/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: * Keith Whitwell * Brian Paul */ #include "main/imports.h" #include "main/mtypes.h" #include "shader/prog_print.h" #include "shader/programopt.h" #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_shader_tokens.h" #include "draw/draw_context.h" #include "tgsi/tgsi_dump.h" #include "st_debug.h" #include "st_context.h" #include "st_atom.h" #include "st_program.h" #include "st_mesa_to_tgsi.h" #include "cso_cache/cso_context.h" /** * Translate a Mesa vertex shader into a TGSI shader. * \param outputMapping to map vertex program output registers (VERT_RESULT_x) * to TGSI output slots * \param tokensOut destination for TGSI tokens * \return pointer to cached pipe_shader object. */ void st_translate_vertex_program(struct st_context *st, struct st_vertex_program *stvp, const GLuint outputMapping[], const ubyte *outputSemanticName, const ubyte *outputSemanticIndex) { struct pipe_context *pipe = st->pipe; GLuint defaultOutputMapping[VERT_RESULT_MAX]; GLuint attr, i; GLuint num_generic = 0; ubyte vs_input_semantic_name[PIPE_MAX_SHADER_INPUTS]; ubyte vs_input_semantic_index[PIPE_MAX_SHADER_INPUTS]; uint vs_num_inputs = 0; ubyte vs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; ubyte vs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; uint vs_num_outputs = 0; GLbitfield input_flags[MAX_PROGRAM_INPUTS]; GLbitfield output_flags[MAX_PROGRAM_OUTPUTS]; /*memset(&vs, 0, sizeof(vs));*/ memset(input_flags, 0, sizeof(input_flags)); memset(output_flags, 0, sizeof(output_flags)); if (stvp->Base.IsPositionInvariant) _mesa_insert_mvp_code(st->ctx, &stvp->Base); /* * Determine number of inputs, the mappings between VERT_ATTRIB_x * and TGSI generic input indexes, plus input attrib semantic info. */ for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) { if (stvp->Base.Base.InputsRead & (1 << attr)) { const GLuint slot = vs_num_inputs; vs_num_inputs++; stvp->input_to_index[attr] = slot; stvp->index_to_input[slot] = attr; switch (attr) { case VERT_ATTRIB_POS: vs_input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; vs_input_semantic_index[slot] = 0; break; case VERT_ATTRIB_WEIGHT: /* fall-through */ case VERT_ATTRIB_NORMAL: /* just label as a generic */ vs_input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; vs_input_semantic_index[slot] = 0; break; case VERT_ATTRIB_COLOR0: vs_input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; vs_input_semantic_index[slot] = 0; break; case VERT_ATTRIB_COLOR1: vs_input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; vs_input_semantic_index[slot] = 1; break; case VERT_ATTRIB_FOG: vs_input_semantic_name[slot] = TGSI_SEMANTIC_FOG; vs_input_semantic_index[slot] = 0; break; case VERT_ATTRIB_POINT_SIZE: vs_input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE; vs_input_semantic_index[slot] = 0; break; case VERT_ATTRIB_TEX0: case VERT_ATTRIB_TEX1: case VERT_ATTRIB_TEX2: case VERT_ATTRIB_TEX3: case VERT_ATTRIB_TEX4: case VERT_ATTRIB_TEX5: case VERT_ATTRIB_TEX6: case VERT_ATTRIB_TEX7: assert(slot < Elements(vs_input_semantic_name)); vs_input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; vs_input_semantic_index[slot] = num_generic++; break; case VERT_ATTRIB_GENERIC0: case VERT_ATTRIB_GENERIC1: case VERT_ATTRIB_GENERIC2: case VERT_ATTRIB_GENERIC3: case VERT_ATTRIB_GENERIC4: case VERT_ATTRIB_GENERIC5: case VERT_ATTRIB_GENERIC6: case VERT_ATTRIB_GENERIC7: case VERT_ATTRIB_GENERIC8: case VERT_ATTRIB_GENERIC9: case VERT_ATTRIB_GENERIC10: case VERT_ATTRIB_GENERIC11: case VERT_ATTRIB_GENERIC12: case VERT_ATTRIB_GENERIC13: case VERT_ATTRIB_GENERIC14: case VERT_ATTRIB_GENERIC15: assert(attr < VERT_ATTRIB_MAX); assert(slot < Elements(vs_input_semantic_name)); vs_input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; vs_input_semantic_index[slot] = num_generic++; break; default: assert(0); } input_flags[slot] = stvp->Base.Base.InputFlags[attr]; } } #if 0 if (outputMapping && outputSemanticName) { printf("VERT_RESULT written out_slot semantic_name semantic_index\n"); for (attr = 0; attr < VERT_RESULT_MAX; attr++) { printf(" %-2d %c %3d %2d %2d\n", attr, ((stvp->Base.Base.OutputsWritten & (1 << attr)) ? 'Y' : ' '), outputMapping[attr], outputSemanticName[attr], outputSemanticIndex[attr]); } } #endif /* initialize output semantics to defaults */ for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) { assert(i < Elements(vs_output_semantic_name)); vs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC; vs_output_semantic_index[i] = 0; output_flags[i] = 0x0; } num_generic = 0; /* * Determine number of outputs, the (default) output register * mapping and the semantic information for each output. */ for (attr = 0; attr < VERT_RESULT_MAX; attr++) { if (stvp->Base.Base.OutputsWritten & (1 << attr)) { GLuint slot; /* XXX * Pass in the fragment program's input's semantic info. * Use the generic semantic indexes from there, instead of * guessing below. */ if (outputMapping) { slot = outputMapping[attr]; assert(slot != ~0); } else { slot = vs_num_outputs; vs_num_outputs++; defaultOutputMapping[attr] = slot; } switch (attr) { case VERT_RESULT_HPOS: assert(slot == 0); vs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION; vs_output_semantic_index[slot] = 0; break; case VERT_RESULT_COL0: vs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR; vs_output_semantic_index[slot] = 0; break; case VERT_RESULT_COL1: vs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR; vs_output_semantic_index[slot] = 1; break; case VERT_RESULT_BFC0: vs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR; vs_output_semantic_index[slot] = 0; break; case VERT_RESULT_BFC1: vs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR; vs_output_semantic_index[slot] = 1; break; case VERT_RESULT_FOGC: vs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG; vs_output_semantic_index[slot] = 0; break; case VERT_RESULT_PSIZ: vs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE; vs_output_semantic_index[slot] = 0; break; case VERT_RESULT_EDGE: assert(0); break; case VERT_RESULT_TEX0: case VERT_RESULT_TEX1: case VERT_RESULT_TEX2: case VERT_RESULT_TEX3: case VERT_RESULT_TEX4: case VERT_RESULT_TEX5: case VERT_RESULT_TEX6: case VERT_RESULT_TEX7: /* fall-through */ case VERT_RESULT_VAR0: /* fall-through */ default: assert(slot < Elements(vs_output_semantic_name)); if (outputSemanticName) { /* use provided semantic into */ assert(outputSemanticName[attr] != TGSI_SEMANTIC_COUNT); vs_output_semantic_name[slot] = outputSemanticName[attr]; vs_output_semantic_index[slot] = outputSemanticIndex[attr]; } else { /* use default semantic info */ vs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; vs_output_semantic_index[slot] = num_generic++; } } assert(slot < Elements(output_flags)); output_flags[slot] = stvp->Base.Base.OutputFlags[attr]; } } if (outputMapping) { /* find max output slot referenced to compute vs_num_outputs */ GLuint maxSlot = 0; for (attr = 0; attr < VERT_RESULT_MAX; attr++) { if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot) maxSlot = outputMapping[attr]; } vs_num_outputs = maxSlot + 1; } else { outputMapping = defaultOutputMapping; } #if 0 /* debug */ { GLuint i; printf("outputMapping? %d\n", outputMapping ? 1 : 0); if (outputMapping) { printf("attr -> slot\n"); for (i = 0; i < 16; i++) { printf(" %2d %3d\n", i, outputMapping[i]); } } printf("slot sem_name sem_index\n"); for (i = 0; i < vs_num_outputs; i++) { printf(" %2d %d %d\n", i, vs_output_semantic_name[i], vs_output_semantic_index[i]); } } #endif /* free old shader state, if any */ if (stvp->state.tokens) { st_free_tokens(stvp->state.tokens); stvp->state.tokens = NULL; } if (stvp->driver_shader) { cso_delete_vertex_shader(st->cso_context, stvp->driver_shader); stvp->driver_shader = NULL; } stvp->state.tokens = st_translate_mesa_program(st->ctx, TGSI_PROCESSOR_VERTEX, &stvp->Base.Base, /* inputs */ vs_num_inputs, stvp->input_to_index, vs_input_semantic_name, vs_input_semantic_index, NULL, input_flags, /* outputs */ vs_num_outputs, outputMapping, vs_output_semantic_name, vs_output_semantic_index, output_flags ); stvp->num_inputs = vs_num_inputs; stvp->driver_shader = pipe->create_vs_state(pipe, &stvp->state); if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) { _mesa_print_program(&stvp->Base.Base); debug_printf("\n"); } if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump( stvp->state.tokens, 0 ); debug_printf("\n"); } } /** * Translate a Mesa fragment shader into a TGSI shader. * \param inputMapping to map fragment program input registers to TGSI * input slots * \return pointer to cached pipe_shader object. */ void st_translate_fragment_program(struct st_context *st, struct st_fragment_program *stfp, const GLuint inputMapping[]) { struct pipe_context *pipe = st->pipe; GLuint outputMapping[FRAG_RESULT_MAX]; GLuint defaultInputMapping[FRAG_ATTRIB_MAX]; GLuint interpMode[16]; /* XXX size? */ GLuint attr; const GLbitfield inputsRead = stfp->Base.Base.InputsRead; GLuint vslot = 0; GLuint num_generic = 0; uint fs_num_inputs = 0; ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; uint fs_num_outputs = 0; GLbitfield input_flags[MAX_PROGRAM_INPUTS]; GLbitfield output_flags[MAX_PROGRAM_OUTPUTS]; /*memset(&fs, 0, sizeof(fs));*/ memset(input_flags, 0, sizeof(input_flags)); memset(output_flags, 0, sizeof(output_flags)); /* which vertex output goes to the first fragment input: */ if (inputsRead & FRAG_BIT_WPOS) vslot = 0; else vslot = 1; /* * Convert Mesa program inputs to TGSI input register semantics. */ for (attr = 0; attr < FRAG_ATTRIB_MAX; attr++) { if (inputsRead & (1 << attr)) { const GLuint slot = fs_num_inputs; defaultInputMapping[attr] = slot; stfp->input_map[slot] = vslot++; fs_num_inputs++; switch (attr) { case FRAG_ATTRIB_WPOS: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; stfp->input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case FRAG_ATTRIB_COL0: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; stfp->input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case FRAG_ATTRIB_COL1: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; stfp->input_semantic_index[slot] = 1; interpMode[slot] = TGSI_INTERPOLATE_LINEAR; break; case FRAG_ATTRIB_FOGC: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG; stfp->input_semantic_index[slot] = 0; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; case FRAG_ATTRIB_FACE: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_FACE; stfp->input_semantic_index[slot] = num_generic++; interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; break; case FRAG_ATTRIB_PNTC: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; stfp->input_semantic_index[slot] = num_generic++; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; case FRAG_ATTRIB_TEX0: case FRAG_ATTRIB_TEX1: case FRAG_ATTRIB_TEX2: case FRAG_ATTRIB_TEX3: case FRAG_ATTRIB_TEX4: case FRAG_ATTRIB_TEX5: case FRAG_ATTRIB_TEX6: case FRAG_ATTRIB_TEX7: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; stfp->input_semantic_index[slot] = num_generic++; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; break; case FRAG_ATTRIB_VAR0: /* fall-through */ default: stfp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; stfp->input_semantic_index[slot] = num_generic++; interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; } input_flags[slot] = stfp->Base.Base.InputFlags[attr]; } } /* * Semantics and mapping for outputs */ { uint numColors = 0; GLbitfield outputsWritten = stfp->Base.Base.OutputsWritten; /* if z is written, emit that first */ if (outputsWritten & (1 << FRAG_RESULT_DEPTH)) { fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION; fs_output_semantic_index[fs_num_outputs] = 0; outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs; fs_num_outputs++; outputsWritten &= ~(1 << FRAG_RESULT_DEPTH); } /* handle remaning outputs (color) */ for (attr = 0; attr < FRAG_RESULT_MAX; attr++) { if (outputsWritten & (1 << attr)) { switch (attr) { case FRAG_RESULT_DEPTH: /* handled above */ assert(0); break; default: assert(attr == FRAG_RESULT_COLOR || (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX)); fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR; fs_output_semantic_index[fs_num_outputs] = numColors; outputMapping[attr] = fs_num_outputs; numColors++; break; } output_flags[fs_num_outputs] = stfp->Base.Base.OutputFlags[attr]; fs_num_outputs++; } } } if (!inputMapping) inputMapping = defaultInputMapping; stfp->state.tokens = st_translate_mesa_program(st->ctx, TGSI_PROCESSOR_FRAGMENT, &stfp->Base.Base, /* inputs */ fs_num_inputs, inputMapping, stfp->input_semantic_name, stfp->input_semantic_index, interpMode, input_flags, /* outputs */ fs_num_outputs, outputMapping, fs_output_semantic_name, fs_output_semantic_index, output_flags ); stfp->driver_shader = pipe->create_fs_state(pipe, &stfp->state); if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) { _mesa_print_program(&stfp->Base.Base); debug_printf("\n"); } if (ST_DEBUG & DEBUG_TGSI) { tgsi_dump( stfp->state.tokens, 0/*TGSI_DUMP_VERBOSE*/ ); debug_printf("\n"); } } /** * Debug- print current shader text */ void st_print_shaders(GLcontext *ctx) { struct gl_shader_program *shProg = ctx->Shader.CurrentProgram; if (shProg) { GLuint i; for (i = 0; i < shProg->NumShaders; i++) { printf("GLSL shader %u of %u:\n", i, shProg->NumShaders); printf("%s\n", shProg->Shaders[i]->Source); } } }