/* $Id: s_copypix.c,v 1.14 2001/03/07 05:06:12 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "colormac.h" #include "context.h" #include "convolve.h" #include "feedback.h" #include "macros.h" #include "mem.h" #include "mmath.h" #include "pixel.h" #include "s_context.h" #include "s_depth.h" #include "s_histogram.h" #include "s_pixeltex.h" #include "s_span.h" #include "s_stencil.h" #include "s_texture.h" #include "s_zoom.h" /* * Determine if there's overlap in an image copy. * This test also compensates for the fact that copies are done from * bottom to top and overlaps can sometimes be handled correctly * without making a temporary image copy. */ static GLboolean regions_overlap(GLint srcx, GLint srcy, GLint dstx, GLint dsty, GLint width, GLint height, GLfloat zoomX, GLfloat zoomY) { if (zoomX == 1.0 && zoomY == 1.0) { /* no zoom */ if (srcx >= dstx + width || (srcx + width <= dstx)) { return GL_FALSE; } else if (srcy < dsty) { /* this is OK */ return GL_FALSE; } else { return GL_TRUE; } } else { /* add one pixel of slop when zooming, just to be safe */ if ((srcx > dstx + (width * zoomX) + 1) || (srcx + width + 1 < dstx)) { return GL_FALSE; } else if ((srcy < dsty) && (srcy + height < dsty + (height * zoomY))) { return GL_FALSE; } else if ((srcy > dsty) && (srcy + height > dsty + (height * zoomY))) { return GL_FALSE; } else { return GL_TRUE; } } } /* * RGBA copypixels with convolution. */ static void copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty) { GLdepth zspan[MAX_WIDTH]; GLboolean quick_draw; GLint row; GLboolean changeBuffer; GLchan *saveReadAlpha; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLuint transferOps = ctx->_ImageTransferState; GLfloat *dest, *tmpImage, *convImage; if (ctx->Depth.Test || ctx->Fog.Enabled) { /* fill in array of z values */ GLdepth z = (GLdepth) (ctx->Current.RasterPos[2] * ctx->DepthMax); GLint i; for (i = 0; i < width; i++) { zspan[i] = z; } } if (SWRAST_CONTEXT(ctx)->_RasterMask == 0 && !zoom && destx >= 0 && destx + width <= ctx->DrawBuffer->Width) { quick_draw = GL_TRUE; } else { quick_draw = GL_FALSE; } /* If read and draw buffer are different we must do buffer switching */ saveReadAlpha = ctx->ReadBuffer->Alpha; changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer || ctx->DrawBuffer != ctx->ReadBuffer; /* allocate space for GLfloat image */ tmpImage = (GLfloat *) MALLOC(width * height * 4 * sizeof(GLfloat)); if (!tmpImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } convImage = (GLfloat *) MALLOC(width * height * 4 * sizeof(GLfloat)); if (!convImage) { FREE(tmpImage); _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } dest = tmpImage; if (changeBuffer) { (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); if (ctx->Pixel.DriverReadBuffer == GL_FRONT_LEFT) ctx->ReadBuffer->Alpha = ctx->ReadBuffer->FrontLeftAlpha; else if (ctx->Pixel.DriverReadBuffer == GL_BACK_LEFT) ctx->ReadBuffer->Alpha = ctx->ReadBuffer->BackLeftAlpha; else if (ctx->Pixel.DriverReadBuffer == GL_FRONT_RIGHT) ctx->ReadBuffer->Alpha = ctx->ReadBuffer->FrontRightAlpha; else ctx->ReadBuffer->Alpha = ctx->ReadBuffer->BackRightAlpha; } /* read source image */ dest = tmpImage; for (row = 0; row < height; row++) { GLchan rgba[MAX_WIDTH][4]; GLint i; _mesa_read_rgba_span(ctx, ctx->ReadBuffer, width, srcx, srcy + row, rgba); /* convert GLchan to GLfloat */ for (i = 0; i < width; i++) { *dest++ = (GLfloat) rgba[i][RCOMP] * (1.0F / CHAN_MAXF); *dest++ = (GLfloat) rgba[i][GCOMP] * (1.0F / CHAN_MAXF); *dest++ = (GLfloat) rgba[i][BCOMP] * (1.0F / CHAN_MAXF); *dest++ = (GLfloat) rgba[i][ACOMP] * (1.0F / CHAN_MAXF); } } /* read from the draw buffer again (in case of blending) */ if (changeBuffer) { (*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer, ctx->Color.DriverDrawBuffer ); ctx->ReadBuffer->Alpha = saveReadAlpha; } /* do image transfer ops up until convolution */ for (row = 0; row < height; row++) { GLfloat (*rgba)[4] = (GLfloat (*)[4]) tmpImage + row * width * 4; /* scale & bias */ if (transferOps & IMAGE_SCALE_BIAS_BIT) { _mesa_scale_and_bias_rgba(ctx, width, rgba, ctx->Pixel.RedScale, ctx->Pixel.GreenScale, ctx->Pixel.BlueScale, ctx->Pixel.AlphaScale, ctx->Pixel.RedBias, ctx->Pixel.GreenBias, ctx->Pixel.BlueBias, ctx->Pixel.AlphaBias); } /* color map lookup */ if (transferOps & IMAGE_MAP_COLOR_BIT) { _mesa_map_rgba(ctx, width, rgba); } /* GL_COLOR_TABLE lookup */ if (transferOps & IMAGE_COLOR_TABLE_BIT) { _mesa_lookup_rgba(&ctx->ColorTable, width, rgba); } } /* do convolution */ if (ctx->Pixel.Convolution2DEnabled) { _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage); } else { ASSERT(ctx->Pixel.Separable2DEnabled); _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage); } FREE(tmpImage); /* do remaining image transfer ops */ for (row = 0; row < height; row++) { GLfloat (*rgba)[4] = (GLfloat (*)[4]) convImage + row * width * 4; /* GL_POST_CONVOLUTION_COLOR_TABLE lookup */ if (transferOps & IMAGE_POST_CONVOLUTION_COLOR_TABLE_BIT) { _mesa_lookup_rgba(&ctx->PostConvolutionColorTable, width, rgba); } /* color matrix */ if (transferOps & IMAGE_COLOR_MATRIX_BIT) { _mesa_transform_rgba(ctx, width, rgba); } /* GL_POST_COLOR_MATRIX_COLOR_TABLE lookup */ if (transferOps & IMAGE_POST_COLOR_MATRIX_COLOR_TABLE_BIT) { _mesa_lookup_rgba(&ctx->PostColorMatrixColorTable, width, rgba); } /* update histogram count */ if (transferOps & IMAGE_HISTOGRAM_BIT) { _mesa_update_histogram(ctx, width, (CONST GLfloat (*)[4]) rgba); } /* update min/max */ if (transferOps & IMAGE_MIN_MAX_BIT) { _mesa_update_minmax(ctx, width, (CONST GLfloat (*)[4]) rgba); } } for (row = 0; row < height; row++) { const GLfloat *src = convImage + row * width * 4; GLchan rgba[MAX_WIDTH][4]; GLint i, dy; /* clamp to [0,1] and convert float back to chan */ for (i = 0; i < width; i++) { GLint r = (GLint) (src[i * 4 + RCOMP] * CHAN_MAXF); GLint g = (GLint) (src[i * 4 + GCOMP] * CHAN_MAXF); GLint b = (GLint) (src[i * 4 + BCOMP] * CHAN_MAXF); GLint a = (GLint) (src[i * 4 + ACOMP] * CHAN_MAXF); rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); } if (ctx->Texture._ReallyEnabled && ctx->Pixel.PixelTextureEnabled) { GLfloat s[MAX_WIDTH], t[MAX_WIDTH], r[MAX_WIDTH], q[MAX_WIDTH]; GLchan primary_rgba[MAX_WIDTH][4]; GLuint unit; /* XXX not sure how multitexture is supposed to work here */ MEMCPY(primary_rgba, rgba, 4 * width * sizeof(GLchan)); for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { _mesa_pixeltexgen(ctx, width, (const GLchan (*)[4]) rgba, s, t, r, q); _swrast_texture_fragments(ctx, unit, width, s, t, r, NULL, (CONST GLchan (*)[4]) primary_rgba, rgba); } } /* write row to framebuffer */ dy = desty + row; if (quick_draw && dy >= 0 && dy < ctx->DrawBuffer->Height) { (*ctx->Driver.WriteRGBASpan)( ctx, width, destx, dy, (const GLchan (*)[4])rgba, NULL ); } else if (zoom) { _mesa_write_zoomed_rgba_span( ctx, width, destx, dy, zspan, 0, (const GLchan (*)[4])rgba, desty); } else { _mesa_write_rgba_span( ctx, width, destx, dy, zspan, 0, rgba, GL_BITMAP ); } } FREE(convImage); } /* * RGBA copypixels */ static void copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty) { GLdepth zspan[MAX_WIDTH]; GLchan rgba[MAX_WIDTH][4]; GLchan *tmpImage,*p; GLboolean quick_draw; GLint sy, dy, stepy; GLint i, j; GLboolean changeBuffer; GLchan *saveReadAlpha; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; const GLuint transferOps = ctx->_ImageTransferState; if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty); return; } /* Determine if copy should be done bottom-to-top or top-to-bottom */ if (srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); if (ctx->Depth.Test || ctx->Fog.Enabled) { /* fill in array of z values */ GLdepth z = (GLdepth) (ctx->Current.RasterPos[2] * ctx->DepthMax); for (i=0;i_RasterMask == 0 && !zoom && destx >= 0 && destx + width <= ctx->DrawBuffer->Width) { quick_draw = GL_TRUE; } else { quick_draw = GL_FALSE; } /* If read and draw buffer are different we must do buffer switching */ saveReadAlpha = ctx->ReadBuffer->Alpha; changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer || ctx->DrawBuffer != ctx->ReadBuffer; (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); if (overlapping) { GLint ssy = sy; tmpImage = (GLchan *) MALLOC(width * height * sizeof(GLchan) * 4); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; if (changeBuffer) { (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); if (ctx->Pixel.DriverReadBuffer == GL_FRONT_LEFT) ctx->ReadBuffer->Alpha = ctx->ReadBuffer->FrontLeftAlpha; else if (ctx->Pixel.DriverReadBuffer == GL_BACK_LEFT) ctx->ReadBuffer->Alpha = ctx->ReadBuffer->BackLeftAlpha; else if (ctx->Pixel.DriverReadBuffer == GL_FRONT_RIGHT) ctx->ReadBuffer->Alpha = ctx->ReadBuffer->FrontRightAlpha; else ctx->ReadBuffer->Alpha = ctx->ReadBuffer->BackRightAlpha; } for (j = 0; j < height; j++, ssy += stepy) { _mesa_read_rgba_span( ctx, ctx->ReadBuffer, width, srcx, ssy, (GLchan (*)[4]) p ); p += (width * sizeof(GLchan) * 4); } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warnings */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { /* Get source pixels */ if (overlapping) { /* get from buffered image */ MEMCPY(rgba, p, width * sizeof(GLchan) * 4); p += (width * sizeof(GLchan) * 4); } else { /* get from framebuffer */ if (changeBuffer) { (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); if (ctx->Pixel.DriverReadBuffer == GL_FRONT_LEFT) { ctx->ReadBuffer->Alpha = ctx->ReadBuffer->FrontLeftAlpha; } else if (ctx->Pixel.DriverReadBuffer == GL_BACK_LEFT) { ctx->ReadBuffer->Alpha = ctx->ReadBuffer->BackLeftAlpha; } else if (ctx->Pixel.DriverReadBuffer == GL_FRONT_RIGHT) { ctx->ReadBuffer->Alpha = ctx->ReadBuffer->FrontRightAlpha; } else { ctx->ReadBuffer->Alpha = ctx->ReadBuffer->BackRightAlpha; } } _mesa_read_rgba_span( ctx, ctx->ReadBuffer, width, srcx, sy, rgba ); } if (changeBuffer) { /* read from the draw buffer again (in case of blending) */ (*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer, ctx->Color.DriverDrawBuffer ); ctx->ReadBuffer->Alpha = saveReadAlpha; } if (transferOps) { const GLfloat scale = (1.0F / CHAN_MAXF); GLfloat rgbaFloat[MAX_WIDTH][4]; GLint k; /* convert chan to float */ for (k = 0; k < width; k++) { rgbaFloat[k][RCOMP] = (GLfloat) rgba[k][RCOMP] * scale; rgbaFloat[k][GCOMP] = (GLfloat) rgba[k][GCOMP] * scale; rgbaFloat[k][BCOMP] = (GLfloat) rgba[k][BCOMP] * scale; rgbaFloat[k][ACOMP] = (GLfloat) rgba[k][ACOMP] * scale; } /* scale & bias */ if (transferOps & IMAGE_SCALE_BIAS_BIT) { _mesa_scale_and_bias_rgba(ctx, width, rgbaFloat, ctx->Pixel.RedScale, ctx->Pixel.GreenScale, ctx->Pixel.BlueScale, ctx->Pixel.AlphaScale, ctx->Pixel.RedBias, ctx->Pixel.GreenBias, ctx->Pixel.BlueBias, ctx->Pixel.AlphaBias); } /* color map lookup */ if (transferOps & IMAGE_MAP_COLOR_BIT) { _mesa_map_rgba(ctx, width, rgbaFloat); } /* GL_COLOR_TABLE lookup */ if (transferOps & IMAGE_COLOR_TABLE_BIT) { _mesa_lookup_rgba(&ctx->ColorTable, width, rgbaFloat); } /* convolution */ if (transferOps & IMAGE_CONVOLUTION_BIT) { /* XXX to do */ } /* GL_POST_CONVOLUTION_RED/GREEN/BLUE/ALPHA_SCALE/BIAS */ if (transferOps & IMAGE_POST_CONVOLUTION_SCALE_BIAS) { _mesa_scale_and_bias_rgba(ctx, width, rgbaFloat, ctx->Pixel.PostConvolutionScale[RCOMP], ctx->Pixel.PostConvolutionScale[GCOMP], ctx->Pixel.PostConvolutionScale[BCOMP], ctx->Pixel.PostConvolutionScale[ACOMP], ctx->Pixel.PostConvolutionBias[RCOMP], ctx->Pixel.PostConvolutionBias[GCOMP], ctx->Pixel.PostConvolutionBias[BCOMP], ctx->Pixel.PostConvolutionBias[ACOMP]); } /* GL_POST_CONVOLUTION_COLOR_TABLE lookup */ if (transferOps & IMAGE_POST_CONVOLUTION_COLOR_TABLE_BIT) { _mesa_lookup_rgba(&ctx->PostConvolutionColorTable, width, rgbaFloat); } /* color matrix */ if (transferOps & IMAGE_COLOR_MATRIX_BIT) { _mesa_transform_rgba(ctx, width, rgbaFloat); } /* GL_POST_COLOR_MATRIX_COLOR_TABLE lookup */ if (transferOps & IMAGE_POST_COLOR_MATRIX_COLOR_TABLE_BIT) { _mesa_lookup_rgba(&ctx->PostColorMatrixColorTable, width, rgbaFloat); } /* update histogram count */ if (transferOps & IMAGE_HISTOGRAM_BIT) { _mesa_update_histogram(ctx, width, (CONST GLfloat (*)[4]) rgbaFloat); } /* update min/max */ if (transferOps & IMAGE_MIN_MAX_BIT) { _mesa_update_minmax(ctx, width, (CONST GLfloat (*)[4]) rgbaFloat); } /* clamp to [0,1] and convert float back to chan */ for (k = 0; k < width; k++) { GLint r = (GLint) (rgbaFloat[k][RCOMP] * CHAN_MAXF); GLint g = (GLint) (rgbaFloat[k][GCOMP] * CHAN_MAXF); GLint b = (GLint) (rgbaFloat[k][BCOMP] * CHAN_MAXF); GLint a = (GLint) (rgbaFloat[k][ACOMP] * CHAN_MAXF); rgba[k][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); rgba[k][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); rgba[k][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); rgba[k][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); } } if (ctx->Texture._ReallyEnabled && ctx->Pixel.PixelTextureEnabled) { GLfloat s[MAX_WIDTH], t[MAX_WIDTH], r[MAX_WIDTH], q[MAX_WIDTH]; GLchan primary_rgba[MAX_WIDTH][4]; GLuint unit; /* XXX not sure how multitexture is supposed to work here */ MEMCPY(primary_rgba, rgba, 4 * width * sizeof(GLchan)); for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { _mesa_pixeltexgen(ctx, width, (const GLchan (*)[4]) rgba, s, t, r, q); _swrast_texture_fragments(ctx, unit, width, s, t, r, NULL, (CONST GLchan (*)[4]) primary_rgba, rgba); } } if (quick_draw && dy >= 0 && dy < ctx->DrawBuffer->Height) { (*ctx->Driver.WriteRGBASpan)( ctx, width, destx, dy, (const GLchan (*)[4])rgba, NULL ); } else if (zoom) { _mesa_write_zoomed_rgba_span( ctx, width, destx, dy, zspan, 0, (const GLchan (*)[4])rgba, desty); } else { _mesa_write_rgba_span( ctx, width, destx, dy, zspan, 0, rgba, GL_BITMAP ); } } /* Restore pixel source to be the draw buffer (for blending, etc) */ (*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer, ctx->Color.DriverDrawBuffer ); if (overlapping) FREE(tmpImage); } static void copy_ci_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { GLdepth zspan[MAX_WIDTH]; GLuint *tmpImage,*p; GLint sy, dy, stepy; GLint i, j; GLboolean changeBuffer; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLboolean shift_or_offset = ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset; GLint overlapping; /* Determine if copy should be bottom-to-top or top-to-bottom */ if (srcyPixel.ZoomX, ctx->Pixel.ZoomY); if (ctx->Depth.Test || ctx->Fog.Enabled) { /* fill in array of z values */ GLdepth z = (GLdepth) (ctx->Current.RasterPos[2] * ctx->DepthMax); for (i=0;iPixel.ReadBuffer != ctx->Color.DrawBuffer || ctx->DrawBuffer != ctx->ReadBuffer; (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); if (overlapping) { GLint ssy = sy; tmpImage = (GLuint *) MALLOC(width * height * sizeof(GLuint)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; if (changeBuffer) { (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); } for (j = 0; j < height; j++, ssy += stepy) { _mesa_read_index_span( ctx, ctx->ReadBuffer, width, srcx, ssy, p ); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { GLuint indexes[MAX_WIDTH]; if (overlapping) { MEMCPY(indexes, p, width * sizeof(GLuint)); p += width; } else { if (changeBuffer) { (*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer, ctx->Pixel.DriverReadBuffer ); } _mesa_read_index_span( ctx, ctx->ReadBuffer, width, srcx, sy, indexes ); } if (changeBuffer) { /* set read buffer back to draw buffer (in case of logicops) */ (*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer, ctx->Color.DriverDrawBuffer ); } if (shift_or_offset) { _mesa_shift_and_offset_ci( ctx, width, indexes ); } if (ctx->Pixel.MapColorFlag) { _mesa_map_ci( ctx, width, indexes ); } if (zoom) { _mesa_write_zoomed_index_span( ctx, width, destx, dy, zspan, 0, indexes, desty ); } else { _mesa_write_index_span(ctx, width, destx, dy, zspan, 0, indexes, GL_BITMAP); } } /* Restore pixel source to be the draw buffer (for blending, etc) */ (*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer, ctx->Color.DriverDrawBuffer ); if (overlapping) FREE(tmpImage); } /* * TODO: Optimize!!!! */ static void copy_depth_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { GLfloat depth[MAX_WIDTH]; GLdepth zspan[MAX_WIDTH]; GLfloat *p, *tmpImage; GLuint indexes[MAX_WIDTH]; GLchan rgba[MAX_WIDTH][4]; GLint sy, dy, stepy; GLint i, j; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; if (!ctx->Visual.depthBits) { _mesa_error( ctx, GL_INVALID_OPERATION, "glCopyPixels" ); return; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (srcyPixel.ZoomX, ctx->Pixel.ZoomY); /* setup colors or indexes */ if (ctx->Visual.rgbMode) { GLuint *rgba32 = (GLuint *) rgba; GLuint color = *(GLuint*)( ctx->Current.Color ); for (i = 0; i < width; i++) { rgba32[i] = color; } } else { for (i = 0; i < width; i++) { indexes[i] = ctx->Current.Index; } } if (overlapping) { GLint ssy = sy; tmpImage = (GLfloat *) MALLOC(width * height * sizeof(GLfloat)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _mesa_read_depth_span_float(ctx, width, srcx, ssy, p); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { if (overlapping) { MEMCPY(depth, p, width * sizeof(GLfloat)); p += width; } else { _mesa_read_depth_span_float(ctx, width, srcx, sy, depth); } for (i = 0; i < width; i++) { GLfloat d = depth[i] * ctx->Pixel.DepthScale + ctx->Pixel.DepthBias; zspan[i] = (GLdepth) (CLAMP(d, 0.0F, 1.0F) * ctx->DepthMax); } if (ctx->Visual.rgbMode) { if (zoom) { _mesa_write_zoomed_rgba_span( ctx, width, destx, dy, zspan, 0, (const GLchan (*)[4])rgba, desty ); } else { _mesa_write_rgba_span( ctx, width, destx, dy, zspan, 0, rgba, GL_BITMAP); } } else { if (zoom) { _mesa_write_zoomed_index_span( ctx, width, destx, dy, zspan, 0, indexes, desty ); } else { _mesa_write_index_span( ctx, width, destx, dy, zspan, 0, indexes, GL_BITMAP ); } } } if (overlapping) FREE(tmpImage); } static void copy_stencil_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { GLint sy, dy, stepy; GLint j; GLstencil *p, *tmpImage; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLboolean shift_or_offset = ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset; GLint overlapping; if (!ctx->Visual.stencilBits) { _mesa_error( ctx, GL_INVALID_OPERATION, "glCopyPixels" ); return; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); if (overlapping) { GLint ssy = sy; tmpImage = (GLstencil *) MALLOC(width * height * sizeof(GLstencil)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _mesa_read_stencil_span( ctx, width, srcx, ssy, p ); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { GLstencil stencil[MAX_WIDTH]; if (overlapping) { MEMCPY(stencil, p, width * sizeof(GLstencil)); p += width; } else { _mesa_read_stencil_span( ctx, width, srcx, sy, stencil ); } if (shift_or_offset) { _mesa_shift_and_offset_stencil( ctx, width, stencil ); } if (ctx->Pixel.MapStencilFlag) { _mesa_map_stencil( ctx, width, stencil ); } if (zoom) { _mesa_write_zoomed_stencil_span( ctx, width, destx, dy, stencil, desty ); } else { _mesa_write_stencil_span( ctx, width, destx, dy, stencil ); } } if (overlapping) FREE(tmpImage); } void _swrast_CopyPixels( GLcontext *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint destx, GLint desty, GLenum type ) { if (SWRAST_CONTEXT(ctx)->NewState) _swrast_validate_derived( ctx ); if (type == GL_COLOR && ctx->Visual.rgbMode) { copy_rgba_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else if (type == GL_COLOR && !ctx->Visual.rgbMode) { copy_ci_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else if (type == GL_DEPTH) { copy_depth_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else if (type == GL_STENCIL) { copy_stencil_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else { _mesa_error( ctx, GL_INVALID_ENUM, "glCopyPixels" ); } }