/* * Mesa 3-D graphics library * Version: 6.3 * * Copyright (C) 1999-2004 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Regarding GL_NV_fragment_program: * * Portions of this software may use or implement intellectual * property owned and licensed by NVIDIA Corporation. NVIDIA disclaims * any and all warranties with respect to such intellectual property, * including any use thereof or modifications thereto. */ #include "glheader.h" #include "colormac.h" #include "context.h" #include "nvfragprog.h" #include "program.h" #include "s_nvfragprog.h" #include "s_span.h" /* if 1, print some debugging info */ #define DEBUG_FRAG 0 /** * Fetch a texel. */ static void fetch_texel( GLcontext *ctx, const GLfloat texcoord[4], GLfloat lambda, GLuint unit, GLfloat color[4] ) { GLchan rgba[4]; SWcontext *swrast = SWRAST_CONTEXT(ctx); /* XXX use a float-valued TextureSample routine here!!! */ swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current, 1, (const GLfloat (*)[4]) texcoord, &lambda, &rgba); color[0] = CHAN_TO_FLOAT(rgba[0]); color[1] = CHAN_TO_FLOAT(rgba[1]); color[2] = CHAN_TO_FLOAT(rgba[2]); color[3] = CHAN_TO_FLOAT(rgba[3]); } /** * Fetch a texel with the given partial derivatives to compute a level * of detail in the mipmap. */ static void fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4], const GLfloat texdx[4], const GLfloat texdy[4], GLuint unit, GLfloat color[4] ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current; const struct gl_texture_image *texImg = texObj->Image[0][texObj->BaseLevel]; const GLfloat texW = (GLfloat) texImg->WidthScale; const GLfloat texH = (GLfloat) texImg->HeightScale; GLchan rgba[4]; GLfloat lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */ texdx[1], texdy[1], /* dt/dx, dt/dy */ texdx[3], texdy[2], /* dq/dx, dq/dy */ texW, texH, texcoord[0], texcoord[1], texcoord[3], 1.0F / texcoord[3]); swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current, 1, (const GLfloat (*)[4]) texcoord, &lambda, &rgba); color[0] = CHAN_TO_FLOAT(rgba[0]); color[1] = CHAN_TO_FLOAT(rgba[1]); color[2] = CHAN_TO_FLOAT(rgba[2]); color[3] = CHAN_TO_FLOAT(rgba[3]); } /** * Return a pointer to the 4-element float vector specified by the given * source register. */ static INLINE const GLfloat * get_register_pointer( GLcontext *ctx, const struct fp_src_register *source, const struct fp_machine *machine, const struct fragment_program *program ) { const GLfloat *src; switch (source->File) { case PROGRAM_TEMPORARY: ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_TEMPS); src = machine->Temporaries[source->Index]; break; case PROGRAM_INPUT: ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_INPUTS); src = machine->Inputs[source->Index]; break; case PROGRAM_OUTPUT: /* This is only for PRINT */ ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_OUTPUTS); src = machine->Outputs[source->Index]; break; case PROGRAM_LOCAL_PARAM: ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS); src = program->Base.LocalParams[source->Index]; break; case PROGRAM_ENV_PARAM: ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_PARAMS); src = ctx->FragmentProgram.Parameters[source->Index]; break; case PROGRAM_STATE_VAR: /* Fallthrough */ case PROGRAM_NAMED_PARAM: ASSERT(source->Index < (GLint) program->Parameters->NumParameters); src = program->Parameters->ParameterValues[source->Index]; break; default: _mesa_problem(ctx, "Invalid input register file %d in fetch_vector4", source->File); src = NULL; } return src; } /** * Fetch a 4-element float vector from the given source register. * Apply swizzling and negating as needed. */ static void fetch_vector4( GLcontext *ctx, const struct fp_src_register *source, const struct fp_machine *machine, const struct fragment_program *program, GLfloat result[4] ) { const GLfloat *src = get_register_pointer(ctx, source, machine, program); ASSERT(src); result[0] = src[GET_SWZ(source->Swizzle, 0)]; result[1] = src[GET_SWZ(source->Swizzle, 1)]; result[2] = src[GET_SWZ(source->Swizzle, 2)]; result[3] = src[GET_SWZ(source->Swizzle, 3)]; if (source->NegateBase) { result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } if (source->Abs) { result[0] = FABSF(result[0]); result[1] = FABSF(result[1]); result[2] = FABSF(result[2]); result[3] = FABSF(result[3]); } if (source->NegateAbs) { result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } } /** * Fetch the derivative with respect to X for the given register. * \return GL_TRUE if it was easily computed or GL_FALSE if we * need to execute another instance of the program (ugh)! */ static GLboolean fetch_vector4_deriv( GLcontext *ctx, const struct fp_src_register *source, const struct sw_span *span, char xOrY, GLint column, GLfloat result[4] ) { GLfloat src[4]; ASSERT(xOrY == 'X' || xOrY == 'Y'); switch (source->Index) { case FRAG_ATTRIB_WPOS: if (xOrY == 'X') { src[0] = 1.0; src[1] = 0.0; src[2] = span->dzdx / ctx->DrawBuffer->_DepthMaxF; src[3] = span->dwdx; } else { src[0] = 0.0; src[1] = 1.0; src[2] = span->dzdy / ctx->DrawBuffer->_DepthMaxF; src[3] = span->dwdy; } break; case FRAG_ATTRIB_COL0: if (xOrY == 'X') { src[0] = span->drdx * (1.0F / CHAN_MAXF); src[1] = span->dgdx * (1.0F / CHAN_MAXF); src[2] = span->dbdx * (1.0F / CHAN_MAXF); src[3] = span->dadx * (1.0F / CHAN_MAXF); } else { src[0] = span->drdy * (1.0F / CHAN_MAXF); src[1] = span->dgdy * (1.0F / CHAN_MAXF); src[2] = span->dbdy * (1.0F / CHAN_MAXF); src[3] = span->dady * (1.0F / CHAN_MAXF); } break; case FRAG_ATTRIB_COL1: if (xOrY == 'X') { src[0] = span->dsrdx * (1.0F / CHAN_MAXF); src[1] = span->dsgdx * (1.0F / CHAN_MAXF); src[2] = span->dsbdx * (1.0F / CHAN_MAXF); src[3] = 0.0; /* XXX need this */ } else { src[0] = span->dsrdy * (1.0F / CHAN_MAXF); src[1] = span->dsgdy * (1.0F / CHAN_MAXF); src[2] = span->dsbdy * (1.0F / CHAN_MAXF); src[3] = 0.0; /* XXX need this */ } break; case FRAG_ATTRIB_FOGC: if (xOrY == 'X') { src[0] = span->dfogdx; src[1] = 0.0; src[2] = 0.0; src[3] = 0.0; } else { src[0] = span->dfogdy; src[1] = 0.0; src[2] = 0.0; src[3] = 0.0; } break; case FRAG_ATTRIB_TEX0: case FRAG_ATTRIB_TEX1: case FRAG_ATTRIB_TEX2: case FRAG_ATTRIB_TEX3: case FRAG_ATTRIB_TEX4: case FRAG_ATTRIB_TEX5: case FRAG_ATTRIB_TEX6: case FRAG_ATTRIB_TEX7: if (xOrY == 'X') { const GLuint u = source->Index - FRAG_ATTRIB_TEX0; /* this is a little tricky - I think I've got it right */ const GLfloat invQ = 1.0f / (span->tex[u][3] + span->texStepX[u][3] * column); src[0] = span->texStepX[u][0] * invQ; src[1] = span->texStepX[u][1] * invQ; src[2] = span->texStepX[u][2] * invQ; src[3] = span->texStepX[u][3] * invQ; } else { const GLuint u = source->Index - FRAG_ATTRIB_TEX0; /* Tricky, as above, but in Y direction */ const GLfloat invQ = 1.0f / (span->tex[u][3] + span->texStepY[u][3]); src[0] = span->texStepY[u][0] * invQ; src[1] = span->texStepY[u][1] * invQ; src[2] = span->texStepY[u][2] * invQ; src[3] = span->texStepY[u][3] * invQ; } break; default: return GL_FALSE; } result[0] = src[GET_SWZ(source->Swizzle, 0)]; result[1] = src[GET_SWZ(source->Swizzle, 1)]; result[2] = src[GET_SWZ(source->Swizzle, 2)]; result[3] = src[GET_SWZ(source->Swizzle, 3)]; if (source->NegateBase) { result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } if (source->Abs) { result[0] = FABSF(result[0]); result[1] = FABSF(result[1]); result[2] = FABSF(result[2]); result[3] = FABSF(result[3]); } if (source->NegateAbs) { result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } return GL_TRUE; } /** * As above, but only return result[0] element. */ static void fetch_vector1( GLcontext *ctx, const struct fp_src_register *source, const struct fp_machine *machine, const struct fragment_program *program, GLfloat result[4] ) { const GLfloat *src = get_register_pointer(ctx, source, machine, program); ASSERT(src); result[0] = src[GET_SWZ(source->Swizzle, 0)]; if (source->NegateBase) { result[0] = -result[0]; } if (source->Abs) { result[0] = FABSF(result[0]); } if (source->NegateAbs) { result[0] = -result[0]; } } /** * Test value against zero and return GT, LT, EQ or UN if NaN. */ static INLINE GLuint generate_cc( float value ) { if (value != value) return COND_UN; /* NaN */ if (value > 0.0F) return COND_GT; if (value < 0.0F) return COND_LT; return COND_EQ; } /** * Test if the ccMaskRule is satisfied by the given condition code. * Used to mask destination writes according to the current condition codee. */ static INLINE GLboolean test_cc(GLuint condCode, GLuint ccMaskRule) { switch (ccMaskRule) { case COND_EQ: return (condCode == COND_EQ); case COND_NE: return (condCode != COND_EQ); case COND_LT: return (condCode == COND_LT); case COND_GE: return (condCode == COND_GT || condCode == COND_EQ); case COND_LE: return (condCode == COND_LT || condCode == COND_EQ); case COND_GT: return (condCode == COND_GT); case COND_TR: return GL_TRUE; case COND_FL: return GL_FALSE; default: return GL_TRUE; } } /** * Store 4 floats into a register. Observe the instructions saturate and * set-condition-code flags. */ static void store_vector4( const struct fp_instruction *inst, struct fp_machine *machine, const GLfloat value[4] ) { const struct fp_dst_register *dest = &(inst->DstReg); const GLboolean clamp = inst->Saturate; const GLboolean updateCC = inst->UpdateCondRegister; GLfloat *dstReg; GLfloat dummyReg[4]; GLfloat clampedValue[4]; GLboolean condWriteMask[4]; GLuint writeMask = dest->WriteMask; switch (dest->File) { case PROGRAM_OUTPUT: dstReg = machine->Outputs[dest->Index]; break; case PROGRAM_TEMPORARY: dstReg = machine->Temporaries[dest->Index]; break; case PROGRAM_WRITE_ONLY: dstReg = dummyReg; return; default: _mesa_problem(NULL, "bad register file in store_vector4(fp)"); return; } #if DEBUG_FRAG if (value[0] > 1.0e10 || IS_INF_OR_NAN(value[0]) || IS_INF_OR_NAN(value[1]) || IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]) ) printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]); #endif if (clamp) { clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F); clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F); clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F); clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F); value = clampedValue; } if (dest->CondMask != COND_TR) { condWriteMask[0] = GET_BIT(writeMask, 0) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)], dest->CondMask); condWriteMask[1] = GET_BIT(writeMask, 1) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)], dest->CondMask); condWriteMask[2] = GET_BIT(writeMask, 2) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)], dest->CondMask); condWriteMask[3] = GET_BIT(writeMask, 3) && test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)], dest->CondMask); writeMask = ((condWriteMask[0] << 0) | (condWriteMask[1] << 1) | (condWriteMask[2] << 2) | (condWriteMask[3] << 3)); } if (GET_BIT(writeMask, 0)) { dstReg[0] = value[0]; if (updateCC) machine->CondCodes[0] = generate_cc(value[0]); } if (GET_BIT(writeMask, 1)) { dstReg[1] = value[1]; if (updateCC) machine->CondCodes[1] = generate_cc(value[1]); } if (GET_BIT(writeMask, 2)) { dstReg[2] = value[2]; if (updateCC) machine->CondCodes[2] = generate_cc(value[2]); } if (GET_BIT(writeMask, 3)) { dstReg[3] = value[3]; if (updateCC) machine->CondCodes[3] = generate_cc(value[3]); } } /** * Initialize a new machine state instance from an existing one, adding * the partial derivatives onto the input registers. * Used to implement DDX and DDY instructions in non-trivial cases. */ static void init_machine_deriv( GLcontext *ctx, const struct fp_machine *machine, const struct fragment_program *program, const struct sw_span *span, char xOrY, struct fp_machine *dMachine ) { GLuint u; ASSERT(xOrY == 'X' || xOrY == 'Y'); /* copy existing machine */ _mesa_memcpy(dMachine, machine, sizeof(struct fp_machine)); if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) { /* Clear temporary registers (undefined for ARB_f_p) */ _mesa_bzero( (void*) machine->Temporaries, MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat)); } /* Add derivatives */ if (program->InputsRead & (1 << FRAG_ATTRIB_WPOS)) { GLfloat *wpos = (GLfloat*) machine->Inputs[FRAG_ATTRIB_WPOS]; if (xOrY == 'X') { wpos[0] += 1.0F; wpos[1] += 0.0F; wpos[2] += span->dzdx; wpos[3] += span->dwdx; } else { wpos[0] += 0.0F; wpos[1] += 1.0F; wpos[2] += span->dzdy; wpos[3] += span->dwdy; } } if (program->InputsRead & (1 << FRAG_ATTRIB_COL0)) { GLfloat *col0 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL0]; if (xOrY == 'X') { col0[0] += span->drdx * (1.0F / CHAN_MAXF); col0[1] += span->dgdx * (1.0F / CHAN_MAXF); col0[2] += span->dbdx * (1.0F / CHAN_MAXF); col0[3] += span->dadx * (1.0F / CHAN_MAXF); } else { col0[0] += span->drdy * (1.0F / CHAN_MAXF); col0[1] += span->dgdy * (1.0F / CHAN_MAXF); col0[2] += span->dbdy * (1.0F / CHAN_MAXF); col0[3] += span->dady * (1.0F / CHAN_MAXF); } } if (program->InputsRead & (1 << FRAG_ATTRIB_COL1)) { GLfloat *col1 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL1]; if (xOrY == 'X') { col1[0] += span->dsrdx * (1.0F / CHAN_MAXF); col1[1] += span->dsgdx * (1.0F / CHAN_MAXF); col1[2] += span->dsbdx * (1.0F / CHAN_MAXF); col1[3] += 0.0; /*XXX fix */ } else { col1[0] += span->dsrdy * (1.0F / CHAN_MAXF); col1[1] += span->dsgdy * (1.0F / CHAN_MAXF); col1[2] += span->dsbdy * (1.0F / CHAN_MAXF); col1[3] += 0.0; /*XXX fix */ } } if (program->InputsRead & (1 << FRAG_ATTRIB_FOGC)) { GLfloat *fogc = (GLfloat*) machine->Inputs[FRAG_ATTRIB_FOGC]; if (xOrY == 'X') { fogc[0] += span->dfogdx; } else { fogc[0] += span->dfogdy; } } for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) { if (program->InputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) { GLfloat *tex = (GLfloat*) machine->Inputs[FRAG_ATTRIB_TEX0 + u]; /* XXX perspective-correct interpolation */ if (xOrY == 'X') { tex[0] += span->texStepX[u][0]; tex[1] += span->texStepX[u][1]; tex[2] += span->texStepX[u][2]; tex[3] += span->texStepX[u][3]; } else { tex[0] += span->texStepY[u][0]; tex[1] += span->texStepY[u][1]; tex[2] += span->texStepY[u][2]; tex[3] += span->texStepY[u][3]; } } } /* init condition codes */ dMachine->CondCodes[0] = COND_EQ; dMachine->CondCodes[1] = COND_EQ; dMachine->CondCodes[2] = COND_EQ; dMachine->CondCodes[3] = COND_EQ; } /** * Execute the given vertex program. * NOTE: we do everything in single-precision floating point; we don't * currently observe the single/half/fixed-precision qualifiers. * \param ctx - rendering context * \param program - the fragment program to execute * \param machine - machine state (register file) * \param maxInst - max number of instructions to execute * \return GL_TRUE if program completed or GL_FALSE if program executed KIL. */ static GLboolean execute_program( GLcontext *ctx, const struct fragment_program *program, GLuint maxInst, struct fp_machine *machine, const struct sw_span *span, GLuint column ) { GLuint pc; #if DEBUG_FRAG printf("execute fragment program --------------------\n"); #endif for (pc = 0; pc < maxInst; pc++) { const struct fp_instruction *inst = program->Instructions + pc; if (ctx->FragmentProgram.CallbackEnabled && ctx->FragmentProgram.Callback) { ctx->FragmentProgram.CurrentPosition = inst->StringPos; ctx->FragmentProgram.Callback(program->Base.Target, ctx->FragmentProgram.CallbackData); } switch (inst->Opcode) { case FP_OPCODE_ABS: { GLfloat a[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = FABSF(a[0]); result[1] = FABSF(a[1]); result[2] = FABSF(a[2]); result[3] = FABSF(a[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_ADD: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = a[0] + b[0]; result[1] = a[1] + b[1]; result[2] = a[2] + b[2]; result[3] = a[3] + b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_CMP: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c ); result[0] = a[0] < 0.0F ? b[0] : c[0]; result[1] = a[1] < 0.0F ? b[1] : c[1]; result[2] = a[2] < 0.0F ? b[2] : c[2]; result[3] = a[3] < 0.0F ? b[3] : c[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_COS: { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_cos(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_DDX: /* Partial derivative with respect to X */ { GLfloat a[4], aNext[4], result[4]; struct fp_machine dMachine; if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X', column, result)) { /* This is tricky. Make a copy of the current machine state, * increment the input registers by the dx or dy partial * derivatives, then re-execute the program up to the * preceeding instruction, then fetch the source register. * Finally, find the difference in the register values for * the original and derivative runs. */ fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a); init_machine_deriv(ctx, machine, program, span, 'X', &dMachine); execute_program(ctx, program, pc, &dMachine, span, column); fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext ); result[0] = aNext[0] - a[0]; result[1] = aNext[1] - a[1]; result[2] = aNext[2] - a[2]; result[3] = aNext[3] - a[3]; } store_vector4( inst, machine, result ); } break; case FP_OPCODE_DDY: /* Partial derivative with respect to Y */ { GLfloat a[4], aNext[4], result[4]; struct fp_machine dMachine; if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y', column, result)) { init_machine_deriv(ctx, machine, program, span, 'Y', &dMachine); fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a); execute_program(ctx, program, pc, &dMachine, span, column); fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext ); result[0] = aNext[0] - a[0]; result[1] = aNext[1] - a[1]; result[2] = aNext[2] - a[2]; result[3] = aNext[3] - a[3]; } store_vector4( inst, machine, result ); } break; case FP_OPCODE_DP3: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; store_vector4( inst, machine, result ); #if DEBUG_FRAG printf("DP3 %g = (%g %g %g) . (%g %g %g)\n", result[0], a[0], a[1], a[2], b[0], b[1], b[2]); #endif } break; case FP_OPCODE_DP4: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; store_vector4( inst, machine, result ); #if DEBUG_FRAG printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n", result[0], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); #endif } break; case FP_OPCODE_DPH: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_DST: /* Distance vector */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = 1.0F; result[1] = a[1] * b[1]; result[2] = a[2]; result[3] = b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_EX2: /* Exponential base 2 */ { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = result[1] = result[2] = result[3] = (GLfloat) _mesa_pow(2.0, a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_FLR: { GLfloat a[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = FLOORF(a[0]); result[1] = FLOORF(a[1]); result[2] = FLOORF(a[2]); result[3] = FLOORF(a[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_FRC: { GLfloat a[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = a[0] - FLOORF(a[0]); result[1] = a[1] - FLOORF(a[1]); result[2] = a[2] - FLOORF(a[2]); result[3] = a[3] - FLOORF(a[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_KIL_NV: /* NV_f_p only */ { const GLuint swizzle = inst->DstReg.CondSwizzle; const GLuint condMask = inst->DstReg.CondMask; if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) || test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) || test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) || test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) { return GL_FALSE; } } break; case FP_OPCODE_KIL: /* ARB_f_p only */ { GLfloat a[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) { return GL_FALSE; } } break; case FP_OPCODE_LG2: /* log base 2 */ { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = result[1] = result[2] = result[3] = LOG2(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_LIT: { const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */ GLfloat a[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); a[0] = MAX2(a[0], 0.0F); a[1] = MAX2(a[1], 0.0F); /* XXX ARB version clamps a[3], NV version doesn't */ a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon)); result[0] = 1.0F; result[1] = a[0]; /* XXX we could probably just use pow() here */ result[2] = (a[0] > 0.0F) ? (GLfloat) exp(a[3] * log(a[1])) : 0.0F; result[3] = 1.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_LRP: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c ); result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0]; result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1]; result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2]; result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_MAD: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c ); result[0] = a[0] * b[0] + c[0]; result[1] = a[1] * b[1] + c[1]; result[2] = a[2] * b[2] + c[2]; result[3] = a[3] * b[3] + c[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_MAX: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = MAX2(a[0], b[0]); result[1] = MAX2(a[1], b[1]); result[2] = MAX2(a[2], b[2]); result[3] = MAX2(a[3], b[3]); store_vector4( inst, machine, result ); #if DEBUG_FRAG printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); #endif } break; case FP_OPCODE_MIN: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = MIN2(a[0], b[0]); result[1] = MIN2(a[1], b[1]); result[2] = MIN2(a[2], b[2]); result[3] = MIN2(a[3], b[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_MOV: { GLfloat result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, result ); store_vector4( inst, machine, result ); #if DEBUG_FRAG printf("MOV (%g %g %g %g)\n", result[0], result[1], result[2], result[3]); #endif } break; case FP_OPCODE_MUL: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = a[0] * b[0]; result[1] = a[1] * b[1]; result[2] = a[2] * b[2]; result[3] = a[3] * b[3]; store_vector4( inst, machine, result ); #if DEBUG_FRAG printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); #endif } break; case FP_OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */ { GLfloat a[4], result[4]; GLhalfNV hx, hy; GLuint *rawResult = (GLuint *) result; GLuint twoHalves; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); hx = _mesa_float_to_half(a[0]); hy = _mesa_float_to_half(a[1]); twoHalves = hx | (hy << 16); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = twoHalves; store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */ { GLfloat a[4], result[4]; GLuint usx, usy, *rawResult = (GLuint *) result; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); a[0] = CLAMP(a[0], 0.0F, 1.0F); a[1] = CLAMP(a[1], 0.0F, 1.0F); usx = IROUND(a[0] * 65535.0F); usy = IROUND(a[1] * 65535.0F); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = usx | (usy << 16); store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */ { GLfloat a[4], result[4]; GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F); a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F); a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F); a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F); ubx = IROUND(127.0F * a[0] + 128.0F); uby = IROUND(127.0F * a[1] + 128.0F); ubz = IROUND(127.0F * a[2] + 128.0F); ubw = IROUND(127.0F * a[3] + 128.0F); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24); store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */ { GLfloat a[4], result[4]; GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); a[0] = CLAMP(a[0], 0.0F, 1.0F); a[1] = CLAMP(a[1], 0.0F, 1.0F); a[2] = CLAMP(a[2], 0.0F, 1.0F); a[3] = CLAMP(a[3], 0.0F, 1.0F); ubx = IROUND(255.0F * a[0]); uby = IROUND(255.0F * a[1]); ubz = IROUND(255.0F * a[2]); ubw = IROUND(255.0F * a[3]); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24); store_vector4( inst, machine, result ); } break; case FP_OPCODE_POW: { GLfloat a[4], b[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector1( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_pow(a[0], b[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_RCP: { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); #if DEBUG_FRAG if (a[0] == 0) printf("RCP(0)\n"); else if (IS_INF_OR_NAN(a[0])) printf("RCP(inf)\n"); #endif result[0] = result[1] = result[2] = result[3] = 1.0F / a[0]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_RFL: { GLfloat axis[4], dir[4], result[4], tmp[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, axis ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dir ); tmp[3] = axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]; tmp[0] = (2.0F * (axis[0] * dir[0] + axis[1] * dir[1] + axis[2] * dir[2])) / tmp[3]; result[0] = tmp[0] * axis[0] - dir[0]; result[1] = tmp[0] * axis[1] - dir[1]; result[2] = tmp[0] * axis[2] - dir[2]; /* result[3] is never written! XXX enforce in parser! */ store_vector4( inst, machine, result ); } break; case FP_OPCODE_RSQ: /* 1 / sqrt() */ { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]); store_vector4( inst, machine, result ); #if DEBUG_FRAG printf("RSQ %g = 1/sqrt(%g)\n", result[0], a[0]); #endif } break; case FP_OPCODE_SCS: /* sine and cos */ { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = (GLfloat)_mesa_cos(a[0]); result[1] = (GLfloat)_mesa_sin(a[0]); result[2] = 0.0; /* undefined! */ result[3] = 0.0; /* undefined! */ store_vector4( inst, machine, result ); } break; case FP_OPCODE_SEQ: /* set on equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = (a[0] == b[0]) ? 1.0F : 0.0F; result[1] = (a[1] == b[1]) ? 1.0F : 0.0F; result[2] = (a[2] == b[2]) ? 1.0F : 0.0F; result[3] = (a[3] == b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SFL: /* set false, operands ignored */ { static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F }; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SGE: /* set on greater or equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F; result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F; result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F; result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SGT: /* set on greater */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = (a[0] > b[0]) ? 1.0F : 0.0F; result[1] = (a[1] > b[1]) ? 1.0F : 0.0F; result[2] = (a[2] > b[2]) ? 1.0F : 0.0F; result[3] = (a[3] > b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SIN: { GLfloat a[4], result[4]; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_sin(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_SLE: /* set on less or equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F; result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F; result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F; result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SLT: /* set on less */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = (a[0] < b[0]) ? 1.0F : 0.0F; result[1] = (a[1] < b[1]) ? 1.0F : 0.0F; result[2] = (a[2] < b[2]) ? 1.0F : 0.0F; result[3] = (a[3] < b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SNE: /* set on not equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = (a[0] != b[0]) ? 1.0F : 0.0F; result[1] = (a[1] != b[1]) ? 1.0F : 0.0F; result[2] = (a[2] != b[2]) ? 1.0F : 0.0F; result[3] = (a[3] != b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_STR: /* set true, operands ignored */ { static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F }; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SUB: { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = a[0] - b[0]; result[1] = a[1] - b[1]; result[2] = a[2] - b[2]; result[3] = a[3] - b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SWZ: { const struct fp_src_register *source = &inst->SrcReg[0]; const GLfloat *src = get_register_pointer(ctx, source, machine, program); GLfloat result[4]; GLuint i; /* do extended swizzling here */ for (i = 0; i < 3; i++) { if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ZERO) result[i] = 0.0; else if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ONE) result[i] = -1.0; else result[i] = -src[GET_SWZ(source->Swizzle, i)]; if (source->NegateBase) result[i] = -result[i]; } store_vector4( inst, machine, result ); } break; case FP_OPCODE_TEX: /* Both ARB and NV frag prog */ /* Texel lookup */ { GLfloat texcoord[4], color[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord ); /* Note: we pass 0 for LOD. The ARB extension requires it * while the NV extension says it's implementation dependant. */ /* KW: Previously lambda was passed as zero, but I * believe this is incorrect, the spec seems to * indicate rather that lambda should not be * changed/biased, unlike TXB where texcoord[3] is * added to the lambda calculations. The lambda should * still be calculated normally for TEX & TXP though, * not set to zero. Otherwise it's very difficult to * implement normal GL semantics through the fragment * shader. */ fetch_texel( ctx, texcoord, span->array->lambda[inst->TexSrcUnit][column], inst->TexSrcUnit, color ); #if DEBUG_FRAG if (color[3]) printf("color[3] = %f\n", color[3]); #endif store_vector4( inst, machine, color ); } break; case FP_OPCODE_TXB: /* GL_ARB_fragment_program only */ /* Texel lookup with LOD bias */ { GLfloat texcoord[4], color[4], bias, lambda; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord ); /* texcoord[3] is the bias to add to lambda */ bias = ctx->Texture.Unit[inst->TexSrcUnit].LodBias + ctx->Texture.Unit[inst->TexSrcUnit]._Current->LodBias + texcoord[3]; lambda = span->array->lambda[inst->TexSrcUnit][column] + bias; fetch_texel( ctx, texcoord, lambda, inst->TexSrcUnit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_TXD: /* GL_NV_fragment_program only */ /* Texture lookup w/ partial derivatives for LOD */ { GLfloat texcoord[4], dtdx[4], dtdy[4], color[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dtdx ); fetch_vector4( ctx, &inst->SrcReg[2], machine, program, dtdy ); fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_TXP: /* GL_ARB_fragment_program only */ /* Texture lookup w/ projective divide */ { GLfloat texcoord[4], color[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord ); /* Not so sure about this test - if texcoord[3] is * zero, we'd probably be fine except for an ASSERT in * IROUND_POS() which gets triggered by the inf values created. */ if (texcoord[3] != 0.0) { texcoord[0] /= texcoord[3]; texcoord[1] /= texcoord[3]; texcoord[2] /= texcoord[3]; } /* KW: Previously lambda was passed as zero, but I * believe this is incorrect, the spec seems to * indicate rather that lambda should not be * changed/biased, unlike TXB where texcoord[3] is * added to the lambda calculations. The lambda should * still be calculated normally for TEX & TXP though, * not set to zero. */ fetch_texel( ctx, texcoord, span->array->lambda[inst->TexSrcUnit][column], inst->TexSrcUnit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_TXP_NV: /* GL_NV_fragment_program only */ /* Texture lookup w/ projective divide */ { GLfloat texcoord[4], color[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord ); if (inst->TexSrcIdx != TEXTURE_CUBE_INDEX && texcoord[3] != 0.0) { texcoord[0] /= texcoord[3]; texcoord[1] /= texcoord[3]; texcoord[2] /= texcoord[3]; } fetch_texel( ctx, texcoord, span->array->lambda[inst->TexSrcUnit][column], inst->TexSrcUnit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_UP2H: /* unpack two 16-bit floats */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; GLhalfNV hx, hy; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); hx = rawBits[0] & 0xffff; hy = rawBits[0] >> 16; result[0] = result[2] = _mesa_half_to_float(hx); result[1] = result[3] = _mesa_half_to_float(hy); store_vector4( inst, machine, result ); } break; case FP_OPCODE_UP2US: /* unpack two GLushorts */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; GLushort usx, usy; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); usx = rawBits[0] & 0xffff; usy = rawBits[0] >> 16; result[0] = result[2] = usx * (1.0f / 65535.0f); result[1] = result[3] = usy * (1.0f / 65535.0f); store_vector4( inst, machine, result ); } break; case FP_OPCODE_UP4B: /* unpack four GLbytes */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F; result[1] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F; result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F; result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_UP4UB: /* unpack four GLubytes */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a ); result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F; result[1] = ((rawBits[0] >> 8) & 0xff) / 255.0F; result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F; result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_XPD: /* cross product */ { GLfloat a[4], b[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); result[0] = a[1] * b[2] - a[2] * b[1]; result[1] = a[2] * b[0] - a[0] * b[2]; result[2] = a[0] * b[1] - a[1] * b[0]; result[3] = 1.0; store_vector4( inst, machine, result ); } break; case FP_OPCODE_X2D: /* 2-D matrix transform */ { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a ); fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b ); fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c ); result[0] = a[0] + b[0] * c[0] + b[1] * c[1]; result[1] = a[1] + b[0] * c[2] + b[1] * c[3]; result[2] = a[2] + b[0] * c[0] + b[1] * c[1]; result[3] = a[3] + b[0] * c[2] + b[1] * c[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_PRINT: { if (inst->SrcReg[0].File != -1) { GLfloat a[4]; fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a); _mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data, a[0], a[1], a[2], a[3]); } else { _mesa_printf("%s\n", (const char *) inst->Data); } } break; case FP_OPCODE_END: return GL_TRUE; default: _mesa_problem(ctx, "Bad opcode %d in _mesa_exec_fragment_program", inst->Opcode); return GL_TRUE; /* return value doesn't matter */ } } return GL_TRUE; } static void init_machine( GLcontext *ctx, struct fp_machine *machine, const struct fragment_program *program, const struct sw_span *span, GLuint col ) { GLuint inputsRead = program->InputsRead; GLuint u; if (ctx->FragmentProgram.CallbackEnabled) inputsRead = ~0; if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) { /* Clear temporary registers (undefined for ARB_f_p) */ _mesa_bzero(machine->Temporaries, MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat)); } /* Load input registers */ if (inputsRead & (1 << FRAG_ATTRIB_WPOS)) { GLfloat *wpos = machine->Inputs[FRAG_ATTRIB_WPOS]; wpos[0] = (GLfloat) span->x + col; wpos[1] = (GLfloat) span->y; wpos[2] = (GLfloat) span->array->z[col] / ctx->DrawBuffer->_DepthMaxF; wpos[3] = span->w + col * span->dwdx; } if (inputsRead & (1 << FRAG_ATTRIB_COL0)) { GLfloat *col0 = machine->Inputs[FRAG_ATTRIB_COL0]; col0[0] = CHAN_TO_FLOAT(span->array->rgba[col][RCOMP]); col0[1] = CHAN_TO_FLOAT(span->array->rgba[col][GCOMP]); col0[2] = CHAN_TO_FLOAT(span->array->rgba[col][BCOMP]); col0[3] = CHAN_TO_FLOAT(span->array->rgba[col][ACOMP]); } if (inputsRead & (1 << FRAG_ATTRIB_COL1)) { GLfloat *col1 = machine->Inputs[FRAG_ATTRIB_COL1]; col1[0] = CHAN_TO_FLOAT(span->array->spec[col][RCOMP]); col1[1] = CHAN_TO_FLOAT(span->array->spec[col][GCOMP]); col1[2] = CHAN_TO_FLOAT(span->array->spec[col][BCOMP]); col1[3] = CHAN_TO_FLOAT(span->array->spec[col][ACOMP]); } if (inputsRead & (1 << FRAG_ATTRIB_FOGC)) { GLfloat *fogc = machine->Inputs[FRAG_ATTRIB_FOGC]; fogc[0] = span->array->fog[col]; fogc[1] = 0.0F; fogc[2] = 0.0F; fogc[3] = 0.0F; } for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) { if (inputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) { GLfloat *tex = machine->Inputs[FRAG_ATTRIB_TEX0 + u]; /*ASSERT(ctx->Texture._EnabledCoordUnits & (1 << u));*/ COPY_4V(tex, span->array->texcoords[u][col]); /*ASSERT(tex[0] != 0 || tex[1] != 0 || tex[2] != 0);*/ } } /* init condition codes */ machine->CondCodes[0] = COND_EQ; machine->CondCodes[1] = COND_EQ; machine->CondCodes[2] = COND_EQ; machine->CondCodes[3] = COND_EQ; } /** * Execute the current fragment program, operating on the given span. */ void _swrast_exec_fragment_program( GLcontext *ctx, struct sw_span *span ) { const struct fragment_program *program = ctx->FragmentProgram._Current; GLuint i; ctx->_CurrentProgram = GL_FRAGMENT_PROGRAM_ARB; /* or NV, doesn't matter */ if (program->Parameters) { _mesa_load_state_parameters(ctx, program->Parameters); } for (i = 0; i < span->end; i++) { if (span->array->mask[i]) { init_machine(ctx, &ctx->FragmentProgram.Machine, ctx->FragmentProgram._Current, span, i); #ifdef USE_TCC if (!_swrast_execute_codegen_program(ctx, program, ~0, &ctx->FragmentProgram.Machine, span, i)) { span->array->mask[i] = GL_FALSE; /* killed fragment */ } #else if (!execute_program(ctx, program, ~0, &ctx->FragmentProgram.Machine, span, i)) { span->array->mask[i] = GL_FALSE; /* killed fragment */ } #endif /* Store output registers */ { const GLfloat *colOut = ctx->FragmentProgram.Machine.Outputs[FRAG_OUTPUT_COLR]; UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][RCOMP], colOut[0]); UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][GCOMP], colOut[1]); UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][BCOMP], colOut[2]); UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][ACOMP], colOut[3]); } /* depth value */ if (program->OutputsWritten & (1 << FRAG_OUTPUT_DEPR)) span->array->z[i] = IROUND(ctx->FragmentProgram.Machine.Outputs[FRAG_OUTPUT_DEPR][0] * ctx->DrawBuffer->_DepthMaxF); } } ctx->_CurrentProgram = 0; }