/* * Mesa 3-D graphics library * Version: 6.5.1 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "context.h" #include "colormac.h" #include "imports.h" #include "macros.h" #include "pixel.h" #include "s_context.h" #include "s_texcombine.h" #define PROD(A,B) ( (GLuint)(A) * ((GLuint)(B)+1) ) #define S_PROD(A,B) ( (GLint)(A) * ((GLint)(B)+1) ) #if CHAN_BITS == 32 typedef GLfloat ChanTemp; #else typedef GLuint ChanTemp; #endif /** * Do texture application for GL_ARB/EXT_texture_env_combine. * This function also supports GL_{EXT,ARB}_texture_env_dot3 and * GL_ATI_texture_env_combine3. Since "classic" texture environments are * implemented using GL_ARB_texture_env_combine-like state, this same function * is used for classic texture environment application as well. * * \param ctx rendering context * \param textureUnit the texture unit to apply * \param n number of fragments to process (span width) * \param primary_rgba incoming fragment color array * \param texelBuffer pointer to texel colors for all texture units * * \param rgba incoming colors, which get modified here */ static void texture_combine( const GLcontext *ctx, GLuint unit, GLuint n, CONST GLchan (*primary_rgba)[4], CONST GLchan *texelBuffer, GLchan (*rgba)[4] ) { const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]); const GLchan (*argRGB [3])[4]; const GLchan (*argA [3])[4]; const GLuint RGBshift = textureUnit->_CurrentCombine->ScaleShiftRGB; const GLuint Ashift = textureUnit->_CurrentCombine->ScaleShiftA; #if CHAN_TYPE == GL_FLOAT const GLchan RGBmult = (GLfloat) (1 << RGBshift); const GLchan Amult = (GLfloat) (1 << Ashift); #else const GLint half = (CHAN_MAX + 1) / 2; #endif static const GLchan one[4] = { CHAN_MAX, CHAN_MAX, CHAN_MAX, CHAN_MAX }; static const GLchan zero[4] = { 0, 0, 0, 0 }; const GLuint numColorArgs = textureUnit->_CurrentCombine->_NumArgsRGB; const GLuint numAlphaArgs = textureUnit->_CurrentCombine->_NumArgsA; GLchan ccolor[3][MAX_WIDTH][4]; GLuint i, j; ASSERT(ctx->Extensions.EXT_texture_env_combine || ctx->Extensions.ARB_texture_env_combine); ASSERT(SWRAST_CONTEXT(ctx)->_AnyTextureCombine); /* printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n", textureUnit->_CurrentCombine->ModeRGB, textureUnit->_CurrentCombine->ModeA, textureUnit->_CurrentCombine->SourceRGB[0], textureUnit->_CurrentCombine->SourceA[0], textureUnit->_CurrentCombine->SourceRGB[1], textureUnit->_CurrentCombine->SourceA[1]); */ /* * Do operand setup for up to 3 operands. Loop over the terms. */ for (j = 0; j < numColorArgs; j++) { const GLenum srcRGB = textureUnit->_CurrentCombine->SourceRGB[j]; switch (srcRGB) { case GL_TEXTURE: argRGB[j] = (const GLchan (*)[4]) (texelBuffer + unit * (n * 4 * sizeof(GLchan))); break; case GL_PRIMARY_COLOR: argRGB[j] = primary_rgba; break; case GL_PREVIOUS: argRGB[j] = (const GLchan (*)[4]) rgba; break; case GL_CONSTANT: { GLchan (*c)[4] = ccolor[j]; GLchan red, green, blue, alpha; UNCLAMPED_FLOAT_TO_CHAN(red, textureUnit->EnvColor[0]); UNCLAMPED_FLOAT_TO_CHAN(green, textureUnit->EnvColor[1]); UNCLAMPED_FLOAT_TO_CHAN(blue, textureUnit->EnvColor[2]); UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]); for (i = 0; i < n; i++) { c[i][RCOMP] = red; c[i][GCOMP] = green; c[i][BCOMP] = blue; c[i][ACOMP] = alpha; } argRGB[j] = (const GLchan (*)[4]) ccolor[j]; } break; /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. */ case GL_ZERO: argRGB[j] = & zero; break; case GL_ONE: argRGB[j] = & one; break; default: /* ARB_texture_env_crossbar source */ { const GLuint srcUnit = srcRGB - GL_TEXTURE0; ASSERT(srcUnit < ctx->Const.MaxTextureUnits); if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) return; argRGB[j] = (const GLchan (*)[4]) (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan))); } } if (textureUnit->_CurrentCombine->OperandRGB[j] != GL_SRC_COLOR) { const GLchan (*src)[4] = argRGB[j]; GLchan (*dst)[4] = ccolor[j]; /* point to new arg[j] storage */ argRGB[j] = (const GLchan (*)[4]) ccolor[j]; if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) { for (i = 0; i < n; i++) { dst[i][RCOMP] = CHAN_MAX - src[i][RCOMP]; dst[i][GCOMP] = CHAN_MAX - src[i][GCOMP]; dst[i][BCOMP] = CHAN_MAX - src[i][BCOMP]; } } else if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_SRC_ALPHA) { for (i = 0; i < n; i++) { dst[i][RCOMP] = src[i][ACOMP]; dst[i][GCOMP] = src[i][ACOMP]; dst[i][BCOMP] = src[i][ACOMP]; } } else { ASSERT(textureUnit->_CurrentCombine->OperandRGB[j] ==GL_ONE_MINUS_SRC_ALPHA); for (i = 0; i < n; i++) { dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP]; dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP]; dst[i][BCOMP] = CHAN_MAX - src[i][ACOMP]; } } } } /* * Set up the argA[i] pointers */ for (j = 0; j < numAlphaArgs; j++) { const GLenum srcA = textureUnit->_CurrentCombine->SourceA[j]; switch (srcA) { case GL_TEXTURE: argA[j] = (const GLchan (*)[4]) (texelBuffer + unit * (n * 4 * sizeof(GLchan))); break; case GL_PRIMARY_COLOR: argA[j] = primary_rgba; break; case GL_PREVIOUS: argA[j] = (const GLchan (*)[4]) rgba; break; case GL_CONSTANT: { GLchan alpha, (*c)[4] = ccolor[j]; UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]); for (i = 0; i < n; i++) c[i][ACOMP] = alpha; argA[j] = (const GLchan (*)[4]) ccolor[j]; } break; /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. */ case GL_ZERO: argA[j] = & zero; break; case GL_ONE: argA[j] = & one; break; default: /* ARB_texture_env_crossbar source */ { const GLuint srcUnit = srcA - GL_TEXTURE0; ASSERT(srcUnit < ctx->Const.MaxTextureUnits); if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) return; argA[j] = (const GLchan (*)[4]) (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan))); } } if (textureUnit->_CurrentCombine->OperandA[j] == GL_ONE_MINUS_SRC_ALPHA) { const GLchan (*src)[4] = argA[j]; GLchan (*dst)[4] = ccolor[j]; argA[j] = (const GLchan (*)[4]) ccolor[j]; for (i = 0; i < n; i++) { dst[i][ACOMP] = CHAN_MAX - src[i][ACOMP]; } } } /* * Do the texture combine. */ switch (textureUnit->_CurrentCombine->ModeRGB) { case GL_REPLACE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; if (RGBshift) { for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = arg0[i][RCOMP] * RGBmult; rgba[i][GCOMP] = arg0[i][GCOMP] * RGBmult; rgba[i][BCOMP] = arg0[i][BCOMP] * RGBmult; #else GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift; GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift; GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift; rgba[i][RCOMP] = MIN2(r, CHAN_MAX); rgba[i][GCOMP] = MIN2(g, CHAN_MAX); rgba[i][BCOMP] = MIN2(b, CHAN_MAX); #endif } } else { for (i = 0; i < n; i++) { rgba[i][RCOMP] = arg0[i][RCOMP]; rgba[i][GCOMP] = arg0[i][GCOMP]; rgba[i][BCOMP] = arg0[i][BCOMP]; } } } break; case GL_MODULATE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - RGBshift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * RGBmult; rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * RGBmult; rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * RGBmult; #else GLuint r = PROD(arg0[i][RCOMP], arg1[i][RCOMP]) >> shift; GLuint g = PROD(arg0[i][GCOMP], arg1[i][GCOMP]) >> shift; GLuint b = PROD(arg0[i][BCOMP], arg1[i][BCOMP]) >> shift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); #endif } } break; case GL_ADD: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * RGBmult; rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * RGBmult; rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * RGBmult; #else GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift; GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift; GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); #endif } } break; case GL_ADD_SIGNED: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * RGBmult; rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * RGBmult; rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * RGBmult; #else GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] -half; GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] -half; GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] -half; r = (r < 0) ? 0 : r << RGBshift; g = (g < 0) ? 0 : g << RGBshift; b = (b < 0) ? 0 : b << RGBshift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); #endif } } break; case GL_INTERPOLATE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - RGBshift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] + arg1[i][RCOMP] * (CHAN_MAXF - arg2[i][RCOMP])) * RGBmult; rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] + arg1[i][GCOMP] * (CHAN_MAXF - arg2[i][GCOMP])) * RGBmult; rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] + arg1[i][BCOMP] * (CHAN_MAXF - arg2[i][BCOMP])) * RGBmult; #else GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP]) + PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP])) >> shift; GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP]) + PROD(arg1[i][GCOMP], CHAN_MAX - arg2[i][GCOMP])) >> shift; GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP]) + PROD(arg1[i][BCOMP], CHAN_MAX - arg2[i][BCOMP])) >> shift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); #endif } } break; case GL_SUBTRACT: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * RGBmult; rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * RGBmult; rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * RGBmult; #else GLint r = ((GLint) arg0[i][RCOMP] - (GLint) arg1[i][RCOMP]) << RGBshift; GLint g = ((GLint) arg0[i][GCOMP] - (GLint) arg1[i][GCOMP]) << RGBshift; GLint b = ((GLint) arg0[i][BCOMP] - (GLint) arg1[i][BCOMP]) << RGBshift; rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); #endif } } break; case GL_DOT3_RGB_EXT: case GL_DOT3_RGBA_EXT: { /* Do not scale the result by 1 2 or 4 */ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) + (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) + (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F)) * 4.0F; dot = CLAMP(dot, 0.0F, CHAN_MAXF); #else GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half, (GLint)arg1[i][RCOMP] - half) + S_PROD((GLint)arg0[i][GCOMP] - half, (GLint)arg1[i][GCOMP] - half) + S_PROD((GLint)arg0[i][BCOMP] - half, (GLint)arg1[i][BCOMP] - half)) >> 6; dot = CLAMP(dot, 0, CHAN_MAX); #endif rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot; } } break; case GL_DOT3_RGB: case GL_DOT3_RGBA: { /* DO scale the result by 1 2 or 4 */ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) + (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) + (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F)) * 4.0F * RGBmult; dot = CLAMP(dot, 0.0, CHAN_MAXF); #else GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half, (GLint)arg1[i][RCOMP] - half) + S_PROD((GLint)arg0[i][GCOMP] - half, (GLint)arg1[i][GCOMP] - half) + S_PROD((GLint)arg0[i][BCOMP] - half, (GLint)arg1[i][BCOMP] - half)) >> 6; dot <<= RGBshift; dot = CLAMP(dot, 0, CHAN_MAX); #endif rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot; } } break; case GL_MODULATE_ADD_ATI: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - RGBshift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP]) * RGBmult; rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP]) * RGBmult; rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP]) * RGBmult; #else GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP]) + ((GLuint) arg1[i][RCOMP] << CHAN_BITS)) >> shift; GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP]) + ((GLuint) arg1[i][GCOMP] << CHAN_BITS)) >> shift; GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP]) + ((GLuint) arg1[i][BCOMP] << CHAN_BITS)) >> shift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); #endif } } break; case GL_MODULATE_SIGNED_ADD_ATI: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - RGBshift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP] - 0.5) * RGBmult; rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP] - 0.5) * RGBmult; rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP] - 0.5) * RGBmult; #else GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP]) + (((GLint) arg1[i][RCOMP] - half) << CHAN_BITS)) >> shift; GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP]) + (((GLint) arg1[i][GCOMP] - half) << CHAN_BITS)) >> shift; GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP]) + (((GLint) arg1[i][BCOMP] - half) << CHAN_BITS)) >> shift; rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); #endif } } break; case GL_MODULATE_SUBTRACT_ATI: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - RGBshift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - arg1[i][RCOMP]) * RGBmult; rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - arg1[i][GCOMP]) * RGBmult; rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - arg1[i][BCOMP]) * RGBmult; #else GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP]) - ((GLint) arg1[i][RCOMP] << CHAN_BITS)) >> shift; GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP]) - ((GLint) arg1[i][GCOMP] << CHAN_BITS)) >> shift; GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP]) - ((GLint) arg1[i][BCOMP] << CHAN_BITS)) >> shift; rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); #endif } } break; default: _mesa_problem(ctx, "invalid combine mode"); } switch (textureUnit->_CurrentCombine->ModeA) { case GL_REPLACE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; if (Ashift) { for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT GLchan a = arg0[i][ACOMP] * Amult; #else GLuint a = (GLuint) arg0[i][ACOMP] << Ashift; #endif rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); } } else { for (i = 0; i < n; i++) { rgba[i][ACOMP] = arg0[i][ACOMP]; } } } break; case GL_MODULATE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - Ashift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * Amult; #else GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift); rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); #endif } } break; case GL_ADD: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * Amult; #else GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift; rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); #endif } } break; case GL_ADD_SIGNED: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * Amult; #else GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] -half; a = (a < 0) ? 0 : a << Ashift; rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); #endif } } break; case GL_INTERPOLATE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - Ashift; #endif for (i=0; i> shift; rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); #endif } } break; case GL_SUBTRACT: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * Amult; #else GLint a = ((GLint) arg0[i][ACOMP] - (GLint) arg1[i][ACOMP]) << Ashift; rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); #endif } } break; case GL_MODULATE_ADD_ATI: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - Ashift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP]) * Amult; #else GLint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP]) + ((GLuint) arg1[i][ACOMP] << CHAN_BITS)) >> shift; rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); #endif } } break; case GL_MODULATE_SIGNED_ADD_ATI: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - Ashift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP] - 0.5F) * Amult; #else GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP]) + (((GLint) arg1[i][ACOMP] - half) << CHAN_BITS)) >> shift; rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); #endif } } break; case GL_MODULATE_SUBTRACT_ATI: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; #if CHAN_TYPE != GL_FLOAT const GLint shift = CHAN_BITS - Ashift; #endif for (i = 0; i < n; i++) { #if CHAN_TYPE == GL_FLOAT rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - arg1[i][ACOMP]) * Amult; #else GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP]) - ((GLint) arg1[i][ACOMP] << CHAN_BITS)) >> shift; rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); #endif } } break; default: _mesa_problem(ctx, "invalid combine mode"); } /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining. * This is kind of a kludge. It would have been better if the spec * were written such that the GL_COMBINE_ALPHA value could be set to * GL_DOT3. */ if (textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA_EXT || textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA) { for (i = 0; i < n; i++) { rgba[i][ACOMP] = rgba[i][RCOMP]; } } } #undef PROD /** * Apply a conventional OpenGL texture env mode (REPLACE, ADD, BLEND, * MODULATE, or DECAL) to an array of fragments. * Input: textureUnit - pointer to texture unit to apply * format - base internal texture format * n - number of fragments * primary_rgba - primary colors (may alias rgba for single texture) * texels - array of texel colors * InOut: rgba - incoming fragment colors modified by texel colors * according to the texture environment mode. */ static void texture_apply( const GLcontext *ctx, const struct gl_texture_unit *texUnit, GLuint n, CONST GLchan primary_rgba[][4], CONST GLchan texel[][4], GLchan rgba[][4] ) { GLint baseLevel; GLuint i; GLchan Rc, Gc, Bc, Ac; GLenum format; (void) primary_rgba; ASSERT(texUnit); ASSERT(texUnit->_Current); baseLevel = texUnit->_Current->BaseLevel; ASSERT(texUnit->_Current->Image[0][baseLevel]); format = texUnit->_Current->Image[0][baseLevel]->_BaseFormat; if (format == GL_COLOR_INDEX || format == GL_YCBCR_MESA) { format = GL_RGBA; /* a bit of a hack */ } else if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { format = texUnit->_Current->DepthMode; } switch (texUnit->EnvMode) { case GL_REPLACE: switch (format) { case GL_ALPHA: for (i=0;iEnvColor[0]); UNCLAMPED_FLOAT_TO_CHAN(Gc, texUnit->EnvColor[1]); UNCLAMPED_FLOAT_TO_CHAN(Bc, texUnit->EnvColor[2]); UNCLAMPED_FLOAT_TO_CHAN(Ac, texUnit->EnvColor[3]); switch (format) { case GL_ALPHA: for (i=0;iend < MAX_WIDTH); /* * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR) */ if (swrast->_AnyTextureCombine) MEMCPY(primary_rgba, span->array->rgba, 4 * span->end * sizeof(GLchan)); /* * Must do all texture sampling before combining in order to * accomodate GL_ARB_texture_env_crossbar. */ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { if (ctx->Texture.Unit[unit]._ReallyEnabled) { const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) span->array->attribs[FRAG_ATTRIB_TEX0 + unit]; const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; const struct gl_texture_object *curObj = texUnit->_Current; GLfloat *lambda = span->array->lambda[unit]; GLchan (*texels)[4] = (GLchan (*)[4]) (swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan))); /* adjust texture lod (lambda) */ if (span->arrayMask & SPAN_LAMBDA) { if (texUnit->LodBias + curObj->LodBias != 0.0F) { /* apply LOD bias, but don't clamp yet */ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias, -ctx->Const.MaxTextureLodBias, ctx->Const.MaxTextureLodBias); GLuint i; for (i = 0; i < span->end; i++) { lambda[i] += bias; } } if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) { /* apply LOD clamping to lambda */ const GLfloat min = curObj->MinLod; const GLfloat max = curObj->MaxLod; GLuint i; for (i = 0; i < span->end; i++) { GLfloat l = lambda[i]; lambda[i] = CLAMP(l, min, max); } } } /* Sample the texture (span->end = number of fragments) */ swrast->TextureSample[unit]( ctx, texUnit->_Current, span->end, texcoords, lambda, texels ); /* GL_SGI_texture_color_table */ if (texUnit->ColorTableEnabled) { #if CHAN_TYPE == GL_UNSIGNED_BYTE _mesa_lookup_rgba_ubyte(&texUnit->ColorTable, span->end, texels); #elif CHAN_TYPE == GL_UNSIGNED_SHORT _mesa_lookup_rgba_ubyte(&texUnit->ColorTable, span->end, texels); #else _mesa_lookup_rgba_float(&texUnit->ColorTable, span->end, texels); #endif } } } /* * OK, now apply the texture (aka texture combine/blend). * We modify the span->color.rgba values. */ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { if (ctx->Texture.Unit[unit]._ReallyEnabled) { const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; if (texUnit->_CurrentCombine != &texUnit->_EnvMode ) { texture_combine( ctx, unit, span->end, (CONST GLchan (*)[4]) primary_rgba, swrast->TexelBuffer, span->array->rgba ); } else { /* conventional texture blend */ const GLchan (*texels)[4] = (const GLchan (*)[4]) (swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan))); texture_apply( ctx, texUnit, span->end, (CONST GLchan (*)[4]) primary_rgba, texels, span->array->rgba ); } } } }