/* $Id: s_triangle.c,v 1.1 2000/10/31 18:00:04 keithw Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Triangle rasterizers * When the device driver doesn't implement triangle rasterization Mesa * will use these functions to draw triangles. */ #include "glheader.h" #include "context.h" #include "feedback.h" #include "macros.h" #include "mem.h" #include "mmath.h" #include "teximage.h" #include "texstate.h" #include "s_aatriangle.h" #include "s_depth.h" #include "s_span.h" static GLboolean cull_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { struct vertex_buffer *VB = ctx->VB; GLfloat (*win)[4] = VB->Win.data; GLfloat ex = win[v1][0] - win[v0][0]; GLfloat ey = win[v1][1] - win[v0][1]; GLfloat fx = win[v2][0] - win[v0][0]; GLfloat fy = win[v2][1] - win[v0][1]; GLfloat c = ex*fy-ey*fx; if (c * ctx->backface_sign > 0) return 0; return 1; } /* * Render a flat-shaded color index triangle. */ static void flat_ci_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { #define INTERP_Z 1 #define SETUP_CODE \ GLuint index = VB->IndexPtr->data[pv]; \ if (1) { \ /* set the color index */ \ (*ctx->Driver.Index)( ctx, index ); \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ const GLint n = RIGHT-LEFT; \ GLint i; \ GLdepth zspan[MAX_WIDTH]; \ GLfixed fogspan[MAX_WIDTH]; \ if (n>0) { \ for (i=0;i0) { \ for (i=0;iColorPtr->data[pv][0]; \ GLchan g = VB->ColorPtr->data[pv][1]; \ GLchan b = VB->ColorPtr->data[pv][2]; \ GLchan a = VB->ColorPtr->data[pv][3]; \ (*ctx->Driver.Color)( ctx, r, g, b, a ); \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ const GLint n = RIGHT-LEFT; \ GLint i; \ GLdepth zspan[MAX_WIDTH]; \ GLfixed fogspan[MAX_WIDTH]; \ if (n>0) { \ for (i=0;iColorPtr->data[pv], \ GL_POLYGON ); \ } \ } #include "s_tritemp.h" ASSERT(!ctx->Texture.ReallyEnabled); /* texturing must be off */ ASSERT(ctx->Light.ShadeModel==GL_FLAT); } /* * Render a smooth-shaded RGBA triangle. */ static void smooth_rgba_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { (void) pv; #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ const GLint n = RIGHT-LEFT; \ GLint i; \ GLdepth zspan[MAX_WIDTH]; \ GLchan rgba[MAX_WIDTH][4]; \ GLfixed fogspan[MAX_WIDTH]; \ if (n>0) { \ for (i=0;iTexture.ReallyEnabled); /* texturing must be off */ ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); } /* * Render an RGB, GL_DECAL, textured triangle. * Interpolate S,T only w/out mipmapping or perspective correction. * * No fog. */ static void simple_textured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { #define INTERP_INT_TEX 1 #define S_SCALE twidth #define T_SCALE theight #define SETUP_CODE \ struct gl_texture_object *obj = ctx->Texture.Unit[0].CurrentD[2]; \ GLint b = obj->BaseLevel; \ GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ GLfloat theight = (GLfloat) obj->Image[b]->Height; \ GLint twidth_log2 = obj->Image[b]->WidthLog2; \ GLchan *texture = obj->Image[b]->Data; \ GLint smask = obj->Image[b]->Width - 1; \ GLint tmask = obj->Image[b]->Height - 1; \ (void) pv; \ if (!texture) { \ if (!_mesa_get_teximages_from_driver(ctx, obj)) \ return; \ texture = obj->Image[b]->Data; \ ASSERT(texture); \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ CONST GLint n = RIGHT-LEFT; \ GLint i; \ GLchan rgb[MAX_WIDTH][3]; \ if (n>0) { \ ffs -= FIXED_HALF; /* off-by-one error? */ \ fft -= FIXED_HALF; \ for (i=0;iDriver.WriteRGBSpan)( ctx, n, LEFT, Y, \ (CONST GLchan (*)[3]) rgb, NULL ); \ } \ } #include "s_tritemp.h" } /* * Render an RGB, GL_DECAL, textured triangle. * Interpolate S,T, GL_LESS depth test, w/out mipmapping or * perspective correction. * * No fog. */ static void simple_z_textured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_INT_TEX 1 #define S_SCALE twidth #define T_SCALE theight #define SETUP_CODE \ struct gl_texture_object *obj = ctx->Texture.Unit[0].CurrentD[2]; \ GLint b = obj->BaseLevel; \ GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ GLfloat theight = (GLfloat) obj->Image[b]->Height; \ GLint twidth_log2 = obj->Image[b]->WidthLog2; \ GLchan *texture = obj->Image[b]->Data; \ GLint smask = obj->Image[b]->Width - 1; \ GLint tmask = obj->Image[b]->Height - 1; \ (void) pv; \ if (!texture) { \ if (!_mesa_get_teximages_from_driver(ctx, obj)) \ return; \ texture = obj->Image[b]->Data; \ ASSERT(texture); \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ CONST GLint n = RIGHT-LEFT; \ GLint i; \ GLchan rgb[MAX_WIDTH][3]; \ GLubyte mask[MAX_WIDTH]; \ (void) fffog; \ if (n>0) { \ ffs -= FIXED_HALF; /* off-by-one error? */ \ fft -= FIXED_HALF; \ for (i=0;iDriver.WriteRGBSpan)( ctx, n, LEFT, Y, \ (CONST GLchan (*)[3]) rgb, mask ); \ } \ } #include "s_tritemp.h" } /* * Render an RGB/RGBA textured triangle without perspective correction. */ static void affine_textured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_INT_TEX 1 #define S_SCALE twidth #define T_SCALE theight #define SETUP_CODE \ struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ struct gl_texture_object *obj = unit->CurrentD[2]; \ GLint b = obj->BaseLevel; \ GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ GLfloat theight = (GLfloat) obj->Image[b]->Height; \ GLint twidth_log2 = obj->Image[b]->WidthLog2; \ GLchan *texture = obj->Image[b]->Data; \ GLint smask = obj->Image[b]->Width - 1; \ GLint tmask = obj->Image[b]->Height - 1; \ GLint format = obj->Image[b]->Format; \ GLint filter = obj->MinFilter; \ GLint envmode = unit->EnvMode; \ GLint comp, tbytesline, tsize; \ GLfixed er, eg, eb, ea; \ GLint tr, tg, tb, ta; \ if (!texture) { \ if (!_mesa_get_teximages_from_driver(ctx, obj)) \ return; \ texture = obj->Image[b]->Data; \ ASSERT(texture); \ } \ if (envmode == GL_BLEND || envmode == GL_ADD) { \ /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ er = FloatToFixed(unit->EnvColor[0]); \ eg = FloatToFixed(unit->EnvColor[1]); \ eb = FloatToFixed(unit->EnvColor[2]); \ ea = FloatToFixed(unit->EnvColor[3]); \ } \ switch (format) { \ case GL_ALPHA: \ case GL_LUMINANCE: \ case GL_INTENSITY: \ comp = 1; \ break; \ case GL_LUMINANCE_ALPHA: \ comp = 2; \ break; \ case GL_RGB: \ comp = 3; \ break; \ case GL_RGBA: \ comp = 4; \ break; \ default: \ gl_problem(NULL, "Bad texture format in affine_texture_triangle");\ return; \ } \ tbytesline = obj->Image[b]->Width * comp; \ tsize = theight * tbytesline; (void) pv; /* Instead of defining a function for each mode, a test is done * between the outer and inner loops. This is to reduce code size * and complexity. Observe that an optimizing compiler kills * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). */ #define NEAREST_RGB \ tr = tex00[0]; \ tg = tex00[1]; \ tb = tex00[2]; \ ta = 0xff #define LINEAR_RGB \ tr = (ti * (si * tex00[0] + sf * tex01[0]) + \ tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \ tg = (ti * (si * tex00[1] + sf * tex01[1]) + \ tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \ tb = (ti * (si * tex00[2] + sf * tex01[2]) + \ tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \ ta = 0xff #define NEAREST_RGBA \ tr = tex00[0]; \ tg = tex00[1]; \ tb = tex00[2]; \ ta = tex00[3] #define LINEAR_RGBA \ tr = (ti * (si * tex00[0] + sf * tex01[0]) + \ tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \ tg = (ti * (si * tex00[1] + sf * tex01[1]) + \ tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \ tb = (ti * (si * tex00[2] + sf * tex01[2]) + \ tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \ ta = (ti * (si * tex00[3] + sf * tex01[3]) + \ tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT #define MODULATE \ dest[0] = ffr * (tr + 1) >> (FIXED_SHIFT + 8); \ dest[1] = ffg * (tg + 1) >> (FIXED_SHIFT + 8); \ dest[2] = ffb * (tb + 1) >> (FIXED_SHIFT + 8); \ dest[3] = ffa * (ta + 1) >> (FIXED_SHIFT + 8) #define DECAL \ dest[0] = ((0xff - ta) * ffr + ((ta + 1) * tr << FIXED_SHIFT)) >> (FIXED_SHIFT + 8); \ dest[1] = ((0xff - ta) * ffg + ((ta + 1) * tg << FIXED_SHIFT)) >> (FIXED_SHIFT + 8); \ dest[2] = ((0xff - ta) * ffb + ((ta + 1) * tb << FIXED_SHIFT)) >> (FIXED_SHIFT + 8); \ dest[3] = FixedToInt(ffa) #define BLEND \ dest[0] = ((0xff - tr) * ffr + (tr + 1) * er) >> (FIXED_SHIFT + 8); \ dest[1] = ((0xff - tg) * ffg + (tg + 1) * eg) >> (FIXED_SHIFT + 8); \ dest[2] = ((0xff - tb) * ffb + (tb + 1) * eb) >> (FIXED_SHIFT + 8); \ dest[3] = ffa * (ta + 1) >> (FIXED_SHIFT + 8) #define REPLACE \ dest[0] = tr; \ dest[1] = tg; \ dest[2] = tb; \ dest[3] = ta #define ADD \ dest[0] = ((ffr << 8) + (tr + 1) * er) >> (FIXED_SHIFT + 8); \ dest[1] = ((ffg << 8) + (tg + 1) * eg) >> (FIXED_SHIFT + 8); \ dest[2] = ((ffb << 8) + (tb + 1) * eb) >> (FIXED_SHIFT + 8); \ dest[3] = ffa * (ta + 1) >> (FIXED_SHIFT + 8) /* shortcuts */ #define NEAREST_RGB_REPLACE NEAREST_RGB;REPLACE #define NEAREST_RGBA_REPLACE *(GLint *)dest = *(GLint *)tex00 #define SPAN1(DO_TEX,COMP) \ for (i=0;i0) { \ GLchan *dest = rgba[0]; \ ffs -= FIXED_HALF; /* off-by-one error? */ \ fft -= FIXED_HALF; \ switch (filter) { \ case GL_NEAREST: \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN1(NEAREST_RGB;MODULATE,3); \ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN1(NEAREST_RGB_REPLACE,3); \ break; \ case GL_BLEND: \ SPAN1(NEAREST_RGB;BLEND,3); \ break; \ case GL_ADD: \ SPAN1(NEAREST_RGB;ADD,3); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN1(NEAREST_RGBA;MODULATE,4); \ break; \ case GL_DECAL: \ SPAN1(NEAREST_RGBA;DECAL,4); \ break; \ case GL_BLEND: \ SPAN1(NEAREST_RGBA;BLEND,4); \ break; \ case GL_ADD: \ SPAN1(NEAREST_RGBA;ADD,4); \ break; \ case GL_REPLACE: \ SPAN1(NEAREST_RGBA_REPLACE,4); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ } \ break; \ case GL_LINEAR: \ ffs -= FIXED_HALF; \ fft -= FIXED_HALF; \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN2(LINEAR_RGB;MODULATE,3); \ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN2(LINEAR_RGB;REPLACE,3); \ break; \ case GL_BLEND: \ SPAN2(LINEAR_RGB;BLEND,3); \ break; \ case GL_ADD: \ SPAN2(LINEAR_RGB;ADD,3); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ case GL_RGBA: \ switch (envmode) { \ case GL_MODULATE: \ SPAN2(LINEAR_RGBA;MODULATE,4); \ break; \ case GL_DECAL: \ SPAN2(LINEAR_RGBA;DECAL,4); \ break; \ case GL_BLEND: \ SPAN2(LINEAR_RGBA;BLEND,4); \ break; \ case GL_ADD: \ SPAN2(LINEAR_RGBA;ADD,4); \ break; \ case GL_REPLACE: \ SPAN2(LINEAR_RGBA;REPLACE,4); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ } \ break; \ } \ gl_write_rgba_span(ctx, n, LEFT, Y, zspan, \ fogspan, \ rgba, GL_POLYGON); \ /* explicit kill of variables: */ \ ffr = ffg = ffb = ffa = 0; \ } \ } #include "s_tritemp.h" #undef SPAN1 #undef SPAN2 } /* * Render an perspective corrected RGB/RGBA textured triangle. * The Q (aka V in Mesa) coordinate must be zero such that the divide * by interpolated Q/W comes out right. * * This function only renders textured triangles that use GL_NEAREST. * Perspective correction works right. * * This function written by Klaus Niederkrueger * Send all questions and bug reports to him. */ static void near_persp_textured_triangle(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { /* The BIAS value is used to shift negative values into positive values. * Without this, negative texture values don't GL_REPEAT correctly at just * below zero, because (int)-0.5 = 0 = (int)0.5. We're not going to worry * about texture coords less than -BIAS. This could be fixed by using * FLOORF etc. instead, but this is slower... */ #define BIAS 4096.0F #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_TEX 1 #define SETUP_CODE \ struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ struct gl_texture_object *obj = unit->CurrentD[2]; \ const GLint b = obj->BaseLevel; \ const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ const GLfloat theight = (GLfloat) obj->Image[b]->Height; \ const GLint twidth_log2 = obj->Image[b]->WidthLog2; \ GLchan *texture = obj->Image[b]->Data; \ const GLint smask = (obj->Image[b]->Width - 1); \ const GLint tmask = (obj->Image[b]->Height - 1); \ const GLint format = obj->Image[b]->Format; \ const GLint envmode = unit->EnvMode; \ GLfloat sscale, tscale; \ /*GLint comp, tbytesline, tsize; */ \ GLfixed er, eg, eb, ea; \ GLint tr, tg, tb, ta; \ if (!texture) { \ if (!_mesa_get_teximages_from_driver(ctx, obj)) \ return; \ texture = obj->Image[b]->Data; \ ASSERT(texture); \ } \ if (envmode == GL_BLEND || envmode == GL_ADD) { \ er = FloatToFixed(unit->EnvColor[0]); \ eg = FloatToFixed(unit->EnvColor[1]); \ eb = FloatToFixed(unit->EnvColor[2]); \ ea = FloatToFixed(unit->EnvColor[3]); \ } \ /*switch (format) { \ case GL_ALPHA: \ case GL_LUMINANCE: \ case GL_INTENSITY: \ comp = 1; \ break; \ case GL_LUMINANCE_ALPHA: \ comp = 2; \ break; \ case GL_RGB: \ comp = 3; \ break; \ case GL_RGBA: \ comp = 4; \ break; \ default: \ gl_problem(NULL, "Bad texture format in near_persp_texture_triangle"); \ return; \ } */ \ sscale = twidth; \ tscale = theight; \ /*tbytesline = obj->Image[b]->Width * comp; \ tsize = theight * tbytesline;*/ (void) pv; #define OLD_SPAN(DO_TEX,COMP) \ for (i=0;in || j<-100000) \ j = n; \ while (i 0) { \ GLchan *dest = rgba[0]; \ GLfloat SS = ss * sscale; \ GLfloat TT = tt * tscale; \ GLfloat dSdx = dsdx * sscale; \ GLfloat dTdx = dtdx * tscale; \ GLfloat x_tex; \ GLfloat y_tex; \ GLfloat dx_tex; \ GLfloat dy_tex; \ if (n<5) /* When line very short, setup-time > speed-gain. */ \ goto old_span; /* So: take old method */ \ x_tex = SS / vv, \ y_tex = TT / vv; \ dx_tex = (SS + n * dSdx) / (vv + n * dvdx) - x_tex, \ dy_tex = (TT + n * dTdx) / (vv + n * dvdx) - y_tex; \ /* Choose between walking over texture or over pixelline: */ \ /* If there are few texels, walk over texture otherwise */ \ /* walk over pixelarray. The quotient on the right side */ \ /* should give the timeratio needed to draw one texel in */ \ /* comparison to one pixel. Depends on CPU. */ \ if (dx_tex*dx_tex + dy_tex*dy_tex < (n*n)/16) { \ x_tex += BIAS; \ y_tex += BIAS; \ if (dx_tex*dx_tex > dy_tex*dy_tex) { \ /* if (FABSF(dx_tex) > FABSF(dy_tex)) */ \ GLfloat nominator = - SS - vv * BIAS; \ GLfloat denominator = dvdx * BIAS + dSdx; \ GLfloat dy_dx; \ GLfloat dx_dy; \ if (dy_tex != 0.0f) { \ dy_dx = dy_tex / dx_tex; \ dx_dy = 1.0f/dy_dx; \ } \ else \ dy_dx = 0.0f; \ if (dx_tex > 0.0f) { \ if (dy_tex > 0.0f) { \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN1(NEAREST_RGB;MODULATE,3, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN1(NEAREST_RGB_REPLACE,3, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN1(NEAREST_RGB;BLEND,3, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN1(NEAREST_RGB;ADD,3, Y_X_TEX_COORD); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN1(NEAREST_RGBA;MODULATE,4, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN1(NEAREST_RGBA;DECAL,4, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN1(NEAREST_RGBA;BLEND,4, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN1(NEAREST_RGBA;ADD,4, Y_X_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN1(NEAREST_RGBA_REPLACE,4, Y_X_TEX_COORD);\ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ } \ } \ else { /* dy_tex <= 0.0f */ \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN2(NEAREST_RGB;MODULATE,3, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN2(NEAREST_RGB_REPLACE,3, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN2(NEAREST_RGB;BLEND,3, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN2(NEAREST_RGB;ADD,3, Y_X_TEX_COORD); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN2(NEAREST_RGBA;MODULATE,4, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN2(NEAREST_RGBA;DECAL,4, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN2(NEAREST_RGBA;BLEND,4, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN2(NEAREST_RGBA;ADD,4, Y_X_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN2(NEAREST_RGBA_REPLACE,4, Y_X_TEX_COORD);\ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ } \ } \ } \ else { /* dx_tex < 0.0f */ \ if (dy_tex > 0.0f) { \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN3(NEAREST_RGB;MODULATE,3, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN3(NEAREST_RGB_REPLACE,3, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN3(NEAREST_RGB;BLEND,3, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN3(NEAREST_RGB;ADD,3, Y_X_TEX_COORD); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN3(NEAREST_RGBA;MODULATE,4, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN3(NEAREST_RGBA;DECAL,4, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN3(NEAREST_RGBA;BLEND,4, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN3(NEAREST_RGBA;ADD,4, Y_X_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN3(NEAREST_RGBA_REPLACE,4, Y_X_TEX_COORD);\ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ } \ } \ else { /* dy_tex <= 0.0f */ \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN4(NEAREST_RGB;MODULATE,3, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN4(NEAREST_RGB_REPLACE,3, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN4(NEAREST_RGB;BLEND,3, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN4(NEAREST_RGB;ADD,3, Y_X_TEX_COORD); \ break; \ default: \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN4(NEAREST_RGBA;MODULATE,4, Y_X_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN4(NEAREST_RGBA;DECAL,4, Y_X_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN4(NEAREST_RGBA;BLEND,4, Y_X_TEX_COORD); \ break; \ case GL_ADD: \ SPAN4(NEAREST_RGBA;ADD,4, Y_X_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN4(NEAREST_RGBA_REPLACE,4, Y_X_TEX_COORD);\ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ } \ } \ } \ } \ else { /* FABSF(dx_tex) > FABSF(dy_tex) */ \ GLfloat swap; \ GLfloat dy_dx; \ GLfloat dx_dy; \ GLfloat nominator, denominator; \ if (dx_tex == 0.0f /* && dy_tex == 0.0f*/) \ goto old_span; /* case so special, that use old */ \ /* swap some x-values and y-values */ \ SS = TT; \ dSdx = dTdx; \ swap = x_tex, x_tex = y_tex, y_tex = swap; \ swap = dx_tex, dx_tex = dy_tex, dy_tex = swap; \ nominator = - SS - vv * BIAS; \ denominator = dvdx * BIAS + dSdx; \ if (dy_tex != 0.0f) { \ dy_dx = dy_tex / dx_tex; \ dx_dy = 1.0f/dy_dx; \ } \ else \ dy_dx = 0.0f; \ if (dx_tex > 0.0f) { \ if (dy_tex > 0.0f) { \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN1(NEAREST_RGB;MODULATE,3, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN1(NEAREST_RGB_REPLACE,3, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN1(NEAREST_RGB;BLEND,3, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN1(NEAREST_RGB;ADD,3, X_Y_TEX_COORD); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN1(NEAREST_RGBA;MODULATE,4, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN1(NEAREST_RGBA;DECAL,4, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN1(NEAREST_RGBA;BLEND,4, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN1(NEAREST_RGBA;ADD,4, X_Y_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN1(NEAREST_RGBA_REPLACE,4, X_Y_TEX_COORD);\ break; \ default: \ abort(); \ } \ break; \ } \ } \ else { /* dy_tex <= 0.0f */ \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN2(NEAREST_RGB;MODULATE,3, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN2(NEAREST_RGB_REPLACE,3, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN2(NEAREST_RGB;BLEND,3, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN2(NEAREST_RGB;ADD,3, X_Y_TEX_COORD); \ break; \ default: \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN2(NEAREST_RGBA;MODULATE,4, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN2(NEAREST_RGBA;DECAL,4, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN2(NEAREST_RGBA;BLEND,4, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN2(NEAREST_RGBA;ADD,4, X_Y_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN2(NEAREST_RGBA_REPLACE,4, X_Y_TEX_COORD);\ break; \ default: \ abort(); \ } \ break; \ } \ } \ } \ else { /* dx_tex < 0.0f */ \ if (dy_tex > 0.0f) { \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN3(NEAREST_RGB;MODULATE,3, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN3(NEAREST_RGB_REPLACE,3, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN3(NEAREST_RGB;BLEND,3, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN3(NEAREST_RGB;ADD,3, X_Y_TEX_COORD); \ break; \ default: \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN3(NEAREST_RGBA;MODULATE,4, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN3(NEAREST_RGBA;DECAL,4, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN3(NEAREST_RGBA;BLEND,4, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN3(NEAREST_RGBA;ADD,4, X_Y_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN3(NEAREST_RGBA_REPLACE,4, X_Y_TEX_COORD);\ break; \ default: \ abort(); \ } \ break; \ } \ } \ else { /* dy_tex <= 0.0f */ \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN4(NEAREST_RGB;MODULATE,3, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN4(NEAREST_RGB_REPLACE,3, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN4(NEAREST_RGB;BLEND,3, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN4(NEAREST_RGB;ADD,3, X_Y_TEX_COORD); \ break; \ default: \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ SPAN4(NEAREST_RGBA;MODULATE,4, X_Y_TEX_COORD);\ break; \ case GL_DECAL: \ SPAN4(NEAREST_RGBA;DECAL,4, X_Y_TEX_COORD); \ break; \ case GL_BLEND: \ SPAN4(NEAREST_RGBA;BLEND,4, X_Y_TEX_COORD); \ break; \ case GL_ADD: \ SPAN4(NEAREST_RGBA;ADD,4, X_Y_TEX_COORD); \ break; \ case GL_REPLACE: \ SPAN4(NEAREST_RGBA_REPLACE,4, X_Y_TEX_COORD);\ break; \ default: \ abort(); \ } \ break; \ } \ } \ } \ } \ } \ else { \ old_span: \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ OLD_SPAN(NEAREST_RGB;MODULATE,3); \ break; \ case GL_DECAL: \ case GL_REPLACE: \ OLD_SPAN(NEAREST_RGB_REPLACE,3); \ break; \ case GL_BLEND: \ OLD_SPAN(NEAREST_RGB;BLEND,3); \ break; \ case GL_ADD: \ OLD_SPAN(NEAREST_RGB;ADD,3); \ break; \ default: \ abort(); \ } \ break; \ case GL_RGBA: \ switch(envmode) { \ case GL_MODULATE: \ OLD_SPAN(NEAREST_RGBA;MODULATE,4); \ break; \ case GL_DECAL: \ OLD_SPAN(NEAREST_RGBA;DECAL,4); \ break; \ case GL_BLEND: \ OLD_SPAN(NEAREST_RGBA;BLEND,4); \ break; \ case GL_ADD: \ OLD_SPAN(NEAREST_RGBA;ADD,4); \ break; \ case GL_REPLACE: \ OLD_SPAN(NEAREST_RGBA_REPLACE,4); \ break; \ default: \ abort(); \ } \ break; \ } \ } \ gl_write_rgba_span( ctx, n, LEFT, Y, zspan, \ fogspan, rgba, GL_POLYGON); \ ffr = ffg = ffb = ffa = 0; \ } \ } \ #include "s_tritemp.h" #undef OLD_SPAN #undef SPAN1 #undef SPAN2 #undef SPAN3 #undef SPAN4 #undef X_Y_TEX_COORD #undef Y_X_TEX_COORD #undef DRAW_LINE #undef BIAS } /* * Render an perspective corrected RGB/RGBA textured triangle. * The Q (aka V in Mesa) coordinate must be zero such that the divide * by interpolated Q/W comes out right. * * This function written by Klaus Niederkrueger * Send all questions and bug reports to him. */ static void lin_persp_textured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_TEX 1 #define SETUP_CODE \ struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ struct gl_texture_object *obj = unit->CurrentD[2]; \ const GLint b = obj->BaseLevel; \ const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \ const GLfloat theight = (GLfloat) obj->Image[b]->Height; \ const GLint twidth_log2 = obj->Image[b]->WidthLog2; \ GLchan *texture = obj->Image[b]->Data; \ const GLint smask = (obj->Image[b]->Width - 1); \ const GLint tmask = (obj->Image[b]->Height - 1); \ const GLint format = obj->Image[b]->Format; \ const GLint envmode = unit->EnvMode; \ GLfloat sscale, tscale; \ GLint comp, tbytesline, tsize; \ GLfixed er, eg, eb, ea; \ GLint tr, tg, tb, ta; \ if (!texture) { \ if (!_mesa_get_teximages_from_driver(ctx, obj)) \ return; \ texture = obj->Image[b]->Data; \ ASSERT(texture); \ } \ if (envmode == GL_BLEND || envmode == GL_ADD) { \ er = FloatToFixed(unit->EnvColor[0]); \ eg = FloatToFixed(unit->EnvColor[1]); \ eb = FloatToFixed(unit->EnvColor[2]); \ ea = FloatToFixed(unit->EnvColor[3]); \ } \ switch (format) { \ case GL_ALPHA: \ case GL_LUMINANCE: \ case GL_INTENSITY: \ comp = 1; \ break; \ case GL_LUMINANCE_ALPHA: \ comp = 2; \ break; \ case GL_RGB: \ comp = 3; \ break; \ case GL_RGBA: \ comp = 4; \ break; \ default: \ gl_problem(NULL, "Bad texture format in lin_persp_texture_triangle"); \ return; \ } \ sscale = FIXED_SCALE * twidth; \ tscale = FIXED_SCALE * theight; \ tbytesline = obj->Image[b]->Width * comp; \ tsize = theight * tbytesline; (void) pv; #define SPAN(DO_TEX,COMP) \ for (i=0;i 0) { \ GLfloat SS = ss * sscale; \ GLfloat TT = tt * tscale; \ GLfloat dSdx = dsdx * sscale; \ GLfloat dTdx = dtdx * tscale; \ GLchan *dest = rgba[0]; \ SS -= 0.5f * FIXED_SCALE * vv; \ TT -= 0.5f * FIXED_SCALE * vv; \ switch (format) { \ case GL_RGB: \ switch (envmode) { \ case GL_MODULATE: \ SPAN(LINEAR_RGB;MODULATE,3); \ break; \ case GL_DECAL: \ case GL_REPLACE: \ SPAN(LINEAR_RGB;REPLACE,3); \ break; \ case GL_BLEND: \ SPAN(LINEAR_RGB;BLEND,3); \ break; \ case GL_ADD: \ SPAN(LINEAR_RGB;ADD,3); \ break; \ default: \ abort(); \ } \ break; \ case GL_RGBA: \ switch (envmode) { \ case GL_MODULATE: \ SPAN(LINEAR_RGBA;MODULATE,4); \ break; \ case GL_DECAL: \ SPAN(LINEAR_RGBA;DECAL,4); \ break; \ case GL_BLEND: \ SPAN(LINEAR_RGBA;BLEND,4); \ break; \ case GL_REPLACE: \ SPAN(LINEAR_RGBA;REPLACE,4); \ break; \ case GL_ADD: \ SPAN(LINEAR_RGBA;ADD,4); \ break; \ default: /* unexpected env mode */ \ abort(); \ } \ } \ gl_write_rgba_span( ctx, n, LEFT, Y, zspan, \ fogspan, \ rgba, GL_POLYGON ); \ ffr = ffg = ffb = ffa = 0; \ } \ } #include "s_tritemp.h" #undef SPAN } /* * Render a smooth-shaded, textured, RGBA triangle. * Interpolate S,T,U with perspective correction, w/out mipmapping. * Note: we use texture coordinates S,T,U,V instead of S,T,R,Q because * R is already used for red. */ static void general_textured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_TEX 1 #define SETUP_CODE \ GLboolean flat_shade = (ctx->Light.ShadeModel==GL_FLAT); \ GLint r, g, b, a; \ if (flat_shade) { \ r = VB->ColorPtr->data[pv][0]; \ g = VB->ColorPtr->data[pv][1]; \ b = VB->ColorPtr->data[pv][2]; \ a = VB->ColorPtr->data[pv][3]; \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ GLint i; \ const GLint n = RIGHT-LEFT; \ GLdepth zspan[MAX_WIDTH]; \ GLfixed fogspan[MAX_WIDTH]; \ GLchan rgba[MAX_WIDTH][4]; \ GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH]; \ if (n>0) { \ if (flat_shade) { \ for (i=0;iLight.ShadeModel==GL_FLAT); \ GLint r, g, b, a, sr, sg, sb; \ if (flat_shade) { \ r = VB->ColorPtr->data[pv][0]; \ g = VB->ColorPtr->data[pv][1]; \ b = VB->ColorPtr->data[pv][2]; \ a = VB->ColorPtr->data[pv][3]; \ sr = VB->SecondaryColorPtr->data[pv][0]; \ sg = VB->SecondaryColorPtr->data[pv][1]; \ sb = VB->SecondaryColorPtr->data[pv][2]; \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ GLint i; \ const GLint n = RIGHT-LEFT; \ GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH]; \ if (n>0) { \ if (flat_shade) { \ for (i=0;iTexture.Unit[0].Current; \ const GLint baseLevel = obj->BaseLevel; \ const struct gl_texture_image *texImage = obj->Image[baseLevel]; \ const GLfloat twidth = (GLfloat) texImage->Width; \ const GLfloat theight = (GLfloat) texImage->Height; \ const GLboolean flat_shade = (ctx->Light.ShadeModel==GL_FLAT); \ GLint r, g, b, a; \ if (flat_shade) { \ r = VB->ColorPtr->data[pv][0]; \ g = VB->ColorPtr->data[pv][1]; \ b = VB->ColorPtr->data[pv][2]; \ a = VB->ColorPtr->data[pv][3]; \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ GLint i; \ const GLint n = RIGHT-LEFT; \ GLdepth zspan[MAX_WIDTH]; \ GLfixed fogspan[MAX_WIDTH]; \ GLchan rgba[MAX_WIDTH][4]; \ GLfloat lambda[MAX_WIDTH]; \ if (n>0) { \ if (flat_shade) { \ for (i=0;iTexture.Unit[0].Current; \ const GLint baseLevel = obj->BaseLevel; \ const struct gl_texture_image *texImage = obj->Image[baseLevel]; \ const GLfloat twidth = (GLfloat) texImage->Width; \ const GLfloat theight = (GLfloat) texImage->Height; \ const GLboolean flat_shade = (ctx->Light.ShadeModel==GL_FLAT); \ GLint r, g, b, a, sr, sg, sb; \ if (flat_shade) { \ r = VB->ColorPtr->data[pv][0]; \ g = VB->ColorPtr->data[pv][1]; \ b = VB->ColorPtr->data[pv][2]; \ a = VB->ColorPtr->data[pv][3]; \ sr = VB->SecondaryColorPtr->data[pv][0]; \ sg = VB->SecondaryColorPtr->data[pv][1]; \ sb = VB->SecondaryColorPtr->data[pv][2]; \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ GLint i; \ const GLint n = RIGHT-LEFT; \ GLdepth zspan[MAX_WIDTH]; \ GLfixed fogspan[MAX_WIDTH]; \ GLchan spec[MAX_WIDTH][4]; \ GLchan rgba[MAX_WIDTH][4]; \ GLfloat lambda[MAX_WIDTH]; \ if (n>0) { \ if (flat_shade) { \ for (i=0;iLight.ShadeModel==GL_FLAT); \ GLfloat twidth[MAX_TEXTURE_UNITS], theight[MAX_TEXTURE_UNITS]; \ GLint r, g, b, a; \ if (flat_shade) { \ r = VB->ColorPtr->data[pv][0]; \ g = VB->ColorPtr->data[pv][1]; \ b = VB->ColorPtr->data[pv][2]; \ a = VB->ColorPtr->data[pv][3]; \ } \ { \ GLuint unit; \ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { \ if (ctx->Texture.Unit[unit].ReallyEnabled) { \ const struct gl_texture_object *obj = ctx->Texture.Unit[unit].Current; \ const GLint baseLevel = obj->BaseLevel; \ const struct gl_texture_image *texImage = obj->Image[baseLevel]; \ twidth[unit] = (GLfloat) texImage->Width; \ theight[unit] = (GLfloat) texImage->Height; \ } \ } \ } #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ GLint i; \ const GLint n = RIGHT-LEFT; \ GLdepth zspan[MAX_WIDTH]; \ GLfixed fogspan[MAX_WIDTH]; \ GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH]; \ if (n > 0) { \ if (flat_shade) { \ for (i=0;iConst.MaxTextureUnits; unit++) { \ if (ctx->Texture.Unit[unit].ReallyEnabled) { \ GLdouble invQ = 1.0 / vv[unit]; \ s[unit][i] = ss[unit] * invQ; \ t[unit][i] = tt[unit] * invQ; \ u[unit][i] = uu[unit] * invQ; \ lambda[unit][i] = compute_lambda(dsdx[unit], dsdy[unit],\ dtdx[unit], dtdy[unit], invQ, \ twidth[unit], theight[unit] ); \ ss[unit] += dsdx[unit]; \ tt[unit] += dtdx[unit]; \ uu[unit] += dudx[unit]; \ vv[unit] += dvdx[unit]; \ } \ } \ } \ } \ } \ else { /* smooth shade */ \ for (i=0;iConst.MaxTextureUnits; unit++) { \ if (ctx->Texture.Unit[unit].ReallyEnabled) { \ GLdouble invQ = 1.0 / vv[unit]; \ s[unit][i] = ss[unit] * invQ; \ t[unit][i] = tt[unit] * invQ; \ u[unit][i] = uu[unit] * invQ; \ lambda[unit][i] = compute_lambda(dsdx[unit], dsdy[unit],\ dtdx[unit], dtdy[unit], invQ, \ twidth[unit], theight[unit] ); \ ss[unit] += dsdx[unit]; \ tt[unit] += dtdx[unit]; \ uu[unit] += dudx[unit]; \ vv[unit] += dvdx[unit]; \ } \ } \ } \ } \ } \ gl_write_multitexture_span( ctx, n, LEFT, Y, zspan, fogspan, \ (const GLfloat (*)[MAX_WIDTH]) s, \ (const GLfloat (*)[MAX_WIDTH]) t, \ (const GLfloat (*)[MAX_WIDTH]) u, \ (GLfloat (*)[MAX_WIDTH]) lambda, \ rgba, NULL, GL_POLYGON ); \ } \ } #include "s_tritemp.h" } /* * These wrappers are needed to deal with the 32KB / stack frame limit * on Mac / PowerPC systems. */ static void general_textured_spec_triangle(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { GLdepth zspan[MAX_WIDTH]; GLfixed fogspan[MAX_WIDTH]; GLchan rgba[MAX_WIDTH][4], spec[MAX_WIDTH][4]; general_textured_spec_triangle1(ctx,v0,v1,v2,pv,zspan,fogspan,rgba,spec); } static void lambda_textured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH]; lambda_textured_triangle1(ctx,v0,v1,v2,pv,s,t,u); } static void lambda_textured_spec_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { GLfloat s[MAX_WIDTH]; GLfloat t[MAX_WIDTH]; GLfloat u[MAX_WIDTH]; lambda_textured_spec_triangle1(ctx,v0,v1,v2,pv,s,t,u); } static void lambda_multitextured_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { GLfloat s[MAX_TEXTURE_UNITS][MAX_WIDTH]; GLfloat t[MAX_TEXTURE_UNITS][MAX_WIDTH]; DEFMARRAY(GLfloat,u,MAX_TEXTURE_UNITS,MAX_WIDTH); CHECKARRAY(u,return); lambda_multitextured_triangle1(ctx,v0,v1,v2,pv,s,t,u); UNDEFARRAY(u); } static void occlusion_zless_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { (void)pv; if (ctx->OcclusionResult) { return; } #define DO_OCCLUSION_TEST #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INNER_LOOP( LEFT, RIGHT, Y ) \ { \ GLint i; \ const GLint len = RIGHT-LEFT; \ for (i=0;iOcclusionResult = GL_TRUE; \ return; \ } \ ffz += fdzdx; \ } \ } #include "s_tritemp.h" } /* * Null rasterizer for measuring transformation speed. */ static void null_triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv ) { (void) ctx; (void) v0; (void) v1; (void) v2; (void) pv; } #if 0 # define dputs(s) puts(s) #else # define dputs(s) #endif /* * Determine which triangle rendering function to use given the current * rendering context. * * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or * remove tests to this code. */ void _swrast_set_triangle_function( GLcontext *ctx ) { const GLboolean rgbmode = ctx->Visual.RGBAflag; if (ctx->RenderMode==GL_RENDER) { if (ctx->NoRaster) { ctx->Driver.TriangleFunc = null_triangle; return; } if (ctx->Driver.TriangleFunc) { /* Device driver will draw triangles. */ dputs("Driver triangle"); return; } if (ctx->Polygon.SmoothFlag) { _mesa_set_aa_triangle_function(ctx); ASSERT(ctx->Driver.TriangleFunc); return; } if (ctx->Depth.OcclusionTest && ctx->Depth.Test && ctx->Depth.Mask == GL_FALSE && ctx->Depth.Func == GL_LESS && !ctx->Stencil.Enabled) { if ((rgbmode && ctx->Color.ColorMask[0] == 0 && ctx->Color.ColorMask[1] == 0 && ctx->Color.ColorMask[2] == 0 && ctx->Color.ColorMask[3] == 0) || (!rgbmode && ctx->Color.IndexMask == 0)) { dputs("occlusion_test_triangle"); ctx->Driver.TriangleFunc = occlusion_zless_triangle; return; } } if (ctx->Texture.ReallyEnabled) { /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ GLint format, filter; const struct gl_texture_object *current2Dtex = ctx->Texture.Unit[0].CurrentD[2]; const struct gl_texture_image *image; /* First see if we can used an optimized 2-D texture function */ if (ctx->Texture.ReallyEnabled==TEXTURE0_2D && current2Dtex->WrapS==GL_REPEAT && current2Dtex->WrapT==GL_REPEAT && ((image = current2Dtex->Image[current2Dtex->BaseLevel]) != 0) /* correct! */ && image->Border==0 && ((format = image->Format)==GL_RGB || format==GL_RGBA) && (filter = current2Dtex->MinFilter)==current2Dtex->MagFilter && ctx->Light.Model.ColorControl==GL_SINGLE_COLOR && ctx->Texture.Unit[0].EnvMode!=GL_COMBINE_EXT) { if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { if (filter==GL_NEAREST && format==GL_RGB && (ctx->Texture.Unit[0].EnvMode==GL_REPLACE || ctx->Texture.Unit[0].EnvMode==GL_DECAL) && ((ctx->RasterMask==DEPTH_BIT && ctx->Depth.Func==GL_LESS && ctx->Depth.Mask==GL_TRUE) || ctx->RasterMask==0) && ctx->Polygon.StippleFlag==GL_FALSE) { if (ctx->RasterMask==DEPTH_BIT) { ctx->Driver.TriangleFunc = simple_z_textured_triangle; dputs("simple_z_textured_triangle"); } else { ctx->Driver.TriangleFunc = simple_textured_triangle; dputs("simple_textured_triangle"); } } else { if (ctx->Texture.Unit[0].EnvMode==GL_ADD) { ctx->Driver.TriangleFunc = general_textured_triangle; dputs("general_textured_triangle"); } else { ctx->Driver.TriangleFunc = affine_textured_triangle; dputs("affine_textured_triangle"); } } } else { if (filter==GL_NEAREST) { ctx->Driver.TriangleFunc = near_persp_textured_triangle; dputs("near_persp_textured_triangle"); } else { ctx->Driver.TriangleFunc = lin_persp_textured_triangle; dputs("lin_persp_textured_triangle"); } } } else { /* More complicated textures (mipmap, multi-tex, sep specular) */ GLboolean needLambda; /* if mag filter != min filter we need to compute lambda */ const struct gl_texture_object *obj = ctx->Texture.Unit[0].Current; if (obj && obj->MinFilter != obj->MagFilter) needLambda = GL_TRUE; else needLambda = GL_FALSE; if (ctx->Texture.MultiTextureEnabled) { ctx->Driver.TriangleFunc = lambda_multitextured_triangle; dputs("lambda_multitextured_triangle"); } else if ((ctx->Light.Enabled && ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) || ctx->Fog.ColorSumEnabled) { /* separate specular color interpolation */ if (needLambda) { ctx->Driver.TriangleFunc = lambda_textured_spec_triangle; dputs("lambda_textured_spec_triangle"); } else { ctx->Driver.TriangleFunc = general_textured_spec_triangle; dputs("general_textured_spec_triangle"); } } else { if (needLambda) { ctx->Driver.TriangleFunc = lambda_textured_triangle; dputs("lambda_textured_triangle"); } else { ctx->Driver.TriangleFunc = general_textured_triangle; dputs("general_textured_triangle"); } } } } else { if (ctx->Light.ShadeModel==GL_SMOOTH) { /* smooth shaded, no texturing, stippled or some raster ops */ if (rgbmode) { dputs("smooth_rgba_triangle"); ctx->Driver.TriangleFunc = smooth_rgba_triangle; } else { dputs("smooth_ci_triangle"); ctx->Driver.TriangleFunc = smooth_ci_triangle; } } else { /* flat shaded, no texturing, stippled or some raster ops */ if (rgbmode) { dputs("flat_rgba_triangle"); ctx->Driver.TriangleFunc = flat_rgba_triangle; } else { dputs("flat_ci_triangle"); ctx->Driver.TriangleFunc = flat_ci_triangle; } } } } else if (ctx->RenderMode==GL_FEEDBACK) { ctx->Driver.TriangleFunc = gl_feedback_triangle; } else { /* GL_SELECT mode */ ctx->Driver.TriangleFunc = gl_select_triangle; } }