/* * Mesa 3-D graphics library * Version: 7.1 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/context.h" #include "main/imports.h" #include "s_context.h" #include "s_depth.h" #include "s_stencil.h" #include "s_span.h" /* Stencil Logic: IF stencil test fails THEN Apply fail-op to stencil value Don't write the pixel (RGBA,Z) ELSE IF doing depth test && depth test fails THEN Apply zfail-op to stencil value Write RGBA and Z to appropriate buffers ELSE Apply zpass-op to stencil value ENDIF */ /** * Apply the given stencil operator to the array of stencil values. * Don't touch stencil[i] if mask[i] is zero. * Input: n - size of stencil array * oper - the stencil buffer operator * face - 0 or 1 for front or back face operation * stencil - array of stencil values * mask - array [n] of flag: 1=apply operator, 0=don't apply operator * Output: stencil - modified values */ static void apply_stencil_op( const struct gl_context *ctx, GLenum oper, GLuint face, GLuint n, GLstencil stencil[], const GLubyte mask[] ) { const GLstencil ref = ctx->Stencil.Ref[face]; const GLstencil wrtmask = ctx->Stencil.WriteMask[face]; const GLstencil invmask = (GLstencil) (~wrtmask); const GLstencil stencilMax = (1 << ctx->DrawBuffer->Visual.stencilBits) - 1; GLuint i; switch (oper) { case GL_KEEP: /* do nothing */ break; case GL_ZERO: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { stencil[i] = 0; } } } else { for (i=0;i<n;i++) { if (mask[i]) { stencil[i] = (GLstencil) (stencil[i] & invmask); } } } break; case GL_REPLACE: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { stencil[i] = ref; } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; stencil[i] = (GLstencil) ((invmask & s ) | (wrtmask & ref)); } } } break; case GL_INCR: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; if (s < stencilMax) { stencil[i] = (GLstencil) (s+1); } } } } else { for (i=0;i<n;i++) { if (mask[i]) { /* VERIFY logic of adding 1 to a write-masked value */ GLstencil s = stencil[i]; if (s < stencilMax) { stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s+1))); } } } } break; case GL_DECR: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; if (s>0) { stencil[i] = (GLstencil) (s-1); } } } } else { for (i=0;i<n;i++) { if (mask[i]) { /* VERIFY logic of subtracting 1 to a write-masked value */ GLstencil s = stencil[i]; if (s>0) { stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s-1))); } } } } break; case GL_INCR_WRAP_EXT: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { stencil[i]++; } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s+1))); } } } break; case GL_DECR_WRAP_EXT: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { stencil[i]--; } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & (s-1))); } } } break; case GL_INVERT: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; stencil[i] = (GLstencil) ~s; } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil s = stencil[i]; stencil[i] = (GLstencil) ((invmask & s) | (wrtmask & ~s)); } } } break; default: _mesa_problem(ctx, "Bad stencil op in apply_stencil_op"); } } /** * Apply stencil test to an array of stencil values (before depth buffering). * Input: face - 0 or 1 for front or back-face polygons * n - number of pixels in the array * stencil - array of [n] stencil values * mask - array [n] of flag: 0=skip the pixel, 1=stencil the pixel * Output: mask - pixels which fail the stencil test will have their * mask flag set to 0. * stencil - updated stencil values (where the test passed) * Return: GL_FALSE = all pixels failed, GL_TRUE = zero or more pixels passed. */ static GLboolean do_stencil_test( struct gl_context *ctx, GLuint face, GLuint n, GLstencil stencil[], GLubyte mask[] ) { GLubyte fail[MAX_WIDTH]; GLboolean allfail = GL_FALSE; GLuint i; const GLuint valueMask = ctx->Stencil.ValueMask[face]; const GLstencil r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); GLstencil s; ASSERT(n <= MAX_WIDTH); /* * Perform stencil test. The results of this operation are stored * in the fail[] array: * IF fail[i] is non-zero THEN * the stencil fail operator is to be applied * ELSE * the stencil fail operator is not to be applied * ENDIF */ switch (ctx->Stencil.Function[face]) { case GL_NEVER: /* never pass; always fail */ for (i=0;i<n;i++) { if (mask[i]) { mask[i] = 0; fail[i] = 1; } else { fail[i] = 0; } } allfail = GL_TRUE; break; case GL_LESS: for (i=0;i<n;i++) { if (mask[i]) { s = (GLstencil) (stencil[i] & valueMask); if (r < s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_LEQUAL: for (i=0;i<n;i++) { if (mask[i]) { s = (GLstencil) (stencil[i] & valueMask); if (r <= s) { /* pass */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_GREATER: for (i=0;i<n;i++) { if (mask[i]) { s = (GLstencil) (stencil[i] & valueMask); if (r > s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_GEQUAL: for (i=0;i<n;i++) { if (mask[i]) { s = (GLstencil) (stencil[i] & valueMask); if (r >= s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_EQUAL: for (i=0;i<n;i++) { if (mask[i]) { s = (GLstencil) (stencil[i] & valueMask); if (r == s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_NOTEQUAL: for (i=0;i<n;i++) { if (mask[i]) { s = (GLstencil) (stencil[i] & valueMask); if (r != s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_ALWAYS: /* always pass */ for (i=0;i<n;i++) { fail[i] = 0; } break; default: _mesa_problem(ctx, "Bad stencil func in gl_stencil_span"); return 0; } if (ctx->Stencil.FailFunc[face] != GL_KEEP) { apply_stencil_op( ctx, ctx->Stencil.FailFunc[face], face, n, stencil, fail ); } return !allfail; } /** * Compute the zpass/zfail masks by comparing the pre- and post-depth test * masks. */ static INLINE void compute_pass_fail_masks(GLuint n, const GLubyte origMask[], const GLubyte newMask[], GLubyte passMask[], GLubyte failMask[]) { GLuint i; for (i = 0; i < n; i++) { ASSERT(newMask[i] == 0 || newMask[i] == 1); passMask[i] = origMask[i] & newMask[i]; failMask[i] = origMask[i] & (newMask[i] ^ 1); } } /** * Apply stencil and depth testing to the span of pixels. * Both software and hardware stencil buffers are acceptable. * Input: n - number of pixels in the span * x, y - location of leftmost pixel in span * z - array [n] of z values * mask - array [n] of flags (1=test this pixel, 0=skip the pixel) * Output: mask - array [n] of flags (1=stencil and depth test passed) * Return: GL_FALSE - all fragments failed the testing * GL_TRUE - one or more fragments passed the testing * */ static GLboolean stencil_and_ztest_span(struct gl_context *ctx, SWspan *span, GLuint face) { struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_StencilBuffer; GLstencil stencilRow[MAX_WIDTH]; GLstencil *stencil; const GLuint n = span->end; const GLint x = span->x; const GLint y = span->y; GLubyte *mask = span->array->mask; ASSERT((span->arrayMask & SPAN_XY) == 0); ASSERT(ctx->Stencil.Enabled); ASSERT(n <= MAX_WIDTH); #ifdef DEBUG if (ctx->Depth.Test) { ASSERT(span->arrayMask & SPAN_Z); } #endif stencil = (GLstencil *) rb->GetPointer(ctx, rb, x, y); if (!stencil) { rb->GetRow(ctx, rb, n, x, y, stencilRow); stencil = stencilRow; } /* * Apply the stencil test to the fragments. * failMask[i] is 1 if the stencil test failed. */ if (do_stencil_test( ctx, face, n, stencil, mask ) == GL_FALSE) { /* all fragments failed the stencil test, we're done. */ span->writeAll = GL_FALSE; if (!rb->GetPointer(ctx, rb, 0, 0)) { /* put updated stencil values into buffer */ rb->PutRow(ctx, rb, n, x, y, stencil, NULL); } return GL_FALSE; } /* * Some fragments passed the stencil test, apply depth test to them * and apply Zpass and Zfail stencil ops. */ if (ctx->Depth.Test == GL_FALSE) { /* * No depth buffer, just apply zpass stencil function to active pixels. */ apply_stencil_op( ctx, ctx->Stencil.ZPassFunc[face], face, n, stencil, mask ); } else { /* * Perform depth buffering, then apply zpass or zfail stencil function. */ GLubyte passMask[MAX_WIDTH], failMask[MAX_WIDTH], origMask[MAX_WIDTH]; /* save the current mask bits */ memcpy(origMask, mask, n * sizeof(GLubyte)); /* apply the depth test */ _swrast_depth_test_span(ctx, span); compute_pass_fail_masks(n, origMask, mask, passMask, failMask); /* apply the pass and fail operations */ if (ctx->Stencil.ZFailFunc[face] != GL_KEEP) { apply_stencil_op( ctx, ctx->Stencil.ZFailFunc[face], face, n, stencil, failMask ); } if (ctx->Stencil.ZPassFunc[face] != GL_KEEP) { apply_stencil_op( ctx, ctx->Stencil.ZPassFunc[face], face, n, stencil, passMask ); } } /* * Write updated stencil values back into hardware stencil buffer. */ if (!rb->GetPointer(ctx, rb, 0, 0)) { rb->PutRow(ctx, rb, n, x, y, stencil, NULL); } span->writeAll = GL_FALSE; return GL_TRUE; /* one or more fragments passed both tests */ } /* * Return the address of a stencil buffer value given the window coords: */ #define STENCIL_ADDRESS(X, Y) (stencilStart + (Y) * stride + (X)) /** * Apply the given stencil operator for each pixel in the array whose * mask flag is set. * \note This is for software stencil buffers only. * Input: n - number of pixels in the span * x, y - array of [n] pixels * operator - the stencil buffer operator * mask - array [n] of flag: 1=apply operator, 0=don't apply operator */ static void apply_stencil_op_to_pixels( struct gl_context *ctx, GLuint n, const GLint x[], const GLint y[], GLenum oper, GLuint face, const GLubyte mask[] ) { struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_StencilBuffer; const GLstencil stencilMax = (1 << fb->Visual.stencilBits) - 1; const GLstencil ref = ctx->Stencil.Ref[face]; const GLstencil wrtmask = ctx->Stencil.WriteMask[face]; const GLstencil invmask = (GLstencil) (~wrtmask); GLuint i; GLstencil *stencilStart = (GLubyte *) rb->Data; const GLuint stride = rb->Width; ASSERT(rb->GetPointer(ctx, rb, 0, 0)); ASSERT(sizeof(GLstencil) == 1); switch (oper) { case GL_KEEP: /* do nothing */ break; case GL_ZERO: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = 0; } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) (invmask & *sptr); } } } break; case GL_REPLACE: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = ref; } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) ((invmask & *sptr ) | (wrtmask & ref)); } } } break; case GL_INCR: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); if (*sptr < stencilMax) { *sptr = (GLstencil) (*sptr + 1); } } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); if (*sptr < stencilMax) { *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr+1))); } } } } break; case GL_DECR: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); if (*sptr>0) { *sptr = (GLstencil) (*sptr - 1); } } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); if (*sptr>0) { *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr-1))); } } } } break; case GL_INCR_WRAP_EXT: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) (*sptr + 1); } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr+1))); } } } break; case GL_DECR_WRAP_EXT: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) (*sptr - 1); } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & (*sptr-1))); } } } break; case GL_INVERT: if (invmask==0) { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) (~*sptr); } } } else { for (i=0;i<n;i++) { if (mask[i]) { GLstencil *sptr = STENCIL_ADDRESS( x[i], y[i] ); *sptr = (GLstencil) ((invmask & *sptr) | (wrtmask & ~*sptr)); } } } break; default: _mesa_problem(ctx, "Bad stencilop in apply_stencil_op_to_pixels"); } } /** * Apply stencil test to an array of pixels before depth buffering. * * \note Used for software stencil buffer only. * Input: n - number of pixels in the span * x, y - array of [n] pixels to stencil * mask - array [n] of flag: 0=skip the pixel, 1=stencil the pixel * Output: mask - pixels which fail the stencil test will have their * mask flag set to 0. * \return GL_FALSE = all pixels failed, GL_TRUE = zero or more pixels passed. */ static GLboolean stencil_test_pixels( struct gl_context *ctx, GLuint face, GLuint n, const GLint x[], const GLint y[], GLubyte mask[] ) { const struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_StencilBuffer; GLubyte fail[MAX_WIDTH]; GLstencil r, s; GLuint i; GLboolean allfail = GL_FALSE; const GLuint valueMask = ctx->Stencil.ValueMask[face]; const GLstencil *stencilStart = (GLstencil *) rb->Data; const GLuint stride = rb->Width; ASSERT(rb->GetPointer(ctx, rb, 0, 0)); ASSERT(sizeof(GLstencil) == 1); /* * Perform stencil test. The results of this operation are stored * in the fail[] array: * IF fail[i] is non-zero THEN * the stencil fail operator is to be applied * ELSE * the stencil fail operator is not to be applied * ENDIF */ switch (ctx->Stencil.Function[face]) { case GL_NEVER: /* always fail */ for (i=0;i<n;i++) { if (mask[i]) { mask[i] = 0; fail[i] = 1; } else { fail[i] = 0; } } allfail = GL_TRUE; break; case GL_LESS: r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); for (i=0;i<n;i++) { if (mask[i]) { const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); s = (GLstencil) (*sptr & valueMask); if (r < s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_LEQUAL: r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); for (i=0;i<n;i++) { if (mask[i]) { const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); s = (GLstencil) (*sptr & valueMask); if (r <= s) { /* pass */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_GREATER: r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); for (i=0;i<n;i++) { if (mask[i]) { const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); s = (GLstencil) (*sptr & valueMask); if (r > s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_GEQUAL: r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); for (i=0;i<n;i++) { if (mask[i]) { const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); s = (GLstencil) (*sptr & valueMask); if (r >= s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_EQUAL: r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); for (i=0;i<n;i++) { if (mask[i]) { const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); s = (GLstencil) (*sptr & valueMask); if (r == s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_NOTEQUAL: r = (GLstencil) (ctx->Stencil.Ref[face] & valueMask); for (i=0;i<n;i++) { if (mask[i]) { const GLstencil *sptr = STENCIL_ADDRESS(x[i],y[i]); s = (GLstencil) (*sptr & valueMask); if (r != s) { /* passed */ fail[i] = 0; } else { fail[i] = 1; mask[i] = 0; } } else { fail[i] = 0; } } break; case GL_ALWAYS: /* always pass */ for (i=0;i<n;i++) { fail[i] = 0; } break; default: _mesa_problem(ctx, "Bad stencil func in gl_stencil_pixels"); return 0; } if (ctx->Stencil.FailFunc[face] != GL_KEEP) { apply_stencil_op_to_pixels( ctx, n, x, y, ctx->Stencil.FailFunc[face], face, fail ); } return !allfail; } /** * Apply stencil and depth testing to an array of pixels. * This is used both for software and hardware stencil buffers. * * The comments in this function are a bit sparse but the code is * almost identical to stencil_and_ztest_span(), which is well * commented. * * Input: n - number of pixels in the array * x, y - array of [n] pixel positions * z - array [n] of z values * mask - array [n] of flags (1=test this pixel, 0=skip the pixel) * Output: mask - array [n] of flags (1=stencil and depth test passed) * Return: GL_FALSE - all fragments failed the testing * GL_TRUE - one or more fragments passed the testing */ static GLboolean stencil_and_ztest_pixels( struct gl_context *ctx, SWspan *span, GLuint face ) { GLubyte passMask[MAX_WIDTH], failMask[MAX_WIDTH], origMask[MAX_WIDTH]; struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_StencilBuffer; const GLuint n = span->end; const GLint *x = span->array->x; const GLint *y = span->array->y; GLubyte *mask = span->array->mask; ASSERT(span->arrayMask & SPAN_XY); ASSERT(ctx->Stencil.Enabled); ASSERT(n <= MAX_WIDTH); if (!rb->GetPointer(ctx, rb, 0, 0)) { /* No direct access */ GLstencil stencil[MAX_WIDTH]; ASSERT(rb->DataType == GL_UNSIGNED_BYTE); _swrast_get_values(ctx, rb, n, x, y, stencil, sizeof(GLubyte)); memcpy(origMask, mask, n * sizeof(GLubyte)); (void) do_stencil_test(ctx, face, n, stencil, mask); if (ctx->Depth.Test == GL_FALSE) { apply_stencil_op(ctx, ctx->Stencil.ZPassFunc[face], face, n, stencil, mask); } else { GLubyte tmpMask[MAX_WIDTH]; memcpy(tmpMask, mask, n * sizeof(GLubyte)); _swrast_depth_test_span(ctx, span); compute_pass_fail_masks(n, tmpMask, mask, passMask, failMask); if (ctx->Stencil.ZFailFunc[face] != GL_KEEP) { apply_stencil_op(ctx, ctx->Stencil.ZFailFunc[face], face, n, stencil, failMask); } if (ctx->Stencil.ZPassFunc[face] != GL_KEEP) { apply_stencil_op(ctx, ctx->Stencil.ZPassFunc[face], face, n, stencil, passMask); } } /* Write updated stencil values into hardware stencil buffer */ rb->PutValues(ctx, rb, n, x, y, stencil, origMask); return GL_TRUE; } else { /* Direct access to stencil buffer */ if (stencil_test_pixels(ctx, face, n, x, y, mask) == GL_FALSE) { /* all fragments failed the stencil test, we're done. */ return GL_FALSE; } if (ctx->Depth.Test==GL_FALSE) { apply_stencil_op_to_pixels(ctx, n, x, y, ctx->Stencil.ZPassFunc[face], face, mask); } else { memcpy(origMask, mask, n * sizeof(GLubyte)); _swrast_depth_test_span(ctx, span); compute_pass_fail_masks(n, origMask, mask, passMask, failMask); if (ctx->Stencil.ZFailFunc[face] != GL_KEEP) { apply_stencil_op_to_pixels(ctx, n, x, y, ctx->Stencil.ZFailFunc[face], face, failMask); } if (ctx->Stencil.ZPassFunc[face] != GL_KEEP) { apply_stencil_op_to_pixels(ctx, n, x, y, ctx->Stencil.ZPassFunc[face], face, passMask); } } return GL_TRUE; /* one or more fragments passed both tests */ } } /** * /return GL_TRUE = one or more fragments passed, * GL_FALSE = all fragments failed. */ GLboolean _swrast_stencil_and_ztest_span(struct gl_context *ctx, SWspan *span) { const GLuint face = (span->facing == 0) ? 0 : ctx->Stencil._BackFace; if (span->arrayMask & SPAN_XY) return stencil_and_ztest_pixels(ctx, span, face); else return stencil_and_ztest_span(ctx, span, face); } #if 0 GLuint clip_span(GLuint bufferWidth, GLuint bufferHeight, GLint x, GLint y, GLuint *count) { GLuint n = *count; GLuint skipPixels = 0; if (y < 0 || y >= bufferHeight || x + n <= 0 || x >= bufferWidth) { /* totally out of bounds */ n = 0; } else { /* left clip */ if (x < 0) { skipPixels = -x; x = 0; n -= skipPixels; } /* right clip */ if (x + n > bufferWidth) { GLint dx = x + n - bufferWidth; n -= dx; } } *count = n; return skipPixels; } #endif /** * Return a span of stencil values from the stencil buffer. * Used for glRead/CopyPixels * Input: n - how many pixels * x,y - location of first pixel * Output: stencil - the array of stencil values */ void _swrast_read_stencil_span(struct gl_context *ctx, struct gl_renderbuffer *rb, GLint n, GLint x, GLint y, GLstencil stencil[]) { if (y < 0 || y >= (GLint) rb->Height || x + n <= 0 || x >= (GLint) rb->Width) { /* span is completely outside framebuffer */ return; /* undefined values OK */ } if (x < 0) { GLint dx = -x; x = 0; n -= dx; stencil += dx; } if (x + n > (GLint) rb->Width) { GLint dx = x + n - rb->Width; n -= dx; } if (n <= 0) { return; } rb->GetRow(ctx, rb, n, x, y, stencil); } /** * Write a span of stencil values to the stencil buffer. This function * applies the stencil write mask when needed. * Used for glDraw/CopyPixels * Input: n - how many pixels * x, y - location of first pixel * stencil - the array of stencil values */ void _swrast_write_stencil_span(struct gl_context *ctx, GLint n, GLint x, GLint y, const GLstencil stencil[] ) { struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_StencilBuffer; const GLuint stencilMax = (1 << fb->Visual.stencilBits) - 1; const GLuint stencilMask = ctx->Stencil.WriteMask[0]; if (y < 0 || y >= (GLint) rb->Height || x + n <= 0 || x >= (GLint) rb->Width) { /* span is completely outside framebuffer */ return; /* undefined values OK */ } if (x < 0) { GLint dx = -x; x = 0; n -= dx; stencil += dx; } if (x + n > (GLint) rb->Width) { GLint dx = x + n - rb->Width; n -= dx; } if (n <= 0) { return; } if ((stencilMask & stencilMax) != stencilMax) { /* need to apply writemask */ GLstencil destVals[MAX_WIDTH], newVals[MAX_WIDTH]; GLint i; rb->GetRow(ctx, rb, n, x, y, destVals); for (i = 0; i < n; i++) { newVals[i] = (stencil[i] & stencilMask) | (destVals[i] & ~stencilMask); } rb->PutRow(ctx, rb, n, x, y, newVals, NULL); } else { rb->PutRow(ctx, rb, n, x, y, stencil, NULL); } } /** * Clear the stencil buffer. */ void _swrast_clear_stencil_buffer( struct gl_context *ctx, struct gl_renderbuffer *rb ) { const GLubyte stencilBits = ctx->DrawBuffer->Visual.stencilBits; const GLuint mask = ctx->Stencil.WriteMask[0]; const GLuint invMask = ~mask; const GLuint clearVal = (ctx->Stencil.Clear & mask); const GLuint stencilMax = (1 << stencilBits) - 1; GLint x, y, width, height; if (!rb || mask == 0) return; ASSERT(rb->DataType == GL_UNSIGNED_BYTE || rb->DataType == GL_UNSIGNED_SHORT); ASSERT(rb->_BaseFormat == GL_STENCIL_INDEX); /* compute region to clear */ x = ctx->DrawBuffer->_Xmin; y = ctx->DrawBuffer->_Ymin; width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; if (rb->GetPointer(ctx, rb, 0, 0)) { /* Direct buffer access */ if ((mask & stencilMax) != stencilMax) { /* need to mask the clear */ if (rb->DataType == GL_UNSIGNED_BYTE) { GLint i, j; for (i = 0; i < height; i++) { GLubyte *stencil = (GLubyte*) rb->GetPointer(ctx, rb, x, y + i); for (j = 0; j < width; j++) { stencil[j] = (stencil[j] & invMask) | clearVal; } } } else { GLint i, j; for (i = 0; i < height; i++) { GLushort *stencil = (GLushort*) rb->GetPointer(ctx, rb, x, y + i); for (j = 0; j < width; j++) { stencil[j] = (stencil[j] & invMask) | clearVal; } } } } else { /* no bit masking */ if (width == (GLint) rb->Width && rb->DataType == GL_UNSIGNED_BYTE) { /* optimized case */ /* Note: bottom-to-top raster assumed! */ GLubyte *stencil = (GLubyte *) rb->GetPointer(ctx, rb, x, y); GLuint len = width * height * sizeof(GLubyte); memset(stencil, clearVal, len); } else { /* general case */ GLint i; for (i = 0; i < height; i++) { GLvoid *stencil = rb->GetPointer(ctx, rb, x, y + i); if (rb->DataType == GL_UNSIGNED_BYTE) { memset(stencil, clearVal, width); } else { _mesa_memset16((short unsigned int*) stencil, clearVal, width); } } } } } else { /* no direct access */ if ((mask & stencilMax) != stencilMax) { /* need to mask the clear */ if (rb->DataType == GL_UNSIGNED_BYTE) { GLint i, j; for (i = 0; i < height; i++) { GLubyte stencil[MAX_WIDTH]; rb->GetRow(ctx, rb, width, x, y + i, stencil); for (j = 0; j < width; j++) { stencil[j] = (stencil[j] & invMask) | clearVal; } rb->PutRow(ctx, rb, width, x, y + i, stencil, NULL); } } else { GLint i, j; for (i = 0; i < height; i++) { GLushort stencil[MAX_WIDTH]; rb->GetRow(ctx, rb, width, x, y + i, stencil); for (j = 0; j < width; j++) { stencil[j] = (stencil[j] & invMask) | clearVal; } rb->PutRow(ctx, rb, width, x, y + i, stencil, NULL); } } } else { /* no bit masking */ const GLubyte clear8 = (GLubyte) clearVal; const GLushort clear16 = (GLushort) clearVal; const void *clear; GLint i; if (rb->DataType == GL_UNSIGNED_BYTE) { clear = &clear8; } else { clear = &clear16; } for (i = 0; i < height; i++) { rb->PutMonoRow(ctx, rb, width, x, y + i, clear, NULL); } } } }