/* * Mesa 3-D graphics library * Version: 3.3 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Author: * Keith Whitwell */ #include "glheader.h" #include "context.h" #include "dlist.h" #include "enums.h" #include "light.h" #include "mem.h" #include "state.h" #include "colormac.h" #include "macros.h" #include "t_context.h" #include "t_imm_api.h" #include "t_imm_elt.h" #include "t_imm_exec.h" #include "t_imm_dlist.h" /* A cassette is full or flushed on a statechange. */ void _tnl_flush_immediate( struct immediate *IM ) { GLcontext *ctx = IM->backref; if (ctx->CompileFlag) _tnl_compile_cassette( ctx, IM ); else _tnl_execute_cassette( ctx, IM ); } void _tnl_flush_vertices( GLcontext *ctx, GLuint flags ) { struct immediate *IM = TNL_CURRENT_IM(ctx); if (IM->Flag[IM->Start]) if ((flags & FLUSH_UPDATE_CURRENT) || IM->Count > IM->Start) _tnl_flush_immediate( IM ); } static void _tnl_begin( GLcontext *ctx, GLenum p ) { struct immediate *IM = TNL_CURRENT_IM(ctx); GLuint inflags, state; if (MESA_VERBOSE&VERBOSE_API) fprintf(stderr, "glBegin(IM %d) %s\n", IM->id, gl_lookup_enum_by_nr(p)); if (ctx->NewState) gl_update_state(ctx); /* if only a very few slots left, might as well flush now */ if (IM->Count > IMM_MAXDATA-8) { _tnl_flush_immediate( IM ); IM = TNL_CURRENT_IM(ctx); } /* Check for and flush buffered vertices from internal operations. */ if (IM->SavedBeginState) { _tnl_flush_immediate( IM ); IM = TNL_CURRENT_IM(ctx); IM->BeginState = IM->SavedBeginState; IM->SavedBeginState = 0; } state = IM->BeginState; inflags = state & (VERT_BEGIN_0|VERT_BEGIN_1); state |= inflags << 2; /* set error conditions */ if (inflags != (VERT_BEGIN_0|VERT_BEGIN_1)) { GLuint count = IM->Count; GLuint last = IM->LastPrimitive; ASSERT(IM->Primitive[IM->LastPrimitive] & PRIM_LAST); state |= (VERT_BEGIN_0|VERT_BEGIN_1); IM->Flag[count] |= VERT_BEGIN; IM->Primitive[IM->LastPrimitive] &= ~PRIM_LAST; IM->Primitive[count] = p | PRIM_BEGIN | PRIM_LAST; IM->PrimitiveLength[IM->LastPrimitive] = count - IM->LastPrimitive; IM->LastPrimitive = count; /* Not quite right. Need to use the fallback '_aa_ArrayElement' * when not known to be inside begin/end and arrays are unlocked. */ if (IM->FlushElt) { _tnl_translate_array_elts( ctx, IM, last, count ); IM->FlushElt = 0; } } ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; IM->BeginState = state; } static void _tnl_Begin( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); if (mode > GL_POLYGON) { _mesa_compile_error( ctx, GL_INVALID_ENUM, "glBegin" ); return; } _tnl_begin(ctx, mode); /* If compiling update SavePrimitive now. * * In compile_and_exec mode, exec_primitive will be updated when * the cassette is finished. * * If not compiling, update exec_primitive now. */ if (ctx->CompileFlag) { if (ctx->Driver.CurrentSavePrimitive == PRIM_UNKNOWN) ctx->Driver.CurrentSavePrimitive = PRIM_INSIDE_UNKNOWN_PRIM; else if (ctx->Driver.CurrentSavePrimitive == PRIM_OUTSIDE_BEGIN_END) ctx->Driver.CurrentSavePrimitive = mode; } else if (ctx->Driver.CurrentExecPrimitive == PRIM_OUTSIDE_BEGIN_END) ctx->Driver.CurrentExecPrimitive = mode; } GLboolean _tnl_hard_begin( GLcontext *ctx, GLenum p ) { struct immediate *IM = TNL_CURRENT_IM(ctx); GLuint count, last; if (ctx->NewState) gl_update_state(ctx); /* If not compiling, treat as a normal begin(). */ if (!ctx->CompileFlag) { _tnl_begin( ctx, p ); /* Set this for the duration: */ ctx->Driver.CurrentExecPrimitive = p; return GL_TRUE; } if (IM->Count > IMM_MAXDATA-8) { _tnl_flush_immediate( IM ); IM = TNL_CURRENT_IM(ctx); } switch (IM->BeginState & (VERT_BEGIN_0|VERT_BEGIN_1)) { case VERT_BEGIN_0|VERT_BEGIN_1: /* This is an immediate known to be inside a begin/end object. */ IM->BeginState |= (VERT_ERROR_1|VERT_ERROR_0); return GL_FALSE; case VERT_BEGIN_0: case VERT_BEGIN_1: /* This is a display-list immediate in an unknown begin/end * state. Assert it is empty and conviert it to a 'hard' one. */ ASSERT (IM->SavedBeginState == 0); /* ASSERT (ctx->Driver.CurrentSavePrimitive >= GL_POLYGON+1); */ /* Push current beginstate, to be restored later. Don't worry * about raising errors. */ IM->SavedBeginState = IM->BeginState; /* FALLTHROUGH */ case 0: /* Unless we have fallen through, this is an immediate known to * be outside begin/end objects. */ IM->BeginState |= VERT_BEGIN_0|VERT_BEGIN_1; count = IM->Count; last = IM->LastPrimitive; ASSERT(IM->Primitive[IM->LastPrimitive] & PRIM_LAST); IM->Flag[count] |= VERT_BEGIN; IM->Primitive[last] &= ~PRIM_LAST; IM->Primitive[count] = p | PRIM_BEGIN | PRIM_LAST; IM->PrimitiveLength[last] = count - last; IM->LastPrimitive = count; ASSERT (!IM->FlushElt); /* This is necessary as this immediate will not be flushed in * _tnl_end() -- we leave it active, hoping to pick up more * vertices before the next state change. */ ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; return GL_TRUE; default: ASSERT (0); return GL_TRUE; } } /* Need to do this to get the correct begin/end error behaviour from * functions like ColorPointerEXT which are still active in * SAVE_AND_EXEC modes. */ void _tnl_save_Begin( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); if (mode > GL_POLYGON) { _mesa_compile_error( ctx, GL_INVALID_ENUM, "glBegin" ); return; } if (ctx->ExecuteFlag) { /* Preserve vtxfmt invarient: */ if (ctx->NewState) gl_update_state( ctx ); /* Slot in geomexec: No need to call setdispatch as we know * CurrentDispatch is Save. */ ASSERT(ctx->CurrentDispatch == ctx->Save); } _tnl_begin( ctx, mode ); } /* Note the continuation of a partially completed primitive. For * driver t&l fallbacks between begin/end primitives. Has basically * the same effects as a primitive wrapping onto a second immediate * struct. * * ==> Can actually call this from _tnl_wakeup_exec, taking mode from * ctx->Driver.CurrentExecPrimitive. */ #if 0 void _tnl_fallback_begin( GLcontext *ctx, GLenum mode ) { struct immediate *IM = TNL_CURRENT_IM(ctx); ASSERT( IM->Count == IM->Start ); ASSERT( IM->Flag[IM->Start] == 0 ); ASSERT( mode < GL_POLYGON+1 ); _tnl_begin( ctx, mode ); IM->Primitive[IM->Start] &= ~PRIM_BEGIN; } #endif /* Both streams now outside begin/end. * * Leave SavedBeginState untouched -- attempt to gather several * rects/arrays together in a single immediate struct. */ void _tnl_end( GLcontext *ctx ) { struct immediate *IM = TNL_CURRENT_IM(ctx); GLuint state = IM->BeginState; GLuint inflags = (~state) & (VERT_BEGIN_0|VERT_BEGIN_1); state |= inflags << 2; /* errors */ if (inflags != (VERT_BEGIN_0|VERT_BEGIN_1)) { GLuint count = IM->Count; GLuint last = IM->LastPrimitive; ASSERT(IM->Primitive[IM->LastPrimitive] & PRIM_LAST); state &= ~(VERT_BEGIN_0|VERT_BEGIN_1); /* update state */ IM->Flag[count] |= VERT_END; IM->Primitive[last] |= PRIM_END; IM->Primitive[last] &= ~PRIM_LAST; IM->PrimitiveLength[last] = count - last; IM->Primitive[count] = (GL_POLYGON+1) | PRIM_LAST; IM->LastPrimitive = count; if (IM->FlushElt) { _tnl_translate_array_elts( ctx, IM, last, count ); IM->FlushElt = 0; } /* ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; */ } IM->BeginState = state; if (!ctx->CompileFlag) ctx->Driver.CurrentExecPrimitive = PRIM_OUTSIDE_BEGIN_END; /* You can set this flag to get the old 'flush_vb on glEnd()' * behaviour. */ if ((MESA_DEBUG_FLAGS&DEBUG_ALWAYS_FLUSH)) _tnl_flush_immediate( IM ); } static void _tnl_End(void) { GET_CURRENT_CONTEXT(ctx); _tnl_end( ctx ); /* Need to keep save primitive uptodate in COMPILE and * COMPILE_AND_EXEC modes, need to keep exec primitive uptodate * otherwise. */ if (ctx->CompileFlag) ctx->Driver.CurrentSavePrimitive = PRIM_OUTSIDE_BEGIN_END; } #define COLOR( IM, r, g, b, a ) \ { \ GLuint count = IM->Count; \ IM->Flag[count] |= VERT_RGBA; \ IM->Color[count][0] = r; \ IM->Color[count][1] = g; \ IM->Color[count][2] = b; \ IM->Color[count][3] = a; \ } #define COLORV( IM, v ) \ { \ GLuint count = IM->Count; \ IM->Flag[count] |= VERT_RGBA; \ COPY_CHAN4(IM->Color[count], v); \ } static void _tnl_Color3f( GLfloat red, GLfloat green, GLfloat blue ) { GLchan col[4]; GET_IMMEDIATE; UNCLAMPED_FLOAT_TO_CHAN(col[0], red); UNCLAMPED_FLOAT_TO_CHAN(col[1], green); UNCLAMPED_FLOAT_TO_CHAN(col[2], blue); col[3] = CHAN_MAX; COLORV( IM, col ); } static void _tnl_Color3ub( GLubyte red, GLubyte green, GLubyte blue ) { #if CHAN_BITS == 8 GET_IMMEDIATE; COLOR( IM, red, green, blue, CHAN_MAX ); #else GET_IMMEDIATE; COLOR(IM, UBYTE_TO_CHAN(red), UBYTE_TO_CHAN(green), UBYTE_TO_CHAN(blue), CHAN_MAX); #endif } static void _tnl_Color4f( GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha ) { GLchan col[4]; GET_IMMEDIATE; UNCLAMPED_FLOAT_TO_CHAN(col[0], red); UNCLAMPED_FLOAT_TO_CHAN(col[1], green); UNCLAMPED_FLOAT_TO_CHAN(col[2], blue); UNCLAMPED_FLOAT_TO_CHAN(col[3], alpha); COLORV( IM, col ); } static void _tnl_Color4ub( GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha ) { GET_IMMEDIATE; COLOR(IM, UBYTE_TO_CHAN(red), UBYTE_TO_CHAN(green), UBYTE_TO_CHAN(blue), UBYTE_TO_CHAN(alpha)); } static void _tnl_Color3fv( const GLfloat *v ) { GLchan col[4]; GET_IMMEDIATE; UNCLAMPED_FLOAT_TO_CHAN(col[0], v[0]); UNCLAMPED_FLOAT_TO_CHAN(col[1], v[1]); UNCLAMPED_FLOAT_TO_CHAN(col[2], v[2]); col[3] = CHAN_MAX; COLORV( IM, col ); } static void _tnl_Color3ubv( const GLubyte *v ) { GET_IMMEDIATE; COLOR(IM, UBYTE_TO_CHAN(v[0]), UBYTE_TO_CHAN(v[1]), UBYTE_TO_CHAN(v[2]), CHAN_MAX ); } static void _tnl_Color4fv( const GLfloat *v ) { GLchan col[4]; GET_IMMEDIATE; UNCLAMPED_FLOAT_TO_CHAN(col[0], v[0]); UNCLAMPED_FLOAT_TO_CHAN(col[1], v[1]); UNCLAMPED_FLOAT_TO_CHAN(col[2], v[2]); UNCLAMPED_FLOAT_TO_CHAN(col[3], v[3]); COLORV( IM, col ); } static void _tnl_Color4ubv( const GLubyte *v) { GET_IMMEDIATE; COLOR(IM, UBYTE_TO_CHAN(v[0]), UBYTE_TO_CHAN(v[1]), UBYTE_TO_CHAN(v[2]), UBYTE_TO_CHAN(v[3])); } #define SECONDARY_COLOR( IM, r, g, b ) \ { \ GLuint count = IM->Count; \ IM->Flag[count] |= VERT_SPEC_RGB; \ IM->SecondaryColor[count][0] = r; \ IM->SecondaryColor[count][1] = g; \ IM->SecondaryColor[count][2] = b; \ } #define SECONDARY_COLORV( IM, v ) \ { \ GLuint count = IM->Count; \ IM->Flag[count] |= VERT_SPEC_RGB; \ IM->SecondaryColor[count][0] = v[0]; \ IM->SecondaryColor[count][1] = v[1]; \ IM->SecondaryColor[count][2] = v[2]; \ } static void _tnl_SecondaryColor3fEXT( GLfloat red, GLfloat green, GLfloat blue ) { GLchan col[3]; GET_IMMEDIATE; UNCLAMPED_FLOAT_TO_CHAN(col[0], red); UNCLAMPED_FLOAT_TO_CHAN(col[1], green); UNCLAMPED_FLOAT_TO_CHAN(col[2], blue); SECONDARY_COLORV( IM, col ); } static void _tnl_SecondaryColor3ubEXT( GLubyte red, GLubyte green, GLubyte blue ) { GET_IMMEDIATE; SECONDARY_COLOR(IM, UBYTE_TO_CHAN(red), UBYTE_TO_CHAN(green), UBYTE_TO_CHAN(blue)); } static void _tnl_SecondaryColor3fvEXT( const GLfloat *v ) { GLchan col[3]; GET_IMMEDIATE; UNCLAMPED_FLOAT_TO_CHAN(col[0], v[0]); UNCLAMPED_FLOAT_TO_CHAN(col[1], v[1]); UNCLAMPED_FLOAT_TO_CHAN(col[2], v[2]); SECONDARY_COLORV( IM, col ); } static void _tnl_SecondaryColor3ubvEXT( const GLubyte *v ) { GET_IMMEDIATE; SECONDARY_COLOR(IM, UBYTE_TO_CHAN(v[0]), UBYTE_TO_CHAN(v[1]), UBYTE_TO_CHAN(v[2])); } static void _tnl_EdgeFlag( GLboolean flag ) { GLuint count; GET_IMMEDIATE; count = IM->Count; IM->EdgeFlag[count] = flag; IM->Flag[count] |= VERT_EDGE; } static void _tnl_EdgeFlagv( const GLboolean *flag ) { GLuint count; GET_IMMEDIATE; count = IM->Count; IM->EdgeFlag[count] = *flag; IM->Flag[count] |= VERT_EDGE; } static void _tnl_FogCoordfEXT( GLfloat f ) { GLuint count; GET_IMMEDIATE; count = IM->Count; IM->FogCoord[count] = f; IM->Flag[count] |= VERT_FOG_COORD; } static void _tnl_FogCoordfvEXT( const GLfloat *v ) { GLuint count; GET_IMMEDIATE; count = IM->Count; IM->FogCoord[count] = v[0]; IM->Flag[count] |= VERT_FOG_COORD; } static void _tnl_Indexi( GLint c ) { GLuint count; GET_IMMEDIATE; count = IM->Count; IM->Index[count] = c; IM->Flag[count] |= VERT_INDEX; } static void _tnl_Indexiv( const GLint *c ) { GLuint count; GET_IMMEDIATE; count = IM->Count; IM->Index[count] = *c; IM->Flag[count] |= VERT_INDEX; } #define NORMAL( x, y, z ) \ { \ GLuint count; \ GLfloat *normal; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_NORM; \ normal = IM->Normal[count]; \ ASSIGN_3V(normal, x,y,z); \ } #if defined(USE_IEEE) #define NORMALF( x, y, z ) \ { \ GLuint count; \ GLint *normal; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_NORM; \ normal = (GLint *)IM->Normal[count]; \ ASSIGN_3V(normal, *(int*)&(x), *(int*)&(y), *(int*)&(z)); \ } #else #define NORMALF NORMAL #endif static void _tnl_Normal3f( GLfloat nx, GLfloat ny, GLfloat nz ) { NORMALF(nx, ny, nz); } static void _tnl_Normal3fv( const GLfloat *v ) { NORMALF( v[0], v[1], v[2] ); } #define TEXCOORD1(s) \ { \ GLuint count; \ GLfloat *tc; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_TEX0; \ tc = IM->TexCoord0[count]; \ ASSIGN_4V(tc,s,0,0,1); \ } #define TEXCOORD2(s,t) \ { \ GLuint count; \ GLfloat *tc; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_TEX0; \ tc = IM->TexCoord0[count]; \ ASSIGN_4V(tc, s,t,0,1); \ } #define TEXCOORD3(s,t,u) \ { \ GLuint count; \ GLfloat *tc; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_TEX0; \ IM->TexSize |= TEX_0_SIZE_3; \ tc = IM->TexCoord0[count]; \ ASSIGN_4V(tc, s,t,u,1); \ } #define TEXCOORD4(s,t,u,v) \ { \ GLuint count; \ GLfloat *tc; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_TEX0; \ IM->TexSize |= TEX_0_SIZE_4; \ tc = IM->TexCoord0[count]; \ ASSIGN_4V(tc, s,t,u,v); \ } #if defined(USE_IEEE) #define TEXCOORD2F(s,t) \ { \ GLuint count; \ GLint *tc; \ GET_IMMEDIATE; \ count = IM->Count; \ IM->Flag[count] |= VERT_TEX0; \ tc = (GLint *)IM->TexCoord0[count]; \ tc[0] = *(GLint *)&(s); \ tc[1] = *(GLint *)&(t); \ tc[2] = 0; \ tc[3] = IEEE_ONE; \ } #else #define TEXCOORD2F TEXCOORD2 #endif static void _tnl_TexCoord1f( GLfloat s ) { TEXCOORD1(s); } static void _tnl_TexCoord2f( GLfloat s, GLfloat t ) { TEXCOORD2F(s,t); } static void _tnl_TexCoord3f( GLfloat s, GLfloat t, GLfloat r ) { TEXCOORD3(s,t,r); } static void _tnl_TexCoord4f( GLfloat s, GLfloat t, GLfloat r, GLfloat q ) { TEXCOORD4(s,t,r,q) } static void _tnl_TexCoord1fv( const GLfloat *v ) { TEXCOORD1(v[0]); } static void _tnl_TexCoord2fv( const GLfloat *v ) { TEXCOORD2F(v[0],v[1]); } static void _tnl_TexCoord3fv( const GLfloat *v ) { TEXCOORD3(v[0],v[1],v[2]); } static void _tnl_TexCoord4fv( const GLfloat *v ) { TEXCOORD4(v[0],v[1],v[2],v[3]); } /* KW: Run into bad problems in vertex copying if we don't fully pad * the incoming vertices. */ #define VERTEX2(IM, x,y) \ { \ GLuint count = IM->Count++; \ GLfloat *dest = IM->Obj[count]; \ IM->Flag[count] |= VERT_OBJ; \ ASSIGN_4V(dest, x, y, 0, 1); \ /* ASSERT(IM->Flag[IM->Count]==0); */\ if (count == IMM_MAXDATA - 1) \ _tnl_flush_immediate( IM ); \ } #define VERTEX3(IM,x,y,z) \ { \ GLuint count = IM->Count++; \ GLfloat *dest = IM->Obj[count]; \ IM->Flag[count] |= VERT_OBJ_23; \ ASSIGN_4V(dest, x, y, z, 1); \ /* ASSERT(IM->Flag[IM->Count]==0); */ \ if (count == IMM_MAXDATA - 1) \ _tnl_flush_immediate( IM ); \ } #define VERTEX4(IM, x,y,z,w) \ { \ GLuint count = IM->Count++; \ GLfloat *dest = IM->Obj[count]; \ IM->Flag[count] |= VERT_OBJ_234; \ ASSIGN_4V(dest, x, y, z, w); \ if (count == IMM_MAXDATA - 1) \ _tnl_flush_immediate( IM ); \ } #if defined(USE_IEEE) #define VERTEX2F(IM, x, y) \ { \ GLuint count = IM->Count++; \ GLint *dest = (GLint *)IM->Obj[count]; \ IM->Flag[count] |= VERT_OBJ; \ dest[0] = *(GLint *)&(x); \ dest[1] = *(GLint *)&(y); \ dest[2] = 0; \ dest[3] = IEEE_ONE; \ /* ASSERT(IM->Flag[IM->Count]==0); */ \ if (count == IMM_MAXDATA - 1) \ _tnl_flush_immediate( IM ); \ } #else #define VERTEX2F VERTEX2 #endif #if defined(USE_IEEE) #define VERTEX3F(IM, x, y, z) \ { \ GLuint count = IM->Count++; \ GLint *dest = (GLint *)IM->Obj[count]; \ IM->Flag[count] |= VERT_OBJ_23; \ dest[0] = *(GLint *)&(x); \ dest[1] = *(GLint *)&(y); \ dest[2] = *(GLint *)&(z); \ dest[3] = IEEE_ONE; \ /* ASSERT(IM->Flag[IM->Count]==0); */ \ if (count == IMM_MAXDATA - 1) \ _tnl_flush_immediate( IM ); \ } #else #define VERTEX3F VERTEX3 #endif #if defined(USE_IEEE) #define VERTEX4F(IM, x, y, z, w) \ { \ GLuint count = IM->Count++; \ GLint *dest = (GLint *)IM->Obj[count]; \ IM->Flag[count] |= VERT_OBJ_234; \ dest[0] = *(GLint *)&(x); \ dest[1] = *(GLint *)&(y); \ dest[2] = *(GLint *)&(z); \ dest[3] = *(GLint *)&(w); \ if (count == IMM_MAXDATA - 1) \ _tnl_flush_immediate( IM ); \ } #else #define VERTEX4F VERTEX4 #endif static void _tnl_Vertex2f( GLfloat x, GLfloat y ) { GET_IMMEDIATE; VERTEX2F( IM, x, y ); } static void _tnl_Vertex3f( GLfloat x, GLfloat y, GLfloat z ) { GET_IMMEDIATE; VERTEX3F( IM, x, y, z ); } static void _tnl_Vertex4f( GLfloat x, GLfloat y, GLfloat z, GLfloat w ) { GET_IMMEDIATE; VERTEX4F( IM, x, y, z, w ); } static void _tnl_Vertex2fv( const GLfloat *v ) { GET_IMMEDIATE; VERTEX2F( IM, v[0], v[1] ); } static void _tnl_Vertex3fv( const GLfloat *v ) { GET_IMMEDIATE; VERTEX3F( IM, v[0], v[1], v[2] ); } static void _tnl_Vertex4fv( const GLfloat *v ) { GET_IMMEDIATE; VERTEX4F( IM, v[0], v[1], v[2], v[3] ); } /* * GL_ARB_multitexture * * Note: the multitexture spec says that specifying an invalid target * has undefined results and does not have to generate an error. Just * don't crash. We no-op on invalid targets. */ #define MAX_TARGET (GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS) #define MULTI_TEXCOORD1(target, s) \ { \ GET_IMMEDIATE; \ GLuint texunit = target - GL_TEXTURE0_ARB; \ if (texunit < IM->MaxTextureUnits) { \ GLuint count = IM->Count; \ GLfloat *tc = IM->TexCoord[texunit][count]; \ ASSIGN_4V(tc, s, 0.0F, 0.0F, 1.0F); \ IM->Flag[count] |= VERT_TEX(texunit); \ } \ } #define MULTI_TEXCOORD2(target, s, t) \ { \ GET_IMMEDIATE; \ GLuint texunit = target - GL_TEXTURE0_ARB; \ if (texunit < IM->MaxTextureUnits) { \ GLuint count = IM->Count; \ GLfloat *tc = IM->TexCoord[texunit][count]; \ ASSIGN_4V(tc, s, t, 0.0F, 1.0F); \ IM->Flag[count] |= VERT_TEX(texunit); \ } \ } #define MULTI_TEXCOORD3(target, s, t, u) \ { \ GET_IMMEDIATE; \ GLuint texunit = target - GL_TEXTURE0_ARB; \ if (texunit < IM->MaxTextureUnits) { \ GLuint count = IM->Count; \ GLfloat *tc = IM->TexCoord[texunit][count]; \ ASSIGN_4V(tc, s, t, u, 1.0F); \ IM->Flag[count] |= VERT_TEX(texunit); \ IM->TexSize |= TEX_SIZE_3(texunit); \ } \ } #define MULTI_TEXCOORD4(target, s, t, u, v) \ { \ GET_IMMEDIATE; \ GLuint texunit = target - GL_TEXTURE0_ARB; \ if (texunit < IM->MaxTextureUnits) { \ GLuint count = IM->Count; \ GLfloat *tc = IM->TexCoord[texunit][count]; \ ASSIGN_4V(tc, s, t, u, v); \ IM->Flag[count] |= VERT_TEX(texunit); \ IM->TexSize |= TEX_SIZE_4(texunit); \ } \ } #if defined(USE_IEEE) #define MULTI_TEXCOORD2F(target, s, t) \ { \ GET_IMMEDIATE; \ GLuint texunit = target - GL_TEXTURE0_ARB; \ if (texunit < IM->MaxTextureUnits) { \ GLuint count = IM->Count; \ GLint *tc = (GLint *)IM->TexCoord[texunit][count]; \ IM->Flag[count] |= VERT_TEX(texunit); \ tc[0] = *(int *)&(s); \ tc[1] = *(int *)&(t); \ tc[2] = 0; \ tc[3] = IEEE_ONE; \ } \ } #else #define MULTI_TEXCOORD2F MULTI_TEXCOORD2 #endif static void _tnl_MultiTexCoord1fARB(GLenum target, GLfloat s) { MULTI_TEXCOORD1( target, s ); } static void _tnl_MultiTexCoord1fvARB(GLenum target, const GLfloat *v) { MULTI_TEXCOORD1( target, v[0] ); } static void _tnl_MultiTexCoord2fARB(GLenum target, GLfloat s, GLfloat t) { MULTI_TEXCOORD2F( target, s, t ); } static void _tnl_MultiTexCoord2fvARB(GLenum target, const GLfloat *v) { MULTI_TEXCOORD2F( target, v[0], v[1] ); } static void _tnl_MultiTexCoord3fARB(GLenum target, GLfloat s, GLfloat t, GLfloat r) { MULTI_TEXCOORD3( target, s, t, r ); } static void _tnl_MultiTexCoord3fvARB(GLenum target, const GLfloat *v) { MULTI_TEXCOORD3( target, v[0], v[1], v[2] ); } static void _tnl_MultiTexCoord4fARB(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q) { MULTI_TEXCOORD4( target, s, t, r, q ); } static void _tnl_MultiTexCoord4fvARB(GLenum target, const GLfloat *v) { MULTI_TEXCOORD4( target, v[0], v[1], v[2], v[3] ); } /* KW: Because the eval values don't become 'current', fixup will flow * through these vertices, and then evaluation will write on top * of the fixup results. * * Note: using Obj to hold eval coord data. */ #define EVALCOORD1(IM, x) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_C1; \ ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \ if (count == IMM_MAXDATA-1) \ _tnl_flush_immediate( IM ); \ } #define EVALCOORD2(IM, x, y) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_C2; \ ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \ if (count == IMM_MAXDATA-1) \ _tnl_flush_immediate( IM ); \ } #define EVALPOINT1(IM, x) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_P1; \ ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \ if (count == IMM_MAXDATA-1) \ _tnl_flush_immediate( IM ); \ } #define EVALPOINT2(IM, x, y) \ { \ GLuint count = IM->Count++; \ IM->Flag[count] |= VERT_EVAL_P2; \ ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \ if (count == IMM_MAXDATA-1) \ _tnl_flush_immediate( IM ); \ } static void _tnl_EvalCoord1f( GLfloat u ) { GET_IMMEDIATE; EVALCOORD1( IM, u ); } static void _tnl_EvalCoord1fv( const GLfloat *u ) { GET_IMMEDIATE; EVALCOORD1( IM, (GLfloat) *u ); } static void _tnl_EvalCoord2f( GLfloat u, GLfloat v ) { GET_IMMEDIATE; EVALCOORD2( IM, u, v ); } static void _tnl_EvalCoord2fv( const GLfloat *u ) { GET_IMMEDIATE; EVALCOORD2( IM, u[0], u[1] ); } static void _tnl_EvalPoint1( GLint i ) { GET_IMMEDIATE; EVALPOINT1( IM, i ); } static void _tnl_EvalPoint2( GLint i, GLint j ) { GET_IMMEDIATE; EVALPOINT2( IM, i, j ); } /* Need to use the default array-elt outside begin/end for strict * conformance. */ #define ARRAY_ELT( IM, i ) \ { \ GLuint count = IM->Count; \ IM->Elt[count] = i; \ IM->Flag[count] &= IM->ArrayEltFlags; \ IM->Flag[count] |= VERT_ELT; \ IM->FlushElt |= IM->ArrayEltFlush; \ IM->Count += IM->ArrayEltIncr; \ if (IM->Count == IMM_MAXDATA) \ _tnl_flush_immediate( IM ); \ } static void _tnl_ArrayElement( GLint i ) { GET_IMMEDIATE; ARRAY_ELT( IM, i ); } /* Internal functions. These are safe to use providing either: * * - It is determined that a display list is not being compiled, or * if so that these commands won't be compiled into the list (see * t_eval.c for an example). * * - _tnl_hard_begin() is used instead of _tnl_[bB]egin, and tested * for a GL_TRUE return value. See _tnl_Rectf, below. */ void _tnl_eval_coord1f( GLcontext *CC, GLfloat u ) { struct immediate *i = TNL_CURRENT_IM(CC); EVALCOORD1( i, u ); } void _tnl_eval_coord2f( GLcontext *CC, GLfloat u, GLfloat v ) { struct immediate *i = TNL_CURRENT_IM(CC); EVALCOORD2( i, u, v ); } void _tnl_array_element( GLcontext *CC, GLint i ) { struct immediate *im = TNL_CURRENT_IM(CC); ARRAY_ELT( im, i ); } void _tnl_vertex2f( GLcontext *ctx, GLfloat x, GLfloat y ) { struct immediate *im = TNL_CURRENT_IM(ctx); VERTEX2( im, x, y ); } /* Execute a glRectf() function. _tnl_hard_begin() ensures the check * on outside_begin_end is executed even in compiled lists. These * vertices can now participate in the same VB as regular ones, even * in most display lists. */ static void _tnl_Rectf( GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2 ) { GET_CURRENT_CONTEXT(ctx); if (_tnl_hard_begin( ctx, GL_QUADS )) { _tnl_vertex2f( ctx, x1, y1 ); _tnl_vertex2f( ctx, x2, y1 ); _tnl_vertex2f( ctx, x2, y2 ); _tnl_vertex2f( ctx, x1, y2 ); _tnl_end( ctx ); } } static void _tnl_Materialfv( GLenum face, GLenum pname, const GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); struct immediate *IM = TNL_CURRENT_IM(ctx); GLuint count = IM->Count; struct gl_material *mat; GLuint bitmask = gl_material_bitmask( ctx, face, pname, ~0, "Materialfv" ); if (bitmask == 0) return; if (!IM->Material) { IM->Material = (GLmaterial (*)[2]) MALLOC( sizeof(GLmaterial) * IMM_SIZE * 2 ); IM->MaterialMask = (GLuint *) MALLOC( sizeof(GLuint) * IMM_SIZE ); } if (!(IM->Flag[count] & VERT_MATERIAL)) { IM->Flag[count] |= VERT_MATERIAL; IM->MaterialMask[count] = 0; } IM->MaterialMask[count] |= bitmask; mat = IM->Material[count]; if (bitmask & FRONT_AMBIENT_BIT) { COPY_4FV( mat[0].Ambient, params ); } if (bitmask & BACK_AMBIENT_BIT) { COPY_4FV( mat[1].Ambient, params ); } if (bitmask & FRONT_DIFFUSE_BIT) { COPY_4FV( mat[0].Diffuse, params ); } if (bitmask & BACK_DIFFUSE_BIT) { COPY_4FV( mat[1].Diffuse, params ); } if (bitmask & FRONT_SPECULAR_BIT) { COPY_4FV( mat[0].Specular, params ); } if (bitmask & BACK_SPECULAR_BIT) { COPY_4FV( mat[1].Specular, params ); } if (bitmask & FRONT_EMISSION_BIT) { COPY_4FV( mat[0].Emission, params ); } if (bitmask & BACK_EMISSION_BIT) { COPY_4FV( mat[1].Emission, params ); } if (bitmask & FRONT_SHININESS_BIT) { GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F ); mat[0].Shininess = shininess; } if (bitmask & BACK_SHININESS_BIT) { GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F ); mat[1].Shininess = shininess; } if (bitmask & FRONT_INDEXES_BIT) { mat[0].AmbientIndex = params[0]; mat[0].DiffuseIndex = params[1]; mat[0].SpecularIndex = params[2]; } if (bitmask & BACK_INDEXES_BIT) { mat[1].AmbientIndex = params[0]; mat[1].DiffuseIndex = params[1]; mat[1].SpecularIndex = params[2]; } } void _tnl_imm_vtxfmt_init( GLcontext *ctx ) { GLvertexformat *vfmt = &(TNL_CONTEXT(ctx)->vtxfmt); /* All begin/end operations are handled by this vertex format: */ vfmt->ArrayElement = _tnl_ArrayElement; vfmt->Begin = _tnl_Begin; vfmt->Color3f = _tnl_Color3f; vfmt->Color3fv = _tnl_Color3fv; vfmt->Color3ub = _tnl_Color3ub; vfmt->Color3ubv = _tnl_Color3ubv; vfmt->Color4f = _tnl_Color4f; vfmt->Color4fv = _tnl_Color4fv; vfmt->Color4ub = _tnl_Color4ub; vfmt->Color4ubv = _tnl_Color4ubv; vfmt->EdgeFlag = _tnl_EdgeFlag; vfmt->EdgeFlagv = _tnl_EdgeFlagv; vfmt->End = _tnl_End; vfmt->EvalCoord1f = _tnl_EvalCoord1f; vfmt->EvalCoord1fv = _tnl_EvalCoord1fv; vfmt->EvalCoord2f = _tnl_EvalCoord2f; vfmt->EvalCoord2fv = _tnl_EvalCoord2fv; vfmt->EvalPoint1 = _tnl_EvalPoint1; vfmt->EvalPoint2 = _tnl_EvalPoint2; vfmt->FogCoordfEXT = _tnl_FogCoordfEXT; vfmt->FogCoordfvEXT = _tnl_FogCoordfvEXT; vfmt->Indexi = _tnl_Indexi; vfmt->Indexiv = _tnl_Indexiv; vfmt->Materialfv = _tnl_Materialfv; vfmt->MultiTexCoord1fARB = _tnl_MultiTexCoord1fARB; vfmt->MultiTexCoord1fvARB = _tnl_MultiTexCoord1fvARB; vfmt->MultiTexCoord2fARB = _tnl_MultiTexCoord2fARB; vfmt->MultiTexCoord2fvARB = _tnl_MultiTexCoord2fvARB; vfmt->MultiTexCoord3fARB = _tnl_MultiTexCoord3fARB; vfmt->MultiTexCoord3fvARB = _tnl_MultiTexCoord3fvARB; vfmt->MultiTexCoord4fARB = _tnl_MultiTexCoord4fARB; vfmt->MultiTexCoord4fvARB = _tnl_MultiTexCoord4fvARB; vfmt->Normal3f = _tnl_Normal3f; vfmt->Normal3fv = _tnl_Normal3fv; vfmt->SecondaryColor3fEXT = _tnl_SecondaryColor3fEXT; vfmt->SecondaryColor3fvEXT = _tnl_SecondaryColor3fvEXT; vfmt->SecondaryColor3ubEXT = _tnl_SecondaryColor3ubEXT; vfmt->SecondaryColor3ubvEXT = _tnl_SecondaryColor3ubvEXT; vfmt->TexCoord1f = _tnl_TexCoord1f; vfmt->TexCoord1fv = _tnl_TexCoord1fv; vfmt->TexCoord2f = _tnl_TexCoord2f; vfmt->TexCoord2fv = _tnl_TexCoord2fv; vfmt->TexCoord3f = _tnl_TexCoord3f; vfmt->TexCoord3fv = _tnl_TexCoord3fv; vfmt->TexCoord4f = _tnl_TexCoord4f; vfmt->TexCoord4fv = _tnl_TexCoord4fv; vfmt->Vertex2f = _tnl_Vertex2f; vfmt->Vertex2fv = _tnl_Vertex2fv; vfmt->Vertex3f = _tnl_Vertex3f; vfmt->Vertex3fv = _tnl_Vertex3fv; vfmt->Vertex4f = _tnl_Vertex4f; vfmt->Vertex4fv = _tnl_Vertex4fv; /* Outside begin/end functions (from t_varray.c, t_eval.c, ...): */ vfmt->Rectf = _tnl_Rectf; /* Just use the core function: */ vfmt->CallList = _mesa_CallList; vfmt->prefer_float_colors = GL_FALSE; }