSE; } } /** * Check if any per-fragment ops are enabled. * XXX probably move this to a re-usable place. */ static GLboolean any_fragment_ops(const struct st_context *st) { if (st->state.depth_stencil->state.alpha.enabled || st->state.blend->state.blend_enable || st->state.blend->state.logicop_enable || st->state.depth_stencil->state.depth.enabled) /* XXX more checks */ return GL_TRUE; else return GL_FALSE; } /** * Check if any pixel transfer ops are enabled. * XXX probably move this to a re-usable place. */ static GLboolean any_pixel_transfer_ops(const struct st_context *st) { if (st->ctx->Pixel.RedScale != 1.0 || st->ctx->Pixel.RedBias != 0.0 || st->ctx->Pixel.GreenScale != 1.0 || st->ctx->Pixel.GreenBias != 0.0 || st->ctx->Pixel.BlueScale != 1.0 || st->ctx->Pixel.BlueBias != 0.0 || st->ctx->Pixel.AlphaScale != 1.0 || st->ctx->Pixel.AlphaBias != 0.0 || st->ctx->Pixel.MapColorFlag) /* XXX more checks */ return GL_TRUE; else return GL_FALSE; } /** * Draw image with a blit, or other non-textured quad method. */ static void draw_blit(struct st_context *st, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *pixels) { } static void draw_stencil_pixels(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum type, const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels) { struct st_context *st = ctx->st; struct pipe_context *pipe = st->pipe; struct pipe_surface *ps = st->state.framebuffer.zsbuf; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0; GLint skipPixels; ubyte *stmap; pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE); /* map the stencil buffer */ stmap = pipe_surface_map(ps); /* if width > MAX_WIDTH, have to process image in chunks */ skipPixels = 0; while (skipPixels < width) { const GLint spanX = x + skipPixels; const GLint spanWidth = MIN2(width - skipPixels, MAX_WIDTH); GLint row; for (row = 0; row < height; row++) { GLint spanY = y + row; GLubyte values[MAX_WIDTH]; GLenum destType = GL_UNSIGNED_BYTE; const GLvoid *source = _mesa_image_address2d(unpack, pixels, width, height, GL_COLOR_INDEX, type, row, skipPixels); _mesa_unpack_stencil_span(ctx, spanWidth, destType, values, type, source, unpack, ctx->_ImageTransferState); if (zoom) { /* _swrast_write_zoomed_stencil_span(ctx, x, y, spanWidth, spanX, spanY, values); */ } else { if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { spanY = ctx->DrawBuffer->Height - spanY - 1; } switch (ps->format) { case PIPE_FORMAT_U_S8: { ubyte *dest = stmap + spanY * ps->pitch + spanX; memcpy(dest, values, spanWidth); } break; case PIPE_FORMAT_S8Z24_UNORM: { uint *dest = (uint *) stmap + spanY * ps->pitch + spanX; GLint k; for (k = 0; k < spanWidth; k++) { uint p = dest[k]; p = (p & 0xffffff) | (values[k] << 24); dest[k] = p; } } break; default: assert(0); } } } skipPixels += spanWidth; } /* unmap the stencil buffer */ pipe_surface_unmap(ps); } /** * Called via ctx->Driver.DrawPixels() */ static void st_DrawPixels(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels) { struct st_fragment_program *stfp; struct st_vertex_program *stvp; struct st_context *st = ctx->st; struct pipe_surface *ps; GLuint bufferFormat; const GLfloat *color; if (format == GL_STENCIL_INDEX) { draw_stencil_pixels(ctx, x, y, width, height, type, unpack, pixels); return; } st_validate_state(st); if (format == GL_DEPTH_COMPONENT) { ps = st->state.framebuffer.zsbuf; stfp = make_fragment_shader_z(ctx->st); stvp = st_make_passthrough_vertex_shader(ctx->st, GL_TRUE); color = ctx->Current.RasterColor; } else if (format == GL_STENCIL_INDEX) { ps = st->state.framebuffer.zsbuf; /* XXX special case - can't use texture map */ color = NULL; } else { ps = st->state.framebuffer.cbufs[0]; stfp = combined_drawpix_fragment_program(ctx); stvp = st_make_passthrough_vertex_shader(ctx->st, GL_FALSE); color = NULL; } bufferFormat = ps->format; if (any_fragment_ops(st) || any_pixel_transfer_ops(st) || !compatible_formats(format, type, ps->format)) { /* textured quad */ struct pipe_texture *pt = make_texture(ctx->st, width, height, format, type, unpack, pixels); if (pt) { draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2], width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY, pt, stvp, stfp, color, GL_FALSE); st->pipe->texture_release(st->pipe, &pt); } } else { /* blit */ draw_blit(st, width, height, format, type, pixels); } } /** * Create a texture which represents a bitmap image. */ static struct pipe_texture * make_bitmap_texture(GLcontext *ctx, GLsizei width, GLsizei height, const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap) { struct pipe_context *pipe = ctx->st->pipe; struct pipe_surface *surface; uint format = 0, cpp, comp; ubyte *dest; struct pipe_texture *pt; int row, col; /* find a texture format we know */ if (pipe->is_format_supported( pipe, PIPE_FORMAT_U_I8, PIPE_TEXTURE )) { format = PIPE_FORMAT_U_I8; cpp = 1; comp = 0; } else if (pipe->is_format_supported( pipe, PIPE_FORMAT_A8R8G8B8_UNORM, PIPE_TEXTURE )) { format = PIPE_FORMAT_A8R8G8B8_UNORM; cpp = 4; comp = 3; /* alpha channel */ /*XXX little-endian dependency */ } else { /* XXX support more formats */ assert( 0 ); } /** * Create a texture. */ pt = st_texture_create(ctx->st, PIPE_TEXTURE_2D, format, 0, width, height, 1, 0); if (!pt) return NULL; if (unpack->BufferObj && unpack->BufferObj->Name) { /* pt->region = buffer_object_region(unpack->BufferObj); */ printf("st_Bitmap (sourcing from PBO not implemented yet)\n"); } surface = pipe->get_tex_surface(pipe, pt, 0, 0, 0); /* map texture surface */ dest = pipe_surface_map(surface); /* Put image into texture surface. * Note that the image is actually going to be upside down in * the texture. We deal with that with texcoords. */ for (row = 0; row < height; row++) { const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack, bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0); ubyte *destRow = dest + row * surface->pitch * cpp; if (unpack->LsbFirst) { /* Lsb first */ GLubyte mask = 1U << (unpack->SkipPixels & 0x7); for (col = 0; col < width; col++) { /* set texel to 255 if bit is set */ destRow[comp] = (*src & mask) ? 255 : 0; destRow += cpp; if (mask == 128U) { src++; mask = 1U; } else { mask = mask << 1; } } /* get ready for next row */ if (mask != 1) src++; } else { /* Msb first */ GLubyte mask = 128U >> (unpack->SkipPixels & 0x7); for (col = 0; col < width; col++) { /* set texel to 255 if bit is set */ destRow[comp] =(*src & mask) ? 255 : 0; destRow += cpp; if (mask == 1U) { src++; mask = 128U; } else { mask = mask >> 1; } } /* get ready for next row */ if (mask != 128) src++; } } /* row */ /* Release surface */ pipe_surface_unmap(surface); pipe_surface_reference(&surface, NULL); pt->format = format; return pt; } static void st_Bitmap(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height, const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap ) { struct st_fragment_program *stfp; struct st_vertex_program *stvp; struct st_context *st = ctx->st; struct pipe_texture *pt; stvp = st_make_passthrough_vertex_shader(ctx->st, GL_TRUE); stfp = combined_bitmap_fragment_program(ctx); st_validate_state(st); pt = make_bitmap_texture(ctx, width, height, unpack, bitmap); if (pt) { draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2], width, height, 1.0, 1.0, pt, stvp, stfp, ctx->Current.RasterColor, GL_FALSE); st->pipe->texture_release(st->pipe, &pt); } } static void copy_stencil_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint dstx, GLint dsty) { struct st_renderbuffer *rbRead = st_renderbuffer(ctx->ReadBuffer->_StencilBuffer); struct st_renderbuffer *rbDraw = st_renderbuffer(ctx->DrawBuffer->_StencilBuffer); struct pipe_surface *psRead = rbRead->surface; struct pipe_surface *psDraw = rbDraw->surface; ubyte *readMap, *drawMap; ubyte *buffer; int i; buffer = malloc(width * height * sizeof(ubyte)); if (!buffer) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)"); return; } /* map the stencil buffers */ readMap = pipe_surface_map(psRead); drawMap = pipe_surface_map(psDraw); /* this will do stencil pixel transfer ops */ st_read_stencil_pixels(ctx, srcx, srcy, width, height, GL_UNSIGNED_BYTE, &ctx->DefaultPacking, buffer); /* draw */ /* XXX PixelZoom not handled yet */ for (i = 0; i < height; i++) { ubyte *dst; const ubyte *src; int y; y = dsty + i; if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { y = ctx->DrawBuffer->Height - y - 1; } dst = drawMap + (y * psDraw->pitch + dstx) * psDraw->cpp; src = buffer + i * width; switch (psDraw->format) { case PIPE_FORMAT_S8Z24_UNORM: { uint *dst4 = (uint *) dst; int j; for (j = 0; j < width; j++) { *dst4 = (*dst4 & 0xffffff) | (src[j] << 24); dst4++; } } break; case PIPE_FORMAT_U_S8: memcpy(dst, src, width); break; default: assert(0); } } free(buffer); /* unmap the stencil buffers */ pipe_surface_unmap(psRead); pipe_surface_unmap(psDraw); } static void st_CopyPixels(GLcontext *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint dstx, GLint dsty, GLenum type) { struct st_context *st = ctx->st; struct pipe_context *pipe = st->pipe; struct st_renderbuffer *rbRead; struct st_vertex_program *stvp; struct st_fragment_program *stfp; struct pipe_surface *psRead; struct pipe_surface *psTex; struct pipe_texture *pt; GLfloat *color; uint format; /* make sure rendering has completed */ pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE); st_validate_state(st); if (type == GL_STENCIL) { /* can't use texturing to do stencil */ copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty); return; } if (type == GL_COLOR) { rbRead = st_renderbuffer(ctx->ReadBuffer->_ColorReadBuffer); color = NULL; stfp = combined_drawpix_fragment_program(ctx); stvp = st_make_passthrough_vertex_shader(ctx->st, GL_FALSE); } else { rbRead = st_renderbuffer(ctx->ReadBuffer->_DepthBuffer); color = ctx->Current.Attrib[VERT_ATTRIB_COLOR0]; stfp = make_fragment_shader_z(ctx->st); stvp = st_make_passthrough_vertex_shader(ctx->st, GL_TRUE); } psRead = rbRead->surface; format = psRead->format; pt = st_texture_create(ctx->st, PIPE_TEXTURE_2D, format, 0, width, height, 1, 0); if (!pt) return; psTex = pipe->get_tex_surface(pipe, pt, 0, 0, 0); if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { srcy = ctx->DrawBuffer->Height - srcy - height; } /* For some drivers (like Xlib) it's not possible to treat the * front/back color buffers as surfaces (they're XImages and Pixmaps). * So, this var tells us if we can use surface_copy here... */ if (st->haveFramebufferSurfaces) { /* copy source framebuffer surface into mipmap/texture */ pipe->surface_copy(pipe, FALSE, psTex, /* dest */ 0, 0, /* destx/y */ psRead, srcx, srcy, width, height); } else { /* alternate path using get/put_tile() */ GLfloat *buf = (GLfloat *) malloc(width * height * 4 * sizeof(GLfloat)); pipe_get_tile_rgba(pipe, psRead, srcx, srcy, width, height, buf); pipe_put_tile_rgba(pipe, psTex, 0, 0, width, height, buf); free(buf); } /* draw textured quad */ draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2], width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY, pt, stvp, stfp, color, GL_TRUE); pipe_surface_reference(&psTex, NULL); st->pipe->texture_release(st->pipe, &pt); } void st_init_drawpixels_functions(struct dd_function_table *functions) { functions->DrawPixels = st_DrawPixels; functions->CopyPixels = st_CopyPixels; functions->Bitmap = st_Bitmap; }