/* * Mesa 3-D graphics library * Version: 6.3 * * Copyright (C) 2005 Tungsten Graphics All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file t_vp_build.c * Create a vertex program to execute the current fixed function T&L pipeline. * \author Keith Whitwell */ #include #include "glheader.h" #include "macros.h" #include "enums.h" #include "t_context.h" #include "t_vp_build.h" #include "shader/program.h" #include "shader/nvvertprog.h" #include "shader/arbvertparse.h" /* Very useful debugging tool - produces annotated listing of * generated program with line/function references for each * instruction back into this file: */ #define DISASSEM 0 /* Use uregs to represent registers internally, translate to Mesa's * expected formats on emit. * * NOTE: These are passed by value extensively in this file rather * than as usual by pointer reference. If this disturbs you, try * remembering they are just 32bits in size. * * GCC is smart enough to deal with these dword-sized structures in * much the same way as if I had defined them as dwords and was using * macros to access and set the fields. This is much nicer and easier * to evolve. */ struct ureg { GLuint file:4; GLuint idx:8; GLuint negate:1; GLuint swz:12; GLuint pad:7; }; struct tnl_program { GLcontext *ctx; struct vertex_program *program; GLuint temp_flag; GLuint temp_reserved; struct ureg eye_position; struct ureg eye_position_normalized; struct ureg eye_normal; struct ureg identity; GLuint materials; GLuint color_materials; }; const static struct ureg undef = { ~0, ~0, 0, 0, 0 }; /* Local shorthand: */ #define X SWIZZLE_X #define Y SWIZZLE_Y #define Z SWIZZLE_Z #define W SWIZZLE_W /* Construct a ureg: */ static struct ureg make_ureg(GLuint file, GLuint idx) { struct ureg reg; reg.file = file; reg.idx = idx; reg.negate = 0; reg.swz = SWIZZLE_NOOP; reg.pad = 0; return reg; } static struct ureg negate( struct ureg reg ) { reg.negate ^= 1; return reg; } static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w ) { reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x), GET_SWZ(reg.swz, y), GET_SWZ(reg.swz, z), GET_SWZ(reg.swz, w)); return reg; } static struct ureg swizzle1( struct ureg reg, int x ) { return swizzle(reg, x, x, x, x); } static struct ureg get_temp( struct tnl_program *p ) { int bit = ffs( ~p->temp_flag ); if (!bit) { fprintf(stderr, "%s: out of temporaries\n", __FILE__); exit(1); } p->temp_flag |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, bit-1); } static struct ureg reserve_temp( struct tnl_program *p ) { struct ureg temp = get_temp( p ); p->temp_reserved |= 1<temp_flag &= ~(1<temp_flag |= p->temp_reserved; /* can't release reserved temps */ } } static void release_temps( struct tnl_program *p ) { p->temp_flag = p->temp_reserved; } static struct ureg register_input( struct tnl_program *p, GLuint input ) { p->program->InputsRead |= (1<program->OutputsWritten |= (1<program->Parameters, values ); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1) #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1) #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1) static GLboolean is_undef( struct ureg reg ) { return reg.file == 0xf; } static struct ureg get_identity_param( struct tnl_program *p ) { if (is_undef(p->identity)) p->identity = register_const4f(p, 0,0,0,1); return p->identity; } static struct ureg register_param6( struct tnl_program *p, GLint s0, GLint s1, GLint s2, GLint s3, GLint s4, GLint s5) { GLint tokens[6]; GLuint idx; tokens[0] = s0; tokens[1] = s1; tokens[2] = s2; tokens[3] = s3; tokens[4] = s4; tokens[5] = s5; idx = _mesa_add_state_reference( p->program->Parameters, tokens ); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_param1(p,s0) register_param6(p,s0,0,0,0,0,0) #define register_param2(p,s0,s1) register_param6(p,s0,s1,0,0,0,0) #define register_param3(p,s0,s1,s2) register_param6(p,s0,s1,s2,0,0,0) #define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0) static void register_matrix_param6( struct tnl_program *p, GLint s0, GLint s1, GLint s2, GLint s3, GLint s4, GLint s5, struct ureg *matrix ) { GLuint i; /* This is a bit sad as the support is there to pull the whole * matrix out in one go: */ for (i = 0; i <= s4 - s3; i++) matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 ); } static void emit_arg( struct vp_src_register *src, struct ureg reg ) { src->File = reg.file; src->Index = reg.idx; src->Swizzle = reg.swz; src->Negate = reg.negate; src->RelAddr = 0; src->pad = 0; } static void emit_dst( struct vp_dst_register *dst, struct ureg reg, GLuint mask ) { dst->File = reg.file; dst->Index = reg.idx; /* allow zero as a shorthand for xyzw */ dst->WriteMask = mask ? mask : WRITEMASK_XYZW; dst->pad = 0; } static void debug_insn( struct vp_instruction *inst, const char *fn, GLuint line ) { #if DISASSEM static const char *last_fn; if (fn != last_fn) { last_fn = fn; _mesa_printf("%s:\n", fn); } _mesa_printf("%d:\t", line); _mesa_debug_vp_inst(1, inst); #endif } static void emit_op3fn(struct tnl_program *p, GLuint op, struct ureg dest, GLuint mask, struct ureg src0, struct ureg src1, struct ureg src2, const char *fn, GLuint line) { GLuint nr = p->program->Base.NumInstructions++; struct vp_instruction *inst = &p->program->Instructions[nr]; inst->Opcode = op; inst->StringPos = 0; inst->Data = 0; emit_arg( &inst->SrcReg[0], src0 ); emit_arg( &inst->SrcReg[1], src1 ); emit_arg( &inst->SrcReg[2], src2 ); emit_dst( &inst->DstReg, dest, mask ); debug_insn(inst, fn, line); } #define emit_op3(p, op, dst, mask, src0, src1, src2) \ emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__) #define emit_op2(p, op, dst, mask, src0, src1) \ emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__) #define emit_op1(p, op, dst, mask, src0) \ emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__) static struct ureg make_temp( struct tnl_program *p, struct ureg reg ) { if (reg.file == PROGRAM_TEMPORARY && !(p->temp_reserved & (1<eye_position)) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg modelview[4]; register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3, STATE_MATRIX_TRANSPOSE, modelview ); p->eye_position = reserve_temp(p); emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos); } return p->eye_position; } static struct ureg get_eye_position_normalized( struct tnl_program *p ) { if (is_undef(p->eye_position_normalized)) { struct ureg eye = get_eye_position(p); p->eye_position_normalized = reserve_temp(p); emit_normalize_vec3(p, p->eye_position_normalized, eye); } return p->eye_position_normalized; } static struct ureg get_eye_normal( struct tnl_program *p ) { if (is_undef(p->eye_normal)) { struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL ); struct ureg mvinv[3]; register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2, STATE_MATRIX_INVTRANS, mvinv ); p->eye_normal = reserve_temp(p); /* Transform to eye space: */ emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal ); /* Normalize/Rescale: */ if (p->ctx->Transform.Normalize) { emit_normalize_vec3( p, p->eye_normal, p->eye_normal ); } else if (p->ctx->Transform.RescaleNormals) { struct ureg rescale = register_param2(p, STATE_INTERNAL, STATE_NORMAL_SCALE); emit_op2( p, VP_OPCODE_MUL, p->eye_normal, 0, normal, swizzle1(rescale, X)); } } return p->eye_normal; } static void build_hpos( struct tnl_program *p ) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg hpos = register_output( p, VERT_RESULT_HPOS ); struct ureg mvp[4]; register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3, STATE_MATRIX_TRANSPOSE, mvp ); emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos ); } static GLuint material_attrib( GLuint side, GLuint property ) { return (_TNL_ATTRIB_MAT_FRONT_AMBIENT + (property - STATE_AMBIENT) * 2 + side); } static void set_material_flags( struct tnl_program *p ) { GLcontext *ctx = p->ctx; TNLcontext *tnl = TNL_CONTEXT(ctx); GLuint i; p->color_materials = 0; p->materials = 0; if (ctx->Light.ColorMaterialEnabled) { p->materials = p->color_materials = ctx->Light.ColorMaterialBitmask << _TNL_ATTRIB_MAT_FRONT_AMBIENT; } for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++) if (tnl->vb.AttribPtr[i]->stride) p->materials |= 1<color_materials & (1<materials & (1<materials & SCENE_COLOR_BITS(side)) { struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT); struct ureg material_emission = get_material(p, side, STATE_EMISSION); struct ureg material_ambient = get_material(p, side, STATE_AMBIENT); struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE); struct ureg tmp = make_temp(p, material_diffuse); emit_op3(p, VP_OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient, material_ambient, material_emission); return tmp; } else return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side ); } static struct ureg get_lightprod( struct tnl_program *p, GLuint light, GLuint side, GLuint property ) { GLuint attrib = material_attrib(side, property); if (p->materials & (1<SpotCutoff != 180.0F) { struct ureg spot_dir = register_param3(p, STATE_LIGHT, i, STATE_SPOT_DIRECTION); struct ureg spot = get_temp(p); struct ureg slt = get_temp(p); emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */ emit_op2(p, VP_OPCODE_DP3, spot, 0, negate(VPpli), spot_dir); emit_op2(p, VP_OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot); emit_op2(p, VP_OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W)); emit_op2(p, VP_OPCODE_MUL, att, 0, slt, spot); release_temp(p, spot); release_temp(p, slt); } /* Calculate distance attenuation: */ if (light->ConstantAttenuation != 1.0 || light->LinearAttenuation != 1.0 || light->QuadraticAttenuation != 1.0) { /* 1/d,d,d,1/d */ emit_op1(p, VP_OPCODE_RCP, dist, WRITEMASK_YZ, dist); /* 1,d,d*d,1/d */ emit_op2(p, VP_OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y)); /* 1/dist-atten */ emit_op2(p, VP_OPCODE_DP3, dist, 0, attenuation, dist); if (light->SpotCutoff != 180.0F) { /* dist-atten */ emit_op1(p, VP_OPCODE_RCP, dist, 0, dist); /* spot-atten * dist-atten */ emit_op2(p, VP_OPCODE_MUL, att, 0, dist, att); } else { /* dist-atten */ emit_op1(p, VP_OPCODE_RCP, att, 0, dist); } } return att; } /* Need to add some addtional parameters to allow lighting in object * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye * space lighting. */ static void build_lighting( struct tnl_program *p ) { GLcontext *ctx = p->ctx; const GLboolean twoside = ctx->Light.Model.TwoSide; const GLboolean separate = (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR); GLuint nr_lights = 0, count = 0; struct ureg normal = get_eye_normal(p); struct ureg lit = get_temp(p); struct ureg dots = get_temp(p); struct ureg _col0 = undef, _col1 = undef; struct ureg _bfc0 = undef, _bfc1 = undef; GLuint i; for (i = 0; i < MAX_LIGHTS; i++) if (ctx->Light.Light[i].Enabled) nr_lights++; set_material_flags(p); { struct ureg shininess = get_material(p, 0, STATE_SHININESS); emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X)); release_temp(p, shininess); _col0 = make_temp(p, get_scenecolor(p, 0)); if (separate) _col1 = make_temp(p, get_identity_param(p)); else _col1 = _col0; } if (twoside) { struct ureg shininess = get_material(p, 1, STATE_SHININESS); emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_Z, negate(swizzle1(shininess,X))); release_temp(p, shininess); _bfc0 = make_temp(p, get_scenecolor(p, 1)); if (separate) _bfc1 = make_temp(p, get_identity_param(p)); else _bfc1 = _bfc0; } for (i = 0; i < MAX_LIGHTS; i++) { struct gl_light *light = &ctx->Light.Light[i]; if (light->Enabled) { struct ureg half = undef; struct ureg att = undef, VPpli = undef; count++; if (light->EyePosition[3] == 0) { /* Can used precomputed constants in this case. * Attenuation never applies to infinite lights. */ VPpli = register_param3(p, STATE_LIGHT, i, STATE_POSITION_NORMALIZED); half = register_param3(p, STATE_LIGHT, i, STATE_HALF); } else { struct ureg Ppli = register_param3(p, STATE_LIGHT, i, STATE_POSITION); struct ureg V = get_eye_position(p); struct ureg dist = get_temp(p); VPpli = get_temp(p); half = get_temp(p); /* Calulate VPpli vector */ emit_op2(p, VP_OPCODE_SUB, VPpli, 0, Ppli, V); /* Normalize VPpli. The dist value also used in * attenuation below. */ emit_op2(p, VP_OPCODE_DP3, dist, 0, VPpli, VPpli); emit_op1(p, VP_OPCODE_RSQ, dist, 0, dist); emit_op2(p, VP_OPCODE_MUL, VPpli, 0, VPpli, dist); /* Calculate attenuation: */ if (light->SpotCutoff != 180.0 || light->ConstantAttenuation != 1.0 || light->LinearAttenuation != 1.0 || light->QuadraticAttenuation != 1.0) { att = calculate_light_attenuation(p, i, light, VPpli, dist); } /* Calculate viewer direction, or use infinite viewer: */ if (ctx->Light.Model.LocalViewer) { struct ureg eye_hat = get_eye_position_normalized(p); emit_op2(p, VP_OPCODE_SUB, half, 0, VPpli, eye_hat); } else { struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z); emit_op2(p, VP_OPCODE_ADD, half, 0, VPpli, z_dir); } emit_normalize_vec3(p, half, half); release_temp(p, dist); } /* Calculate dot products: */ emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli); emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_Y, normal, half); /* Front face lighting: */ { struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT); struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE); struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR); struct ureg res0, res1; emit_op1(p, VP_OPCODE_LIT, lit, 0, dots); if (!is_undef(att)) emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att); if (count == nr_lights) { if (separate) { res0 = register_output( p, VERT_RESULT_COL0 ); res1 = register_output( p, VERT_RESULT_COL1 ); } else { res0 = _col0; res1 = register_output( p, VERT_RESULT_COL0 ); } } else { res0 = _col0; res1 = _col1; } emit_op3(p, VP_OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0); emit_op3(p, VP_OPCODE_MAD, res0, 0, swizzle1(lit,Y), diffuse, _col0); emit_op3(p, VP_OPCODE_MAD, res1, 0, swizzle1(lit,Z), specular, _col1); release_temp(p, ambient); release_temp(p, diffuse); release_temp(p, specular); } /* Back face lighting: */ if (twoside) { struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT); struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE); struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR); struct ureg res0, res1; emit_op1(p, VP_OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z))); if (!is_undef(att)) emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att); if (count == nr_lights) { if (separate) { res0 = register_output( p, VERT_RESULT_BFC0 ); res1 = register_output( p, VERT_RESULT_BFC1 ); } else { res0 = _bfc0; res1 = register_output( p, VERT_RESULT_BFC0 ); } } else { res0 = _bfc0; res1 = _bfc1; } emit_op3(p, VP_OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0); emit_op3(p, VP_OPCODE_MAD, res0, 0, swizzle1(lit,Y), diffuse, _bfc0); emit_op3(p, VP_OPCODE_MAD, res1, 0, swizzle1(lit,Z), specular, _bfc1); release_temp(p, ambient); release_temp(p, diffuse); release_temp(p, specular); } release_temp(p, half); release_temp(p, VPpli); release_temp(p, att); } } release_temps( p ); } static void build_fog( struct tnl_program *p ) { GLcontext *ctx = p->ctx; TNLcontext *tnl = TNL_CONTEXT(ctx); struct ureg fog = register_output(p, VERT_RESULT_FOGC); struct ureg input; if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) { input = swizzle1(get_eye_position(p), Z); } else { input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X); } if (tnl->_DoVertexFog) { struct ureg params = register_param1(p, STATE_FOG_PARAMS); struct ureg tmp = get_temp(p); switch (ctx->Fog.Mode) { case GL_LINEAR: { struct ureg id = get_identity_param(p); emit_op2(p, VP_OPCODE_SUB, tmp, 0, swizzle1(params,Z), input); emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W)); emit_op2(p, VP_OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */ emit_op2(p, VP_OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W)); break; } case GL_EXP: emit_op1(p, VP_OPCODE_ABS, tmp, 0, input); emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X)); emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X, register_const1f(p, M_E), negate(tmp)); break; case GL_EXP2: emit_op2(p, VP_OPCODE_MUL, tmp, 0, input, swizzle1(params,X)); emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, tmp); emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X, register_const1f(p, M_E), negate(tmp)); break; } release_temp(p, tmp); } else { /* results = incoming fog coords (compute fog per-fragment later) * * KW: Is it really necessary to do anything in this case? */ emit_op1(p, VP_OPCODE_MOV, fog, WRITEMASK_X, input); } } static void build_reflect_texgen( struct tnl_program *p, struct ureg dest, GLuint writemask ) { struct ureg normal = get_eye_normal(p); struct ureg eye_hat = get_eye_position_normalized(p); struct ureg tmp = get_temp(p); /* n.u */ emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat); /* 2n.u */ emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp); /* (-2n.u)n + u */ emit_op3(p, VP_OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat); } static void build_sphere_texgen( struct tnl_program *p, struct ureg dest, GLuint writemask ) { struct ureg normal = get_eye_normal(p); struct ureg eye_hat = get_eye_position_normalized(p); struct ureg tmp = get_temp(p); struct ureg half = register_const1f(p, .5); struct ureg r = get_temp(p); struct ureg inv_m = get_temp(p); struct ureg id = get_identity_param(p); /* Could share the above calculations, but it would be * a fairly odd state for someone to set (both sphere and * reflection active for different texture coordinate * components. Of course - if two texture units enable * reflect and/or sphere, things start to tilt in favour * of seperating this out: */ /* n.u */ emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat); /* 2n.u */ emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp); /* (-2n.u)n + u */ emit_op3(p, VP_OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat); /* r + 0,0,1 */ emit_op2(p, VP_OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z)); /* rx^2 + ry^2 + (rz+1)^2 */ emit_op2(p, VP_OPCODE_DP3, tmp, 0, tmp, tmp); /* 2/m */ emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp); /* 1/m */ emit_op2(p, VP_OPCODE_MUL, inv_m, 0, tmp, swizzle1(half,X)); /* r/m + 1/2 */ emit_op3(p, VP_OPCODE_MAD, dest, writemask, r, inv_m, swizzle1(half,X)); release_temp(p, tmp); release_temp(p, r); release_temp(p, inv_m); } static void build_texture_transform( struct tnl_program *p ) { GLcontext *ctx = p->ctx; GLuint i, j; for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; GLuint texmat_enabled = ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i); struct ureg out = register_output(p, VERT_RESULT_TEX0 + i); if (texUnit->TexGenEnabled || texmat_enabled) { struct ureg out_texgen = undef; if (texUnit->TexGenEnabled) { GLuint copy_mask = 0; GLuint sphere_mask = 0; GLuint reflect_mask = 0; GLuint normal_mask = 0; GLuint modes[4]; if (texmat_enabled) out_texgen = get_temp(p); else out_texgen = out; modes[0] = texUnit->GenModeS; modes[1] = texUnit->GenModeT; modes[2] = texUnit->GenModeR; modes[3] = texUnit->GenModeQ; for (j = 0; j < 4; j++) { if (texUnit->TexGenEnabled & (1<VertexProgram._Enabled) return; if (!ctx->_TnlProgram) ctx->_TnlProgram = (struct vertex_program *) ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0); memset(&p, 0, sizeof(p)); p.ctx = ctx; p.program = ctx->_TnlProgram; p.eye_position = undef; p.eye_position_normalized = undef; p.eye_normal = undef; p.identity = undef; p.temp_flag = 0; p.temp_reserved = ~((1<Instructions; db_NumInstructions = p.program->Base.NumInstructions; p.program->Instructions = MALLOC(sizeof(struct vp_instruction) * 100); /* Initialize the arb_program struct */ p.program->Base.String = 0; p.program->Base.NumInstructions = p.program->Base.NumTemporaries = p.program->Base.NumParameters = p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0; if (p.program->Parameters) _mesa_free_parameters(p.program->Parameters); else p.program->Parameters = _mesa_new_parameter_list(); p.program->InputsRead = 0; p.program->OutputsWritten = 0; /* Emit the program, starting with modelviewproject: */ build_hpos(&p); /* Lighting calculations: */ if (ctx->Light.Enabled) build_lighting(&p); if (ctx->Fog.Enabled) build_fog(&p); if (ctx->Texture._TexGenEnabled || ctx->Texture._TexMatEnabled) build_texture_transform(&p); if (ctx->Point._Attenuated) build_pointsize(&p); /* Is there a need to copy inputs to outputs? The software * implementation might do this more efficiently by just assigning * the missing results to point at input arrays. */ if (/* tnl->vp_copy_inputs && */ (tnl->render_inputs & ~p.program->OutputsWritten)) { build_passthrough(&p, tnl->render_inputs); } /* Finish up: */ emit_op1(&p, VP_OPCODE_END, undef, 0, undef); /* Disassemble: */ if (DISASSEM) { _mesa_printf ("\n"); } /* Notify driver the fragment program has (actually) changed. */ if (db_Instructions == NULL || db_NumInstructions != p.program->Base.NumInstructions || memcmp(db_Instructions, p.program->Instructions, db_NumInstructions * sizeof(*db_Instructions)) != 0) { _mesa_printf("new program string\n"); ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB, &p.program->Base ); } FREE(db_Instructions); }