/* * Mesa 3-D graphics library * Version: 6.5.2 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/context.h" #include "main/macros.h" #include "main/imports.h" #include "s_accum.h" #include "s_context.h" #include "s_masking.h" #include "s_span.h" /* XXX this would have to change for accum buffers with more or less * than 16 bits per color channel. */ #define ACCUM_SCALE16 32767.0F /* * Accumulation buffer notes * * Normally, accumulation buffer values are GLshorts with values in * [-32767, 32767] which represent floating point colors in [-1, 1], * as defined by the OpenGL specification. * * We optimize for the common case used for full-scene antialiasing: * // start with accum buffer cleared to zero * glAccum(GL_LOAD, w); // or GL_ACCUM the first image * glAccum(GL_ACCUM, w); * ... * glAccum(GL_ACCUM, w); * glAccum(GL_RETURN, 1.0); * That is, we start with an empty accumulation buffer and accumulate * n images, each with weight w = 1/n. * In this scenario, we can simply store unscaled integer values in * the accum buffer instead of scaled integers. We'll also keep track * of the w value so when we do GL_RETURN we simply divide the accumulated * values by n (n=1/w). * This lets us avoid _many_ int->float->int conversions. */ #if CHAN_BITS == 8 /* enable the optimization */ #define USE_OPTIMIZED_ACCUM 1 #else #define USE_OPTIMIZED_ACCUM 0 #endif /** * This is called when we fall out of optimized/unscaled accum buffer mode. * That is, we convert each unscaled accum buffer value into a scaled value * representing the range[-1, 1]. */ static void rescale_accum( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; const GLfloat s = swrast->_IntegerAccumScaler * (32767.0F / CHAN_MAXF); assert(rb); assert(rb->_BaseFormat == GL_RGBA); /* add other types in future? */ assert(rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT); assert(swrast->_IntegerAccumMode); if (rb->GetPointer(ctx, rb, 0, 0)) { /* directly-addressable memory */ GLuint y; for (y = 0; y < rb->Height; y++) { GLuint i; GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, 0, y); for (i = 0; i < 4 * rb->Width; i++) { acc[i] = (GLshort) (acc[i] * s); } } } else { /* use get/put row funcs */ GLuint y; for (y = 0; y < rb->Height; y++) { GLshort accRow[MAX_WIDTH * 4]; GLuint i; rb->GetRow(ctx, rb, rb->Width, 0, y, accRow); for (i = 0; i < 4 * rb->Width; i++) { accRow[i] = (GLshort) (accRow[i] * s); } rb->PutRow(ctx, rb, rb->Width, 0, y, accRow, NULL); } } swrast->_IntegerAccumMode = GL_FALSE; } /** * Clear the accumulation Buffer. */ void _swrast_clear_accum_buffer( struct gl_context *ctx, struct gl_renderbuffer *rb ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLuint x, y, width, height; /* No accumulation buffer! Not an error. */ if (!rb || !rb->Data) return; assert(rb->_BaseFormat == GL_RGBA); /* add other types in future? */ assert(rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT); /* bounds, with scissor */ x = ctx->DrawBuffer->_Xmin; y = ctx->DrawBuffer->_Ymin; width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { const GLfloat accScale = 32767.0; GLshort clearVal[4]; GLuint i; clearVal[0] = (GLshort) (ctx->Accum.ClearColor[0] * accScale); clearVal[1] = (GLshort) (ctx->Accum.ClearColor[1] * accScale); clearVal[2] = (GLshort) (ctx->Accum.ClearColor[2] * accScale); clearVal[3] = (GLshort) (ctx->Accum.ClearColor[3] * accScale); for (i = 0; i < height; i++) { rb->PutMonoRow(ctx, rb, width, x, y + i, clearVal, NULL); } } else { /* someday support other sizes */ } /* update optimized accum state vars */ if (ctx->Accum.ClearColor[0] == 0.0 && ctx->Accum.ClearColor[1] == 0.0 && ctx->Accum.ClearColor[2] == 0.0 && ctx->Accum.ClearColor[3] == 0.0) { #if USE_OPTIMIZED_ACCUM swrast->_IntegerAccumMode = GL_TRUE; #else swrast->_IntegerAccumMode = GL_FALSE; #endif swrast->_IntegerAccumScaler = 0.0; /* denotes empty accum buffer */ } else { swrast->_IntegerAccumMode = GL_FALSE; } } static void accum_add(struct gl_context *ctx, GLfloat value, GLint xpos, GLint ypos, GLint width, GLint height ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; assert(rb); /* Leave optimized accum buffer mode */ if (swrast->_IntegerAccumMode) rescale_accum(ctx); if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { const GLshort incr = (GLshort) (value * ACCUM_SCALE16); if (rb->GetPointer(ctx, rb, 0, 0)) { GLint i, j; for (i = 0; i < height; i++) { GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); for (j = 0; j < 4 * width; j++) { acc[j] += incr; } } } else { GLint i, j; for (i = 0; i < height; i++) { GLshort accRow[4 * MAX_WIDTH]; rb->GetRow(ctx, rb, width, xpos, ypos + i, accRow); for (j = 0; j < 4 * width; j++) { accRow[j] += incr; } rb->PutRow(ctx, rb, width, xpos, ypos + i, accRow, NULL); } } } else { /* other types someday */ } } static void accum_mult(struct gl_context *ctx, GLfloat mult, GLint xpos, GLint ypos, GLint width, GLint height ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; assert(rb); /* Leave optimized accum buffer mode */ if (swrast->_IntegerAccumMode) rescale_accum(ctx); if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { if (rb->GetPointer(ctx, rb, 0, 0)) { GLint i, j; for (i = 0; i < height; i++) { GLshort *acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); for (j = 0; j < 4 * width; j++) { acc[j] = (GLshort) (acc[j] * mult); } } } else { GLint i, j; for (i = 0; i < height; i++) { GLshort accRow[4 * MAX_WIDTH]; rb->GetRow(ctx, rb, width, xpos, ypos + i, accRow); for (j = 0; j < 4 * width; j++) { accRow[j] = (GLshort) (accRow[j] * mult); } rb->PutRow(ctx, rb, width, xpos, ypos + i, accRow, NULL); } } } else { /* other types someday */ } } static void accum_accum(struct gl_context *ctx, GLfloat value, GLint xpos, GLint ypos, GLint width, GLint height ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL); assert(rb); if (!ctx->ReadBuffer->_ColorReadBuffer) { /* no read buffer - OK */ return; } /* May have to leave optimized accum buffer mode */ if (swrast->_IntegerAccumScaler == 0.0 && value > 0.0 && value <= 1.0) swrast->_IntegerAccumScaler = value; if (swrast->_IntegerAccumMode && value != swrast->_IntegerAccumScaler) rescale_accum(ctx); if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF; GLshort accumRow[4 * MAX_WIDTH]; GLchan rgba[MAX_WIDTH][4]; GLint i; for (i = 0; i < height; i++) { GLshort *acc; if (directAccess) { acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); } else { rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow); acc = accumRow; } /* read colors from color buffer */ _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width, xpos, ypos + i, CHAN_TYPE, rgba); /* do accumulation */ if (swrast->_IntegerAccumMode) { /* simply add integer color values into accum buffer */ GLint j; for (j = 0; j < width; j++) { acc[j * 4 + 0] += rgba[j][RCOMP]; acc[j * 4 + 1] += rgba[j][GCOMP]; acc[j * 4 + 2] += rgba[j][BCOMP]; acc[j * 4 + 3] += rgba[j][ACOMP]; } } else { /* scaled integer (or float) accum buffer */ GLint j; for (j = 0; j < width; j++) { acc[j * 4 + 0] += (GLshort) ((GLfloat) rgba[j][RCOMP] * scale); acc[j * 4 + 1] += (GLshort) ((GLfloat) rgba[j][GCOMP] * scale); acc[j * 4 + 2] += (GLshort) ((GLfloat) rgba[j][BCOMP] * scale); acc[j * 4 + 3] += (GLshort) ((GLfloat) rgba[j][ACOMP] * scale); } } if (!directAccess) { rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL); } } } else { /* other types someday */ } } static void accum_load(struct gl_context *ctx, GLfloat value, GLint xpos, GLint ypos, GLint width, GLint height ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer; const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL); assert(rb); if (!ctx->ReadBuffer->_ColorReadBuffer) { /* no read buffer - OK */ return; } /* This is a change to go into optimized accum buffer mode */ if (value > 0.0 && value <= 1.0) { #if USE_OPTIMIZED_ACCUM swrast->_IntegerAccumMode = GL_TRUE; #else swrast->_IntegerAccumMode = GL_FALSE; #endif swrast->_IntegerAccumScaler = value; } else { swrast->_IntegerAccumMode = GL_FALSE; swrast->_IntegerAccumScaler = 0.0; } if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) { const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF; GLshort accumRow[4 * MAX_WIDTH]; GLchan rgba[MAX_WIDTH][4]; GLint i; for (i = 0; i < height; i++) { GLshort *acc; if (directAccess) { acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i); } else { rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow); acc = accumRow; } /* read colors from color buffer */ _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width, xpos, ypos + i, CHAN_TYPE, rgba); /* do load */ if (swrast->_IntegerAccumMode) { /* just copy values in */ GLint j; assert(swrast->_IntegerAccumScaler > 0.0); assert(swrast->_IntegerAccumScaler <= 1.0); for (j = 0; j < width; j++) { acc[j * 4 + 0] = rgba[j][RCOMP]; acc[j * 4 + 1] = rgba[j][GCOMP]; acc[j * 4 + 2] = rgba[j][BCOMP]; acc[j * 4 + 3] = rgba[j][ACOMP]; } } else { /* scaled integer (or float) accum buffer */ GLint j; for (j = 0; j < width; j++) { acc[j * 4 + 0] = (GLshort) ((GLfloat) rgba[j][RCOMP] * scale); acc[j * 4 + 1] = (GLshort) ((GLfloat) rgba[j][GCOMP] * scale); acc[j * 4 + 2] = (GLshort) ((GLfloat) rgba[j][BCOMP] * scale); acc[j * 4 + 3] = (GLshort) ((GLfloat) rgba[j][ACOMP] * scale); } } if (!directAccess) { rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL); } } } } static void accum_return(struct gl_context *ctx, GLfloat value, GLint xpos, GLint ypos, GLint width, GLint height ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *accumRb = fb->Attachment[BUFFER_ACCUM].Renderbuffer; const GLboolean directAccess = (accumRb->GetPointer(ctx, accumRb, 0, 0) != NULL); static GLchan multTable[32768]; static GLfloat prevMult = 0.0; const GLfloat mult = swrast->_IntegerAccumScaler; const GLint max = MIN2((GLint) (256 / mult), 32767); /* May have to leave optimized accum buffer mode */ if (swrast->_IntegerAccumMode && value != 1.0) rescale_accum(ctx); if (swrast->_IntegerAccumMode && swrast->_IntegerAccumScaler > 0) { /* build lookup table to avoid many floating point multiplies */ GLint j; assert(swrast->_IntegerAccumScaler <= 1.0); if (mult != prevMult) { for (j = 0; j < max; j++) multTable[j] = IROUND((GLfloat) j * mult); prevMult = mult; } } if (accumRb->DataType == GL_SHORT || accumRb->DataType == GL_UNSIGNED_SHORT) { const GLfloat scale = value * CHAN_MAXF / ACCUM_SCALE16; GLuint buffer; GLint i; /* XXX maybe transpose the 'i' and 'buffer' loops??? */ for (i = 0; i < height; i++) { GLshort accumRow[4 * MAX_WIDTH]; GLshort *acc; SWspan span; /* init color span */ INIT_SPAN(span, GL_BITMAP); span.end = width; span.arrayMask = SPAN_RGBA; span.x = xpos; span.y = ypos + i; if (directAccess) { acc = (GLshort *) accumRb->GetPointer(ctx, accumRb, xpos, ypos +i); } else { accumRb->GetRow(ctx, accumRb, width, xpos, ypos + i, accumRow); acc = accumRow; } /* get the colors to return */ if (swrast->_IntegerAccumMode) { GLint j; for (j = 0; j < width; j++) { ASSERT(acc[j * 4 + 0] < max); ASSERT(acc[j * 4 + 1] < max); ASSERT(acc[j * 4 + 2] < max); ASSERT(acc[j * 4 + 3] < max); span.array->rgba[j][RCOMP] = multTable[acc[j * 4 + 0]]; span.array->rgba[j][GCOMP] = multTable[acc[j * 4 + 1]]; span.array->rgba[j][BCOMP] = multTable[acc[j * 4 + 2]]; span.array->rgba[j][ACOMP] = multTable[acc[j * 4 + 3]]; } } else { /* scaled integer (or float) accum buffer */ GLint j; for (j = 0; j < width; j++) { #if CHAN_BITS==32 GLchan r = acc[j * 4 + 0] * scale; GLchan g = acc[j * 4 + 1] * scale; GLchan b = acc[j * 4 + 2] * scale; GLchan a = acc[j * 4 + 3] * scale; #else GLint r = IROUND( (GLfloat) (acc[j * 4 + 0]) * scale ); GLint g = IROUND( (GLfloat) (acc[j * 4 + 1]) * scale ); GLint b = IROUND( (GLfloat) (acc[j * 4 + 2]) * scale ); GLint a = IROUND( (GLfloat) (acc[j * 4 + 3]) * scale ); #endif span.array->rgba[j][RCOMP] = CLAMP( r, 0, CHAN_MAX ); span.array->rgba[j][GCOMP] = CLAMP( g, 0, CHAN_MAX ); span.array->rgba[j][BCOMP] = CLAMP( b, 0, CHAN_MAX ); span.array->rgba[j][ACOMP] = CLAMP( a, 0, CHAN_MAX ); } } /* store colors */ for (buffer = 0; buffer < fb->_NumColorDrawBuffers; buffer++) { struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buffer]; const GLboolean masking = (!ctx->Color.ColorMask[buffer][RCOMP] || !ctx->Color.ColorMask[buffer][GCOMP] || !ctx->Color.ColorMask[buffer][BCOMP] || !ctx->Color.ColorMask[buffer][ACOMP]); if (masking) { _swrast_mask_rgba_span(ctx, rb, &span, buffer); } rb->PutRow(ctx, rb, width, xpos, ypos + i, span.array->rgba, NULL); } } } else { /* other types someday */ } } /** * Software fallback for glAccum. */ void _swrast_Accum(struct gl_context *ctx, GLenum op, GLfloat value) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLint xpos, ypos, width, height; if (swrast->NewState) _swrast_validate_derived( ctx ); if (!ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer) { _mesa_warning(ctx, "Calling glAccum() without an accumulation buffer"); return; } swrast_render_start(ctx); /* Compute region after calling swrast_render_start() so that we know the * drawbuffer's size/bounds are up to date. */ xpos = ctx->DrawBuffer->_Xmin; ypos = ctx->DrawBuffer->_Ymin; width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; switch (op) { case GL_ADD: if (value != 0.0F) { accum_add(ctx, value, xpos, ypos, width, height); } break; case GL_MULT: if (value != 1.0F) { accum_mult(ctx, value, xpos, ypos, width, height); } break; case GL_ACCUM: if (value != 0.0F) { accum_accum(ctx, value, xpos, ypos, width, height); } break; case GL_LOAD: accum_load(ctx, value, xpos, ypos, width, height); break; case GL_RETURN: accum_return(ctx, value, xpos, ypos, width, height); break; default: _mesa_problem(ctx, "invalid mode in _swrast_Accum()"); break; } swrast_render_finish(ctx); }