/* $Id: s_nvfragprog.c,v 1.7 2003/03/14 15:41:00 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 5.1 * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "colormac.h" #include "context.h" #include "nvfragprog.h" #include "macros.h" #include "s_nvfragprog.h" #include "s_texture.h" /** * Fetch a texel. */ static void fetch_texel( GLcontext *ctx, const GLfloat texcoord[4], GLuint unit, GLuint targetBit, GLfloat color[4] ) { const GLfloat *lambda = NULL; GLchan rgba[4]; SWcontext *swrast = SWRAST_CONTEXT(ctx); const struct gl_texture_object *texObj = NULL; switch (targetBit) { case TEXTURE_1D_BIT: texObj = ctx->Texture.Unit[unit].Current1D; break; case TEXTURE_2D_BIT: texObj = ctx->Texture.Unit[unit].Current2D; break; case TEXTURE_3D_BIT: texObj = ctx->Texture.Unit[unit].Current3D; break; case TEXTURE_CUBE_BIT: texObj = ctx->Texture.Unit[unit].CurrentCubeMap; break; case TEXTURE_RECT_BIT: texObj = ctx->Texture.Unit[unit].CurrentRect; break; default: _mesa_problem(ctx, "Invalid target in fetch_texel"); } swrast->TextureSample[unit](ctx, unit, texObj, 1, (const GLfloat (*)[4]) texcoord, lambda, &rgba); color[0] = CHAN_TO_FLOAT(rgba[0]); color[1] = CHAN_TO_FLOAT(rgba[1]); color[2] = CHAN_TO_FLOAT(rgba[2]); color[3] = CHAN_TO_FLOAT(rgba[3]); } /** * Fetch a texel w/ partial derivatives. */ static void fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4], const GLfloat dtdx[4], const GLfloat dtdy[4], GLuint unit, GLuint targetBit, GLfloat color[4] ) { /* XXX to do */ } /** * Fetch a 4-element float vector from the given source register. * Apply swizzling and negating as needed. */ static void fetch_vector4( const struct fp_src_register *source, const struct fp_machine *machine, GLfloat result[4] ) { const GLfloat *src; /* if (source->RelAddr) { GLint reg = source->Register + machine->AddressReg; if (reg < VP_PROG_REG_START || reg > VP_PROG_REG_END) src = zero; else src = machine->Registers[reg]; } else */ src = machine->Registers[source->Register]; result[0] = src[source->Swizzle[0]]; result[1] = src[source->Swizzle[1]]; result[2] = src[source->Swizzle[2]]; result[3] = src[source->Swizzle[3]]; if (source->NegateBase) { result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } if (source->Abs) { result[0] = FABSF(result[0]); result[1] = FABSF(result[1]); result[2] = FABSF(result[2]); result[3] = FABSF(result[3]); } if (source->NegateAbs) { result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } } /** * As above, but only return result[0] element. */ static void fetch_vector1( const struct fp_src_register *source, const struct fp_machine *machine, GLfloat result[4] ) { const GLfloat *src = machine->Registers[source->Register]; result[0] = src[source->Swizzle[0]]; if (source->NegateBase) { result[0] = -result[0]; } if (source->Abs) { result[0] = FABSF(result[0]); } if (source->NegateAbs) { result[0] = -result[0]; } } /* * Test value against zero and return GT, LT, EQ or UN if NaN. */ static INLINE GLuint generate_cc( float value ) { if (value != value) return COND_UN; /* NaN */ if (value > 0.0F) return COND_GT; if (value < 0.0F) return COND_LT; return COND_EQ; } /* * Test if the ccMaskRule is satisfied by the given condition code. * Used to mask destination writes according to the current condition codee. */ static INLINE GLboolean test_cc(GLuint condCode, GLuint ccMaskRule) { switch (ccMaskRule) { case COND_EQ: return (condCode == COND_EQ); case COND_NE: return (condCode != COND_EQ); case COND_LT: return (condCode == COND_LT); case COND_GE: return (condCode == COND_GT || condCode == COND_EQ); case COND_LE: return (condCode == COND_LT || condCode == COND_EQ); case COND_GT: return (condCode == COND_GT); case COND_TR: return GL_TRUE; case COND_FL: return GL_FALSE; default: return GL_TRUE; } } /** * Store 4 floats into a register. Observe the instructions saturate and * set-condition-code flags. */ static void store_vector4( const struct fp_instruction *inst, struct fp_machine *machine, const GLfloat value[4] ) { const struct fp_dst_register *dest = &(inst->DstReg); const GLboolean clamp = inst->Saturate; const GLboolean updateCC = inst->UpdateCondRegister; GLfloat *dstReg = machine->Registers[dest->Register]; GLfloat clampedValue[4]; const GLboolean *writeMask = dest->WriteMask; GLboolean condWriteMask[4]; if (clamp) { clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F); clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F); clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F); clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F); value = clampedValue; } if (dest->CondMask != COND_TR) { condWriteMask[0] = writeMask[0] && test_cc(machine->CondCodes[dest->CondSwizzle[0]], dest->CondMask); condWriteMask[1] = writeMask[1] && test_cc(machine->CondCodes[dest->CondSwizzle[1]], dest->CondMask); condWriteMask[2] = writeMask[2] && test_cc(machine->CondCodes[dest->CondSwizzle[2]], dest->CondMask); condWriteMask[3] = writeMask[3] && test_cc(machine->CondCodes[dest->CondSwizzle[3]], dest->CondMask); writeMask = condWriteMask; } if (writeMask[0]) { dstReg[0] = value[0]; if (updateCC) machine->CondCodes[0] = generate_cc(value[0]); } if (writeMask[1]) { dstReg[1] = value[1]; if (updateCC) machine->CondCodes[1] = generate_cc(value[1]); } if (writeMask[2]) { dstReg[2] = value[2]; if (updateCC) machine->CondCodes[2] = generate_cc(value[2]); } if (writeMask[3]) { dstReg[3] = value[3]; if (updateCC) machine->CondCodes[3] = generate_cc(value[3]); } } /** * Execute the given vertex program. * NOTE: we do everything in single-precision floating point; we don't * currently observe the single/half/fixed-precision qualifiers. * \return GL_TRUE if program completed or GL_FALSE if program executed KIL. */ static GLboolean execute_program(GLcontext *ctx, const struct fragment_program *program) { struct fp_machine *machine = &ctx->FragmentProgram.Machine; const struct fp_instruction *inst; for (inst = program->Instructions; inst->Opcode != FP_OPCODE_END; inst++) { switch (inst->Opcode) { case FP_OPCODE_ADD: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = a[0] + b[0]; result[1] = a[1] + b[1]; result[2] = a[2] + b[2]; result[3] = a[3] + b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_COS: { GLfloat a[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = result[1] = result[2] = result[3] = _mesa_cos(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_DDX: /* Partial derivative with respect to X */ { GLfloat a[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); result[0] = 0; /* XXX fix */ result[1] = 0; result[2] = 0; result[3] = 0; store_vector4( inst, machine, result ); } break; case FP_OPCODE_DDY: /* Partial derivative with respect to Y */ { GLfloat a[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); result[0] = 0; /* XXX fix */ result[1] = 0; result[2] = 0; result[3] = 0; store_vector4( inst, machine, result ); } break; case FP_OPCODE_DP3: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = result[1] = result[2] = result[3] = a[0] + b[0] + a[1] * b[1] + a[2] * b[2]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_DP4: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = result[1] = result[2] = result[3] = a[0] + b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_DST: /* Distance vector */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = 1.0F; result[1] = a[1] * b[1]; result[2] = a[2]; result[3] = b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_EX2: /* Exponential base 2 */ { GLfloat a[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = result[1] = result[2] = result[3] = (GLfloat) _mesa_pow(2.0, a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_FLR: { GLfloat a[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); result[0] = FLOORF(a[0]); result[1] = FLOORF(a[1]); result[2] = FLOORF(a[2]); result[3] = FLOORF(a[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_FRC: { GLfloat a[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); result[0] = a[0] - FLOORF(a[0]); result[1] = a[1] - FLOORF(a[1]); result[2] = a[2] - FLOORF(a[2]); result[3] = a[3] - FLOORF(a[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_KIL: { const GLuint *swizzle = inst->DstReg.CondSwizzle; const GLuint condMask = inst->DstReg.CondMask; if (test_cc(machine->CondCodes[swizzle[0]], condMask) || test_cc(machine->CondCodes[swizzle[1]], condMask) || test_cc(machine->CondCodes[swizzle[2]], condMask) || test_cc(machine->CondCodes[swizzle[3]], condMask)) return GL_FALSE; } break; case FP_OPCODE_LG2: /* log base 2 */ { GLfloat a[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = result[1] = result[2] = result[3] = LOG2(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_LIT: { GLfloat a[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); if (a[0] < 0.0F) a[0] = 0.0F; if (a[1] < 0.0F) a[1] = 0.0F; result[0] = 1.0F; result[1] = a[0]; result[2] = (a[0] > 0.0) ? _mesa_pow(2.0, a[3]) : 0.0F; result[3] = 1.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_LRP: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); fetch_vector4( &inst->SrcReg[2], machine, c ); result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0]; result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1]; result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2]; result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_MAD: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); fetch_vector4( &inst->SrcReg[2], machine, c ); result[0] = a[0] * b[0] + c[0]; result[1] = a[1] * b[1] + c[1]; result[2] = a[2] * b[2] + c[2]; result[3] = a[3] * b[3] + c[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_MAX: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = MAX2(a[0], b[0]); result[1] = MAX2(a[1], b[1]); result[2] = MAX2(a[2], b[2]); result[3] = MAX2(a[3], b[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_MIN: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = MIN2(a[0], b[0]); result[1] = MIN2(a[1], b[1]); result[2] = MIN2(a[2], b[2]); result[3] = MIN2(a[3], b[3]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_MOV: { GLfloat result[4]; fetch_vector4( &inst->SrcReg[0], machine, result ); store_vector4( inst, machine, result ); } break; case FP_OPCODE_MUL: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = a[0] * b[0]; result[1] = a[1] * b[1]; result[2] = a[2] * b[2]; result[3] = a[3] * b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK2H: /* pack two 16-bit floats */ /* XXX this is probably wrong */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; GLuint *rawResult = (GLuint *) result; fetch_vector4( &inst->SrcReg[0], machine, a ); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = rawBits[0] | (rawBits[1] << 16); store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK2US: /* pack two GLushorts */ { GLfloat a[4], result[4]; GLuint usx, usy, *rawResult = (GLuint *) result; fetch_vector4( &inst->SrcReg[0], machine, a ); a[0] = CLAMP(a[0], 0.0F, 1.0F); a[1] = CLAMP(a[0], 0.0F, 1.0F); usx = IROUND(a[0] * 65535.0F); usy = IROUND(a[1] * 65535.0F); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = usx | (usy << 16); store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK4B: /* pack four GLbytes */ { GLfloat a[4], result[4]; GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result; fetch_vector4( &inst->SrcReg[0], machine, a ); a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F); a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F); a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F); a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F); ubx = IROUND(127.0F * a[0] + 128.0F); uby = IROUND(127.0F * a[1] + 128.0F); ubz = IROUND(127.0F * a[2] + 128.0F); ubw = IROUND(127.0F * a[3] + 128.0F); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24); store_vector4( inst, machine, result ); } break; case FP_OPCODE_PK4UB: /* pack four GLubytes */ { GLfloat a[4], result[4]; GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result; fetch_vector4( &inst->SrcReg[0], machine, a ); a[0] = CLAMP(a[0], 0.0F, 1.0F); a[1] = CLAMP(a[1], 0.0F, 1.0F); a[2] = CLAMP(a[2], 0.0F, 1.0F); a[3] = CLAMP(a[3], 0.0F, 1.0F); ubx = IROUND(255.0F * a[0]); uby = IROUND(255.0F * a[1]); ubz = IROUND(255.0F * a[2]); ubw = IROUND(255.0F * a[3]); rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24); store_vector4( inst, machine, result ); } break; case FP_OPCODE_POW: { GLfloat a[4], b[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); fetch_vector1( &inst->SrcReg[1], machine, b ); result[0] = result[1] = result[2] = result[3] = _mesa_pow(a[0], b[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_RCP: { GLfloat a[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = result[1] = result[2] = result[3] = 1.0F / a[0]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_RFL: { GLfloat axis[4], dir[4], result[4], tmp[4]; fetch_vector4( &inst->SrcReg[0], machine, axis ); fetch_vector4( &inst->SrcReg[1], machine, dir ); tmp[3] = axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]; tmp[0] = (2.0F * (axis[0] * dir[0] + axis[1] * dir[1] + axis[2] * dir[2])) / tmp[3]; result[0] = tmp[0] * axis[0] - dir[0]; result[1] = tmp[0] * axis[1] - dir[1]; result[2] = tmp[0] * axis[2] - dir[2]; /* result[3] is never written! XXX enforce in parser! */ store_vector4( inst, machine, result ); } break; case FP_OPCODE_RSQ: /* 1 / sqrt() */ { GLfloat a[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_SEQ: /* set on equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = (a[0] == b[0]) ? 1.0F : 0.0F; result[1] = (a[1] == b[1]) ? 1.0F : 0.0F; result[2] = (a[2] == b[2]) ? 1.0F : 0.0F; result[3] = (a[3] == b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SFL: /* set false, operands ignored */ { static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F }; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SGE: /* set on greater or equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F; result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F; result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F; result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SGT: /* set on greater */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = (a[0] > b[0]) ? 1.0F : 0.0F; result[1] = (a[1] > b[1]) ? 1.0F : 0.0F; result[2] = (a[2] > b[2]) ? 1.0F : 0.0F; result[3] = (a[3] > b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SIN: { GLfloat a[4], result[4]; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = result[1] = result[2] = result[3] = _mesa_sin(a[0]); store_vector4( inst, machine, result ); } break; case FP_OPCODE_SLE: /* set on less or equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F; result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F; result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F; result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SLT: /* set on less */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = (a[0] < b[0]) ? 1.0F : 0.0F; result[1] = (a[1] < b[1]) ? 1.0F : 0.0F; result[2] = (a[2] < b[2]) ? 1.0F : 0.0F; result[3] = (a[3] < b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SNE: /* set on not equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = (a[0] != b[0]) ? 1.0F : 0.0F; result[1] = (a[1] != b[1]) ? 1.0F : 0.0F; result[2] = (a[2] != b[2]) ? 1.0F : 0.0F; result[3] = (a[3] != b[3]) ? 1.0F : 0.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_STR: /* set true, operands ignored */ { static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F }; store_vector4( inst, machine, result ); } break; case FP_OPCODE_SUB: { GLfloat a[4], b[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); result[0] = a[0] - b[0]; result[1] = a[1] - b[1]; result[2] = a[2] - b[2]; result[3] = a[3] - b[3]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_TEX: /* Texel lookup */ { GLfloat texcoord[4], color[4]; fetch_vector4( &inst->SrcReg[0], machine, texcoord ); fetch_texel( ctx, texcoord, inst->TexSrcUnit, inst->TexSrcBit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_TXD: /* Texture lookup w/ partial derivatives for LOD */ { GLfloat texcoord[4], dtdx[4], dtdy[4], color[4]; fetch_vector4( &inst->SrcReg[0], machine, texcoord ); fetch_vector4( &inst->SrcReg[1], machine, dtdx ); fetch_vector4( &inst->SrcReg[2], machine, dtdy ); fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit, inst->TexSrcBit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_TXP: /* Texture lookup w/ perspective divide */ { GLfloat texcoord[4], color[4]; fetch_vector4( &inst->SrcReg[0], machine, texcoord ); texcoord[0] /= texcoord[3]; texcoord[1] /= texcoord[3]; texcoord[2] /= texcoord[3]; fetch_texel( ctx, texcoord, inst->TexSrcUnit, inst->TexSrcBit, color ); store_vector4( inst, machine, color ); } break; case FP_OPCODE_UP2H: /* unpack two 16-bit floats */ /* XXX this is probably wrong */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; GLuint *rawResult = (GLuint *) result; fetch_vector1( &inst->SrcReg[0], machine, a ); rawResult[0] = rawBits[0] & 0xffff; rawResult[1] = (rawBits[0] >> 16) & 0xffff; rawResult[2] = rawBits[0] & 0xffff; rawResult[3] = (rawBits[0] >> 16) & 0xffff; store_vector4( inst, machine, result ); } break; case FP_OPCODE_UP2US: /* unpack two GLushorts */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = (GLfloat) ((rawBits[0] >> 0) & 0xffff) / 65535.0F; result[1] = (GLfloat) ((rawBits[0] >> 16) & 0xffff) / 65535.0F; result[2] = result[0]; result[3] = result[1]; store_vector4( inst, machine, result ); } break; case FP_OPCODE_UP4B: /* unpack four GLbytes */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F; result[0] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F; result[0] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F; result[0] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_UP4UB: /* unpack four GLubytes */ { GLfloat a[4], result[4]; const GLuint *rawBits = (const GLuint *) a; fetch_vector1( &inst->SrcReg[0], machine, a ); result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F; result[0] = ((rawBits[0] >> 8) & 0xff) / 255.0F; result[0] = ((rawBits[0] >> 16) & 0xff) / 255.0F; result[0] = ((rawBits[0] >> 24) & 0xff) / 255.0F; store_vector4( inst, machine, result ); } break; case FP_OPCODE_X2D: /* 2-D matrix transform */ { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4( &inst->SrcReg[0], machine, a ); fetch_vector4( &inst->SrcReg[1], machine, b ); fetch_vector4( &inst->SrcReg[2], machine, c ); result[0] = a[0] + b[0] * c[0] + b[1] * c[1]; result[1] = a[1] + b[0] * c[2] + b[1] * c[3]; result[2] = a[2] + b[0] * c[0] + b[1] * c[1]; result[3] = a[3] + b[0] * c[2] + b[1] * c[3]; store_vector4( inst, machine, result ); } break; default: _mesa_problem(ctx, "Bad opcode in _mesa_exec_fragment_program"); return GL_TRUE; /* return value doesn't matter */ } } return GL_TRUE; } void _swrast_exec_nv_fragment_program( GLcontext *ctx, struct sw_span *span ) { GLuint i; for (i = 0; i < span->end; i++) { if (span->array->mask[i]) { GLfloat *wpos = ctx->FragmentProgram.Machine.Registers[0]; GLfloat *col0 = ctx->FragmentProgram.Machine.Registers[1]; GLfloat *col1 = ctx->FragmentProgram.Machine.Registers[2]; GLfloat *fogc = ctx->FragmentProgram.Machine.Registers[3]; const GLfloat *colOut = ctx->FragmentProgram.Machine.Registers[FP_OUTPUT_REG_START]; GLuint j; /* Clear temporary registers XXX use memzero() */ _mesa_bzero(ctx->FragmentProgram.Machine.Registers +FP_TEMP_REG_START, MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat)); /* * Load input registers - yes this is all very inefficient for now. */ wpos[0] = span->x + i; wpos[1] = span->y + i; wpos[2] = (GLfloat) span->array->z[i] / ctx->DepthMaxF; wpos[3] = 1.0; /* XXX should be 1/w */ col0[0] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]); col0[1] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]); col0[2] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]); col0[3] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]); col1[0] = CHAN_TO_FLOAT(span->array->spec[i][RCOMP]); col1[1] = CHAN_TO_FLOAT(span->array->spec[i][GCOMP]); col1[2] = CHAN_TO_FLOAT(span->array->spec[i][BCOMP]); col1[3] = CHAN_TO_FLOAT(span->array->spec[i][ACOMP]); fogc[0] = span->array->fog[i]; fogc[1] = 0.0F; fogc[2] = 0.0F; fogc[3] = 0.0F; for (j = 0; j < ctx->Const.MaxTextureCoordUnits; j++) { if (ctx->Texture.Unit[j]._ReallyEnabled) { COPY_4V(ctx->FragmentProgram.Machine.Registers[4 + j], span->array->texcoords[j][i]); } else { COPY_4V(ctx->FragmentProgram.Machine.Registers[4 + j], ctx->Current.Attrib[VERT_ATTRIB_TEX0 + j]); } } if (!execute_program(ctx, ctx->FragmentProgram.Current)) span->array->mask[i] = GL_FALSE; /* killed fragment */ /* Store output registers */ UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][RCOMP], colOut[0]); UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][GCOMP], colOut[1]); UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][BCOMP], colOut[2]); UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][ACOMP], colOut[3]); /* depth value */ if (ctx->FragmentProgram.Current->OutputsWritten & 2) span->array->z[i] = IROUND(ctx->FragmentProgram.Machine.Registers[FP_OUTPUT_REG_START + 2][0] * ctx->DepthMaxF); } } }