/* $Id: s_span.c,v 1.28 2002/01/31 00:27:43 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 4.1 * * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * pixel span rasterization: * These functions implement the rasterization pipeline. */ #include "glheader.h" #include "colormac.h" #include "context.h" #include "macros.h" #include "mem.h" #include "s_alpha.h" #include "s_alphabuf.h" #include "s_blend.h" #include "s_context.h" #include "s_depth.h" #include "s_fog.h" #include "s_logic.h" #include "s_masking.h" #include "s_scissor.h" #include "s_span.h" #include "s_stencil.h" #include "s_texture.h" /* * Init span's Z interpolation values to the RasterPos Z. * Used during setup for glDraw/CopyPixels. */ void _mesa_span_default_z( GLcontext *ctx, struct sw_span *span ) { if (ctx->Visual.depthBits <= 16) span->z = FloatToFixed(ctx->Current.RasterPos[2] * ctx->DepthMax); else span->z = (GLint) (ctx->Current.RasterPos[2] * ctx->DepthMax); span->zStep = 0; span->interpMask |= SPAN_Z; } /* * Init span's fog interpolation values to the RasterPos fog. * Used during setup for glDraw/CopyPixels. */ void _mesa_span_default_fog( GLcontext *ctx, struct sw_span *span ) { if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT) span->fog = _mesa_z_to_fogfactor(ctx, ctx->Current.RasterFogCoord); else span->fog = _mesa_z_to_fogfactor(ctx, ctx->Current.RasterDistance); span->fogStep = 0; span->interpMask |= SPAN_FOG; } /* * Init span's color or index interpolation values to the RasterPos color. * Used during setup for glDraw/CopyPixels. */ void _mesa_span_default_color( GLcontext *ctx, struct sw_span *span ) { if (ctx->Visual.rgbMode) { GLchan r, g, b, a; UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]); UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]); UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]); UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]); #if CHAN_TYPE == GL_FLOAT span->red = r; span->green = g; span->blue = b; span->alpha = a; #else span->red = IntToFixed(r); span->green = IntToFixed(g); span->blue = IntToFixed(b); span->alpha = IntToFixed(a); #endif span->redStep = 0; span->greenStep = 0; span->blueStep = 0; span->alphaStep = 0; span->interpMask |= SPAN_RGBA; } else { span->index = IntToFixed(ctx->Current.RasterIndex); span->indexStep = 0; span->interpMask |= SPAN_INDEX; } } /* Fill in the span.color.rgba array from the interpolation values */ static void interpolate_colors(GLcontext *ctx, struct sw_span *span) { GLfixed r = span->red; GLfixed g = span->green; GLfixed b = span->blue; GLfixed a = span->alpha; const GLint dr = span->redStep; const GLint dg = span->greenStep; const GLint db = span->blueStep; const GLint da = span->alphaStep; const GLuint n = span->end; GLchan (*rgba)[4] = span->color.rgba; GLuint i; ASSERT(span->interpMask & SPAN_RGBA); if (span->interpMask & SPAN_FLAT) { /* constant color */ GLchan color[4]; color[RCOMP] = FixedToChan(r); color[GCOMP] = FixedToChan(g); color[BCOMP] = FixedToChan(b); color[ACOMP] = FixedToChan(a); for (i = 0; i < n; i++) { COPY_CHAN4(span->color.rgba[i], color); } } else { /* interpolate */ for (i = 0; i < n; i++) { rgba[i][RCOMP] = FixedToChan(r); rgba[i][GCOMP] = FixedToChan(g); rgba[i][BCOMP] = FixedToChan(b); rgba[i][ACOMP] = FixedToChan(a); r += dr; g += dg; b += db; a += da; } } span->arrayMask |= SPAN_RGBA; } /* Fill in the span.color.index array from the interpolation values */ static void interpolate_indexes(GLcontext *ctx, struct sw_span *span) { GLfixed index = span->index; const GLint indexStep = span->indexStep; const GLuint n = span->end; GLuint *indexes = span->color.index; GLuint i; ASSERT(span->interpMask & SPAN_INDEX); if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) { /* constant color */ index = FixedToInt(index); for (i = 0; i < n; i++) { indexes[i] = index; } } else { /* interpolate */ for (i = 0; i < n; i++) { indexes[i] = FixedToInt(index); index += indexStep; } } span->arrayMask |= SPAN_INDEX; } /* Fill in the span.specArray array from the interpolation values */ static void interpolate_specular(GLcontext *ctx, struct sw_span *span) { if (span->interpMask & SPAN_FLAT) { /* constant color */ const GLchan r = FixedToChan(span->specRed); const GLchan g = FixedToChan(span->specGreen); const GLchan b = FixedToChan(span->specBlue); GLuint i; for (i = 0; i < span->end; i++) { span->specArray[i][RCOMP] = r; span->specArray[i][GCOMP] = g; span->specArray[i][BCOMP] = b; } } else { /* interpolate */ #if CHAN_TYPE == GL_FLOAT GLfloat r = span->specRed; GLfloat g = span->specGreen; GLfloat b = span->specBlue; #else GLfixed r = span->specRed; GLfixed g = span->specGreen; GLfixed b = span->specBlue; #endif GLuint i; for (i = 0; i < span->end; i++) { span->specArray[i][RCOMP] = FixedToChan(r); span->specArray[i][GCOMP] = FixedToChan(g); span->specArray[i][BCOMP] = FixedToChan(b); r += span->specRedStep; g += span->specGreenStep; b += span->specBlueStep; } } span->arrayMask |= SPAN_SPEC; } /* Fill in the span.zArray array from the interpolation values */ static void interpolate_z(GLcontext *ctx, struct sw_span *span) { const GLuint n = span->end; GLuint i; ASSERT(span->interpMask & SPAN_Z); if (ctx->Visual.depthBits <= 16) { GLfixed zval = span->z; for (i = 0; i < n; i++) { span->zArray[i] = FixedToInt(zval); zval += span->zStep; } } else { /* Deep Z buffer, no fixed->int shift */ GLfixed zval = span->z; for (i = 0; i < n; i++) { span->zArray[i] = zval; zval += span->zStep; } } span->arrayMask |= SPAN_Z; } /* Fill in the span.texcoords array from the interpolation values */ static void interpolate_texcoords(GLcontext *ctx, struct sw_span *span) { ASSERT(span->interpMask & SPAN_TEXTURE); if (ctx->Texture._ReallyEnabled & ~TEXTURE0_ANY) { if (span->interpMask & SPAN_LAMBDA) { /* multitexture, lambda */ GLuint u; for (u = 0; u < ctx->Const.MaxTextureUnits; u++) { if (ctx->Texture.Unit[u]._ReallyEnabled) { const GLfloat ds = span->texStep[u][0]; const GLfloat dt = span->texStep[u][1]; const GLfloat dr = span->texStep[u][2]; const GLfloat dq = span->texStep[u][3]; GLfloat s = span->tex[u][0]; GLfloat t = span->tex[u][1]; GLfloat r = span->tex[u][2]; GLfloat q = span->tex[u][3]; GLuint i; for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); span->texcoords[u][i][0] = s * invQ; span->texcoords[u][i][1] = t * invQ; span->texcoords[u][i][2] = r * invQ; span->lambda[u][i] = (GLfloat) (log(span->rho[u] * invQ * invQ) * 1.442695F * 0.5F); s += ds; t += dt; r += dr; q += dq; } } } span->arrayMask |= SPAN_LAMBDA; } else { /* multitexture, no lambda */ GLuint u; for (u = 0; u < ctx->Const.MaxTextureUnits; u++) { if (ctx->Texture.Unit[u]._ReallyEnabled) { const GLfloat ds = span->texStep[u][0]; const GLfloat dt = span->texStep[u][1]; const GLfloat dr = span->texStep[u][2]; const GLfloat dq = span->texStep[u][3]; GLfloat s = span->tex[u][0]; GLfloat t = span->tex[u][1]; GLfloat r = span->tex[u][2]; GLfloat q = span->tex[u][3]; GLuint i; for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); span->texcoords[u][i][0] = s * invQ; span->texcoords[u][i][1] = t * invQ; span->texcoords[u][i][2] = r * invQ; s += ds; t += dt; r += dr; q += dq; } } } } } else { if (span->interpMask & SPAN_LAMBDA) { /* just texture unit 0, with lambda */ const GLfloat ds = span->texStep[0][0]; const GLfloat dt = span->texStep[0][1]; const GLfloat dr = span->texStep[0][2]; const GLfloat dq = span->texStep[0][3]; GLfloat s = span->tex[0][0]; GLfloat t = span->tex[0][1]; GLfloat r = span->tex[0][2]; GLfloat q = span->tex[0][3]; GLuint i; for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); span->texcoords[0][i][0] = s * invQ; span->texcoords[0][i][1] = t * invQ; span->texcoords[0][i][2] = r * invQ; span->lambda[0][i] = (GLfloat) (log(span->rho[0] * invQ * invQ) * 1.442695F * 0.5F); s += ds; t += dt; r += dr; q += dq; } span->arrayMask |= SPAN_LAMBDA; } else { /* just texture 0, witout lambda */ const GLfloat ds = span->texStep[0][0]; const GLfloat dt = span->texStep[0][1]; const GLfloat dr = span->texStep[0][2]; const GLfloat dq = span->texStep[0][3]; GLfloat s = span->tex[0][0]; GLfloat t = span->tex[0][1]; GLfloat r = span->tex[0][2]; GLfloat q = span->tex[0][3]; GLuint i; for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); span->texcoords[0][i][0] = s * invQ; span->texcoords[0][i][1] = t * invQ; span->texcoords[0][i][2] = r * invQ; s += ds; t += dt; r += dr; q += dq; } } } } /* * Apply the current polygon stipple pattern to a span of pixels. */ static void stipple_polygon_span( GLcontext *ctx, struct sw_span *span) { const GLuint highbit = 0x80000000; GLuint i, m, stipple; stipple = ctx->PolygonStipple[span->y % 32]; m = highbit >> (GLuint) (span->x % 32); for (i = 0; i < span->end; i++) { if ((m & stipple) == 0) { span->mask[i] = 0; } m = m >> 1; if (m == 0) { m = highbit; } } span->writeAll = GL_FALSE; } /* * Clip a pixel span to the current buffer/window boundaries. * Return: GL_TRUE some pixel still visible * GL_FALSE nothing visible */ static GLuint clip_span( GLcontext *ctx, struct sw_span *span) { GLint x = span->x, y = span->y, n = span->end; /* Clip to top and bottom */ if (y < 0 || y >= ctx->DrawBuffer->Height) { span->end = 0; return GL_FALSE; } /* Clip to the left */ if (x < 0) { if (x + n <= 0) { /* completely off left side */ span->end = 0; return GL_FALSE; } else { /* partially off left side */ span->writeAll = GL_FALSE; BZERO(span->mask, -x * sizeof(GLubyte)); return GL_TRUE; } } /* Clip to right */ if (x + n > ctx->DrawBuffer->Width) { if (x >= ctx->DrawBuffer->Width) { /* completely off right side */ span->end = 0; return GL_FALSE; } else { /* partially off right side */ span->end = ctx->DrawBuffer->Width - x; return GL_TRUE; } } return GL_TRUE; } /* * Draw to more than one color buffer (or none). */ static void multi_write_index_span( GLcontext *ctx, GLuint n, GLint x, GLint y, const GLuint indexes[], const GLubyte mask[] ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLuint bufferBit; if (ctx->Color.DrawBuffer == GL_NONE) return; /* loop over four possible dest color buffers */ for (bufferBit = 1; bufferBit <= 8; bufferBit = bufferBit << 1) { if (bufferBit & ctx->Color.DrawDestMask) { GLuint indexTmp[MAX_WIDTH]; ASSERT(n < MAX_WIDTH); if (bufferBit == FRONT_LEFT_BIT) (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_FRONT_LEFT); else if (bufferBit == FRONT_RIGHT_BIT) (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_FRONT_RIGHT); else if (bufferBit == BACK_LEFT_BIT) (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_BACK_LEFT); else (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_BACK_RIGHT); /* make copy of incoming indexes */ MEMCPY( indexTmp, indexes, n * sizeof(GLuint) ); if (ctx->Color.IndexLogicOpEnabled) { _mesa_logicop_ci_span( ctx, n, x, y, indexTmp, mask ); } if (ctx->Color.IndexMask != 0xffffffff) { _mesa_mask_index_span( ctx, n, x, y, indexTmp ); } (*swrast->Driver.WriteCI32Span)( ctx, n, x, y, indexTmp, mask ); } } /* restore default dest buffer */ (void) (*ctx->Driver.SetDrawBuffer)( ctx, ctx->Color.DriverDrawBuffer); } /* * Draw to more than one RGBA color buffer (or none). * All fragment operations, up to (but not) blending/logicop should * have been done first. */ static void multi_write_rgba_span( GLcontext *ctx, GLuint n, GLint x, GLint y, CONST GLchan rgba[][4], const GLubyte mask[] ) { const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask); GLuint bufferBit; SWcontext *swrast = SWRAST_CONTEXT(ctx); if (ctx->Color.DrawBuffer == GL_NONE) return; /* loop over four possible dest color buffers */ for (bufferBit = 1; bufferBit <= 8; bufferBit = bufferBit << 1) { if (bufferBit & ctx->Color.DrawDestMask) { GLchan rgbaTmp[MAX_WIDTH][4]; ASSERT(n < MAX_WIDTH); if (bufferBit == FRONT_LEFT_BIT) { (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_FRONT_LEFT); ctx->DrawBuffer->Alpha = ctx->DrawBuffer->FrontLeftAlpha; } else if (bufferBit == FRONT_RIGHT_BIT) { (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_FRONT_RIGHT); ctx->DrawBuffer->Alpha = ctx->DrawBuffer->FrontRightAlpha; } else if (bufferBit == BACK_LEFT_BIT) { (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_BACK_LEFT); ctx->DrawBuffer->Alpha = ctx->DrawBuffer->BackLeftAlpha; } else { (void) (*ctx->Driver.SetDrawBuffer)( ctx, GL_BACK_RIGHT); ctx->DrawBuffer->Alpha = ctx->DrawBuffer->BackRightAlpha; } /* make copy of incoming colors */ MEMCPY( rgbaTmp, rgba, 4 * n * sizeof(GLchan) ); if (ctx->Color.ColorLogicOpEnabled) { _mesa_logicop_rgba_span( ctx, n, x, y, rgbaTmp, mask ); } else if (ctx->Color.BlendEnabled) { _mesa_blend_span( ctx, n, x, y, rgbaTmp, mask ); } if (colorMask == 0x0) { break; } else if (colorMask != 0xffffffff) { _mesa_mask_rgba_span( ctx, n, x, y, rgbaTmp ); } (*swrast->Driver.WriteRGBASpan)( ctx, n, x, y, (const GLchan (*)[4]) rgbaTmp, mask ); if (swrast->_RasterMask & ALPHABUF_BIT) { _mesa_write_alpha_span( ctx, n, x, y, (const GLchan (*)[4])rgbaTmp, mask ); } } } /* restore default dest buffer */ (void) (*ctx->Driver.SetDrawBuffer)( ctx, ctx->Color.DriverDrawBuffer ); } /* * This function may modify any of the array values in the span. * span->interpMask and span->arrayMask may be changed but will be restored * to their original values before returning. */ void _mesa_write_index_span( GLcontext *ctx, struct sw_span *span, GLenum primitive) { SWcontext *swrast = SWRAST_CONTEXT(ctx); const GLuint origInterpMask = span->interpMask; const GLuint origArrayMask = span->arrayMask; ASSERT((span->interpMask & span->arrayMask) == 0); MEMSET(span->mask, 1, span->end); span->writeAll = GL_TRUE; /* Window clipping */ if ((swrast->_RasterMask & WINCLIP_BIT) || primitive==GL_BITMAP) { if (clip_span(ctx,span) == GL_FALSE) { return; } } /* Scissor test */ if (ctx->Scissor.Enabled) { if (_mesa_scissor_span( ctx, span ) == GL_FALSE) { return; } } /* Polygon Stippling */ if (ctx->Polygon.StippleFlag && primitive==GL_POLYGON) { stipple_polygon_span(ctx, span); } /* Depth test and stencil */ if (ctx->Depth.Test || ctx->Stencil.Enabled) { if (span->interpMask & SPAN_Z) interpolate_z(ctx, span); if (ctx->Stencil.Enabled) { if (_mesa_stencil_and_ztest_span(ctx, span) == GL_FALSE) { span->arrayMask = origArrayMask; return; } } else { ASSERT(ctx->Depth.Test); if (_mesa_depth_test_span(ctx, span) == 0) { span->arrayMask = origArrayMask; return; } } } /* if we get here, something passed the depth test */ ctx->OcclusionResult = GL_TRUE; /* we have to wait until after occlusion to do this test */ if (ctx->Color.DrawBuffer == GL_NONE || ctx->Color.IndexMask == 0) { /* write no pixels */ span->arrayMask = origArrayMask; return; } /* Interpolate the color indexes if needed */ if (span->interpMask & SPAN_INDEX) { interpolate_indexes(ctx, span); /* clear the bit - this allows the WriteMonoCISpan optimization below */ span->interpMask &= ~SPAN_INDEX; } /* Fog */ /* XXX try to simplify the fog code! */ if (ctx->Fog.Enabled) { if ((span->arrayMask & SPAN_FOG) && !swrast->_PreferPixelFog) _mesa_fog_ci_pixels_with_array( ctx, span, span->fogArray, span->color.index); else if ((span->interpMask & SPAN_FOG) && !swrast->_PreferPixelFog) _mesa_fog_ci_pixels( ctx, span, span->color.index); else _mesa_depth_fog_ci_pixels( ctx, span, span->color.index); } /* Antialias coverage application */ if (span->arrayMask & SPAN_COVERAGE) { GLuint i; GLuint *index = span->color.index; for (i = 0; i < span->end; i++) { ASSERT(span->coverage[i] < 16); index[i] = (index[i] & ~0xf) | ((GLuint) (span->coverage[i])); } } if (swrast->_RasterMask & MULTI_DRAW_BIT) { /* draw to zero or two or more buffers */ multi_write_index_span( ctx, span->end, span->x, span->y, span->color.index, span->mask ); } else { /* normal situation: draw to exactly one buffer */ if (ctx->Color.IndexLogicOpEnabled) { _mesa_logicop_ci_span( ctx, span->end, span->x, span->y, span->color.index, span->mask ); } if (ctx->Color.IndexMask != 0xffffffff) { _mesa_mask_index_span( ctx, span->end, span->x, span->y, span->color.index ); } /* write pixels */ if ((span->interpMask & SPAN_INDEX) && span->indexStep == 0) { /* all pixels have same color index */ (*swrast->Driver.WriteMonoCISpan)( ctx, span->end, span->x, span->y, FixedToInt(span->index), span->mask ); } else { (*swrast->Driver.WriteCI32Span)( ctx, span->end, span->x, span->y, span->color.index, span->mask ); } } span->interpMask = origInterpMask; span->arrayMask = origArrayMask; } /* * This function may modify any of the array values in the span. * span->interpMask and span->arrayMask may be changed but will be restored * to their original values before returning. */ void _mesa_write_rgba_span( GLcontext *ctx, struct sw_span *span, GLenum primitive) { SWcontext *swrast = SWRAST_CONTEXT(ctx); const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask); const GLuint origInterpMask = span->interpMask; const GLuint origArrayMask = span->arrayMask; GLboolean monoColor; ASSERT((span->interpMask & span->arrayMask) == 0); ASSERT((span->interpMask | span->arrayMask) & SPAN_RGBA); MEMSET(span->mask, 1, span->end); span->writeAll = GL_TRUE; /* Determine if we have mono-chromatic colors */ monoColor = (span->interpMask & SPAN_RGBA) && span->redStep == 0 && span->greenStep == 0 && span->blueStep == 0 && span->alphaStep == 0; /* Window clipping */ if ((swrast->_RasterMask & WINCLIP_BIT) || primitive == GL_BITMAP) { if (clip_span(ctx, span) == GL_FALSE) { return; } } /* Scissor test */ if (ctx->Scissor.Enabled) { if (!_mesa_scissor_span(ctx, span)) { return; } } /* Polygon Stippling */ if (ctx->Polygon.StippleFlag && primitive == GL_POLYGON) { stipple_polygon_span(ctx, span); } /* Do the alpha test */ if (ctx->Color.AlphaEnabled) { if (!_mesa_alpha_test(ctx, span)) { span->interpMask = origInterpMask; span->arrayMask = origArrayMask; return; } } /* Stencil and Z testing */ if (ctx->Stencil.Enabled || ctx->Depth.Test) { if (span->interpMask & SPAN_Z) interpolate_z(ctx, span); if (ctx->Stencil.Enabled) { if (!_mesa_stencil_and_ztest_span(ctx, span)) { span->interpMask = origInterpMask; span->arrayMask = origArrayMask; return; } } else { ASSERT(ctx->Depth.Test); ASSERT(span->arrayMask & SPAN_Z); /* regular depth testing */ if (!_mesa_depth_test_span(ctx, span)) { span->interpMask = origInterpMask; span->arrayMask = origArrayMask; return; } } } /* if we get here, something passed the depth test */ ctx->OcclusionResult = GL_TRUE; /* can't abort span-writing until after occlusion testing */ if (colorMask == 0x0) { span->interpMask = origInterpMask; span->arrayMask = origArrayMask; return; } /* Now we may need to interpolate the colors */ if ((span->interpMask & SPAN_RGBA) && (span->arrayMask & SPAN_RGBA) == 0) { interpolate_colors(ctx, span); /* clear the bit - this allows the WriteMonoCISpan optimization below */ span->interpMask &= ~SPAN_RGBA; } /* Fog */ /* XXX try to simplify the fog code! */ if (ctx->Fog.Enabled) { if ((span->arrayMask & SPAN_FOG) && !swrast->_PreferPixelFog) _mesa_fog_rgba_pixels_with_array(ctx, span, span->fogArray, span->color.rgba); else if ((span->interpMask & SPAN_FOG) && !swrast->_PreferPixelFog) _mesa_fog_rgba_pixels(ctx, span, span->color.rgba); else { if ((span->interpMask & SPAN_Z) && (span->arrayMask & SPAN_Z) == 0) interpolate_z(ctx, span); _mesa_depth_fog_rgba_pixels(ctx, span, span->color.rgba); } monoColor = GL_FALSE; } /* Antialias coverage application */ if (span->arrayMask & SPAN_COVERAGE) { GLchan (*rgba)[4] = span->color.rgba; GLuint i; for (i = 0; i < span->end; i++) { rgba[i][ACOMP] = (GLchan) (rgba[i][ACOMP] * span->coverage[i]); } monoColor = GL_FALSE; } if (swrast->_RasterMask & MULTI_DRAW_BIT) { multi_write_rgba_span( ctx, span->end, span->x, span->y, (const GLchan (*)[4]) span->color.rgba, span->mask ); } else { /* normal: write to exactly one buffer */ if (ctx->Color.ColorLogicOpEnabled) { _mesa_logicop_rgba_span( ctx, span->end, span->x, span->y, span->color.rgba, span->mask ); monoColor = GL_FALSE; } else if (ctx->Color.BlendEnabled) { _mesa_blend_span( ctx, span->end, span->x, span->y, span->color.rgba, span->mask ); monoColor = GL_FALSE; } /* Color component masking */ if (colorMask != 0xffffffff) { _mesa_mask_rgba_span( ctx, span->end, span->x, span->y, span->color.rgba ); monoColor = GL_FALSE; } /* write pixels */ if (monoColor) { /* all pixels have same color */ GLchan color[4]; color[RCOMP] = FixedToChan(span->red); color[GCOMP] = FixedToChan(span->green); color[BCOMP] = FixedToChan(span->blue); color[ACOMP] = FixedToChan(span->alpha); (*swrast->Driver.WriteMonoRGBASpan)( ctx, span->end, span->x, span->y, color, span->mask); } else { (*swrast->Driver.WriteRGBASpan)( ctx, span->end, span->x, span->y, (const GLchan (*)[4]) span->color.rgba, span->writeAll ? ((const GLubyte *) NULL) : span->mask ); } if (swrast->_RasterMask & ALPHABUF_BIT) { _mesa_write_alpha_span( ctx, span->end, span->x, span->y, (const GLchan (*)[4]) span->color.rgba, span->writeAll ? ((const GLubyte *) NULL) : span->mask ); } } span->interpMask = origInterpMask; span->arrayMask = origArrayMask; } /* * Add specular color to base color. This is used only when * GL_LIGHT_MODEL_COLOR_CONTROL = GL_SEPARATE_SPECULAR_COLOR. */ static void add_colors(GLuint n, GLchan rgba[][4], GLchan specular[][4] ) { GLuint i; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT /* no clamping */ rgba[i][RCOMP] += specular[i][RCOMP]; rgba[i][GCOMP] += specular[i][GCOMP]; rgba[i][BCOMP] += specular[i][BCOMP]; #else GLint r = rgba[i][RCOMP] + specular[i][RCOMP]; GLint g = rgba[i][GCOMP] + specular[i][GCOMP]; GLint b = rgba[i][BCOMP] + specular[i][BCOMP]; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); #endif } } /* * This function may modify any of the array values in the span. * span->interpMask and span->arrayMask may be changed but will be restored * to their original values before returning. */ void _mesa_write_texture_span( GLcontext *ctx, struct sw_span *span, GLenum primitive ) { const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask); SWcontext *swrast = SWRAST_CONTEXT(ctx); const GLuint origArrayMask = span->arrayMask; ASSERT((span->interpMask & span->arrayMask) == 0); ASSERT(ctx->Texture._ReallyEnabled); /* printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__, span->interpMask, span->arrayMask); */ MEMSET(span->mask, 1, span->end); span->writeAll = GL_TRUE; /* clip against window bounds */ if ((swrast->_RasterMask & WINCLIP_BIT) || primitive==GL_BITMAP) { if (clip_span(ctx,span) == GL_FALSE) { return; } } /* Scissor test */ if (ctx->Scissor.Enabled) { if (_mesa_scissor_span( ctx, span ) == GL_FALSE) { return; } } /* Polygon Stippling */ if (ctx->Polygon.StippleFlag && primitive==GL_POLYGON) { stipple_polygon_span( ctx, span); } /* Need texture coordinates now */ if ((span->interpMask & SPAN_TEXTURE) && (span->arrayMask & SPAN_TEXTURE) == 0) interpolate_texcoords(ctx, span); /* Texture with alpha test */ if (ctx->Color.AlphaEnabled) { /* Now we need the rgba array, fill it in if needed */ if ((span->interpMask & SPAN_RGBA) && (span->arrayMask & SPAN_RGBA) == 0) interpolate_colors(ctx, span); /* Texturing without alpha is done after depth-testing which * gives a potential speed-up. */ _swrast_multitexture_fragments( ctx, span ); /* Do the alpha test */ if (!_mesa_alpha_test(ctx, span)) { span->arrayMask = origArrayMask; return; } } /* Stencil and Z testing */ if (ctx->Stencil.Enabled || ctx->Depth.Test) { if (span->interpMask & SPAN_Z) interpolate_z(ctx, span); if (ctx->Stencil.Enabled) { if (!_mesa_stencil_and_ztest_span(ctx, span)) { span->arrayMask = origArrayMask; return; } } else { ASSERT(ctx->Depth.Test); ASSERT(span->arrayMask & SPAN_Z); /* regular depth testing */ if (!_mesa_depth_test_span(ctx, span)) { span->arrayMask = origArrayMask; return; } } } /* if we get here, some fragments passed the depth test */ ctx->OcclusionResult = GL_TRUE; /* We had to wait until now to check for glColorMask(F,F,F,F) because of * the occlusion test. */ if (colorMask == 0x0) { span->arrayMask = origArrayMask; return; } /* Texture without alpha test */ if (!ctx->Color.AlphaEnabled) { /* Now we need the rgba array, fill it in if needed */ if ((span->interpMask & SPAN_RGBA) && (span->arrayMask & SPAN_RGBA) == 0) interpolate_colors(ctx, span); _swrast_multitexture_fragments( ctx, span ); } ASSERT(span->arrayMask & SPAN_RGBA); /* Add base and specular colors */ if (ctx->Fog.ColorSumEnabled || (ctx->Light.Enabled && ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { if (span->interpMask & SPAN_SPEC) { interpolate_specular(ctx, span); } ASSERT(span->arrayMask & SPAN_SPEC); add_colors( span->end, span->color.rgba, span->specArray ); } /* Fog */ /* XXX try to simplify the fog code! */ if (ctx->Fog.Enabled) { if ((span->arrayMask & SPAN_FOG) && !swrast->_PreferPixelFog) _mesa_fog_rgba_pixels_with_array( ctx, span, span->fogArray, span->color.rgba); else if ((span->interpMask & SPAN_FOG) && !swrast->_PreferPixelFog) _mesa_fog_rgba_pixels( ctx, span, span->color.rgba ); else { if ((span->interpMask & SPAN_Z) && (span->arrayMask & SPAN_Z) == 0) interpolate_z(ctx, span); _mesa_depth_fog_rgba_pixels(ctx, span, span->color.rgba); } } /* Antialias coverage application */ if (span->arrayMask & SPAN_COVERAGE) { GLchan (*rgba)[4] = span->color.rgba; GLuint i; for (i = 0; i < span->end; i++) { rgba[i][ACOMP] = (GLchan) (rgba[i][ACOMP] * span->coverage[i]); } } if (swrast->_RasterMask & MULTI_DRAW_BIT) { multi_write_rgba_span( ctx, span->end, span->x, span->y, (const GLchan (*)[4]) span->color.rgba, span->mask ); } else { /* normal: write to exactly one buffer */ if (ctx->Color.ColorLogicOpEnabled) { _mesa_logicop_rgba_span( ctx, span->end, span->x, span->y, span->color.rgba, span->mask ); } else if (ctx->Color.BlendEnabled) { _mesa_blend_span( ctx, span->end, span->x, span->y, span->color.rgba, span->mask); } if (colorMask != 0xffffffff) { _mesa_mask_rgba_span( ctx, span->end, span->x, span->y, span->color.rgba ); } (*swrast->Driver.WriteRGBASpan)( ctx, span->end, span->x, span->y, (const GLchan (*)[4]) span->color.rgba, span->writeAll ? NULL : span->mask ); if (swrast->_RasterMask & ALPHABUF_BIT) { _mesa_write_alpha_span( ctx, span->end, span->x, span->y, (const GLchan (*)[4]) span->color.rgba, span->writeAll ? NULL : span->mask ); } } span->arrayMask = origArrayMask; } /* * Read RGBA pixels from frame buffer. Clipping will be done to prevent * reading ouside the buffer's boundaries. */ void _mesa_read_rgba_span( GLcontext *ctx, GLframebuffer *buffer, GLuint n, GLint x, GLint y, GLchan rgba[][4] ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (y < 0 || y >= buffer->Height || x + (GLint) n < 0 || x >= buffer->Width) { /* completely above, below, or right */ /* XXX maybe leave undefined? */ BZERO(rgba, 4 * n * sizeof(GLchan)); } else { GLint skip, length; if (x < 0) { /* left edge clippping */ skip = -x; length = (GLint) n - skip; if (length < 0) { /* completely left of window */ return; } if (length > buffer->Width) { length = buffer->Width; } } else if ((GLint) (x + n) > buffer->Width) { /* right edge clipping */ skip = 0; length = buffer->Width - x; if (length < 0) { /* completely to right of window */ return; } } else { /* no clipping */ skip = 0; length = (GLint) n; } (*swrast->Driver.ReadRGBASpan)( ctx, length, x + skip, y, rgba + skip ); if (buffer->UseSoftwareAlphaBuffers) { _mesa_read_alpha_span( ctx, length, x + skip, y, rgba + skip ); } } } /* * Read CI pixels from frame buffer. Clipping will be done to prevent * reading ouside the buffer's boundaries. */ void _mesa_read_index_span( GLcontext *ctx, GLframebuffer *buffer, GLuint n, GLint x, GLint y, GLuint indx[] ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (y < 0 || y >= buffer->Height || x + (GLint) n < 0 || x >= buffer->Width) { /* completely above, below, or right */ BZERO(indx, n * sizeof(GLuint)); } else { GLint skip, length; if (x < 0) { /* left edge clippping */ skip = -x; length = (GLint) n - skip; if (length < 0) { /* completely left of window */ return; } if (length > buffer->Width) { length = buffer->Width; } } else if ((GLint) (x + n) > buffer->Width) { /* right edge clipping */ skip = 0; length = buffer->Width - x; if (length < 0) { /* completely to right of window */ return; } } else { /* no clipping */ skip = 0; length = (GLint) n; } (*swrast->Driver.ReadCI32Span)( ctx, length, skip + x, y, indx + skip ); } }