/* * Mesa 3-D graphics library * Version: 6.5 * * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef S_SPAN_H #define S_SPAN_H #include "mtypes.h" #include "swrast.h" /** * \defgroup SpanFlags * Bitflags used for interpMask and arrayMask fields below to indicate * which interpolant values and fragment arrays are in use, respectively. * * XXX We should replace these flags with the FRAG_BIT_ values someday... */ /*@{*/ #define SPAN_RGBA 0x001 #define SPAN_SPEC 0x002 #define SPAN_INDEX 0x004 #define SPAN_Z 0x008 #define SPAN_W 0x010 #define SPAN_FOG 0x020 #define SPAN_TEXTURE 0x040 #define SPAN_INT_TEXTURE 0x080 #define SPAN_LAMBDA 0x100 #define SPAN_COVERAGE 0x200 #define SPAN_FLAT 0x400 /**< flat shading? */ #define SPAN_XY 0x800 #define SPAN_MASK 0x1000 #define SPAN_VARYING 0x2000 /*@}*/ #if 0 /* alternate arrangement for code below */ struct arrays2 { union { GLubyte sz1[MAX_WIDTH][4]; /* primary color */ GLushort sz2[MAX_WIDTH][4]; } rgba; union { GLubyte sz1[MAX_WIDTH][4]; /* specular color and temp storage */ GLushort sz2[MAX_WIDTH][4]; } spec; }; #endif /** * \sw_span_arrays * \brief Arrays of fragment values. * * These will either be computed from the span x/xStep values or * filled in by glDraw/CopyPixels, etc. * These arrays are separated out of sw_span to conserve memory. */ typedef struct sw_span_arrays { /** Per-fragment attributes (indexed by FRAG_ATTRIB_* tokens) */ /* XXX someday look at transposing first two indexes for better memory * access pattern. */ GLfloat attribs[FRAG_ATTRIB_MAX][MAX_WIDTH][4]; /** This mask indicates which fragments are alive or culled */ GLubyte mask[MAX_WIDTH]; GLenum ChanType; /**< Color channel type, GL_UNSIGNED_BYTE, GL_FLOAT */ union { struct { GLubyte rgba[MAX_WIDTH][4]; /**< primary color */ GLubyte spec[MAX_WIDTH][4]; /**< specular color and temp storage */ } sz1; struct { GLushort rgba[MAX_WIDTH][4]; GLushort spec[MAX_WIDTH][4]; } sz2; } color; /** XXX these are temporary fields, pointing into above color arrays */ GLchan (*rgba)[4]; GLchan (*spec)[4]; GLint x[MAX_WIDTH]; /**< fragment X coords */ GLint y[MAX_WIDTH]; /**< fragment Y coords */ GLuint z[MAX_WIDTH]; /**< fragment Z coords */ GLuint index[MAX_WIDTH]; /**< Color indexes */ GLfloat lambda[MAX_TEXTURE_COORD_UNITS][MAX_WIDTH]; /**< Texture LOD */ GLfloat coverage[MAX_WIDTH]; /**< Fragment coverage for AA/smoothing */ } SWspanarrays; /** * The SWspan structure describes the colors, Z, fogcoord, texcoords, * etc for either a horizontal run or an array of independent pixels. * We can either specify a base/step to indicate interpolated values, or * fill in explicit arrays of values. The interpMask and arrayMask bitfields * indicate which attributes are active interpolants or arrays, respectively. * * It would be interesting to experiment with multiprocessor rasterization * with this structure. The triangle rasterizer could simply emit a * stream of these structures which would be consumed by one or more * span-processing threads which could run in parallel. */ typedef struct sw_span { /** Coord of first fragment in horizontal span/run */ GLint x, y; /** Number of fragments in the span */ GLuint end; /** This flag indicates that mask[] array is effectively filled with ones */ GLboolean writeAll; /** either GL_POLYGON, GL_LINE, GL_POLYGON, GL_BITMAP */ GLenum primitive; /** 0 = front-facing span, 1 = back-facing span (for two-sided stencil) */ GLuint facing; /** * This bitmask (of \link SpanFlags SPAN_* flags\endlink) indicates * which of the attrStart/StepX/StepY variables are relevant. */ GLbitfield interpMask; /** Fragment attribute interpolants */ GLfloat attrStart[FRAG_ATTRIB_MAX][4]; /**< initial value */ GLfloat attrStepX[FRAG_ATTRIB_MAX][4]; /**< dvalue/dx */ GLfloat attrStepY[FRAG_ATTRIB_MAX][4]; /**< dvalue/dy */ /* XXX the rest of these will go away eventually... */ /* For horizontal spans, step is the partial derivative wrt X. * For lines, step is the delta from one fragment to the next. */ #if CHAN_TYPE == GL_FLOAT GLfloat red, redStep; GLfloat green, greenStep; GLfloat blue, blueStep; GLfloat alpha, alphaStep; GLfloat specRed, specRedStep; GLfloat specGreen, specGreenStep; GLfloat specBlue, specBlueStep; #else /* CHAN_TYPE == GL_UNSIGNED_BYTE or GL_UNSIGNED_SHORT */ GLfixed red, redStep; GLfixed green, greenStep; GLfixed blue, blueStep; GLfixed alpha, alphaStep; GLfixed specRed, specRedStep; GLfixed specGreen, specGreenStep; GLfixed specBlue, specBlueStep; #endif GLfixed index, indexStep; GLfixed z, zStep; /* XXX z should probably be GLuint */ GLfixed intTex[2], intTexStep[2]; /* s, t only */ /** * This bitmask (of \link SpanFlags SPAN_* flags\endlink) indicates * which of the fragment arrays in the span_arrays struct are relevant. */ GLbitfield arrayMask; /** * We store the arrays of fragment values in a separate struct so * that we can allocate sw_span structs on the stack without using * a lot of memory. The span_arrays struct is about 1.4MB while the * sw_span struct is only about 512 bytes. */ SWspanarrays *array; } SWspan; #define INIT_SPAN(S, PRIMITIVE, END, INTERP_MASK, ARRAY_MASK) \ do { \ (S).primitive = (PRIMITIVE); \ (S).interpMask = (INTERP_MASK); \ (S).arrayMask = (ARRAY_MASK); \ (S).end = (END); \ (S).facing = 0; \ (S).array = SWRAST_CONTEXT(ctx)->SpanArrays; \ } while (0) extern void _swrast_span_default_z( GLcontext *ctx, SWspan *span ); extern void _swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span ); extern void _swrast_span_default_fog( GLcontext *ctx, SWspan *span ); extern void _swrast_span_default_color( GLcontext *ctx, SWspan *span ); extern void _swrast_span_default_texcoords( GLcontext *ctx, SWspan *span ); extern GLfloat _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, GLfloat s, GLfloat t, GLfloat q, GLfloat invQ); extern void _swrast_write_index_span( GLcontext *ctx, SWspan *span); extern void _swrast_write_rgba_span( GLcontext *ctx, SWspan *span); extern void _swrast_read_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLenum type, GLvoid *rgba); extern void _swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLuint indx[] ); extern void _swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count, const GLint x[], const GLint y[], void *values, GLuint valueSize); extern void _swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count, GLint x, GLint y, const GLvoid *values, GLuint valueSize); extern void _swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count, GLint x, GLint y, GLvoid *values, GLuint valueSize); extern void * _swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb, SWspan *span); #endif