1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
|
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ast_to_hir.c
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
*
* During the conversion to HIR, the majority of the symantic checking is
* preformed on the program. This includes:
*
* * Symbol table management
* * Type checking
* * Function binding
*
* The majority of this work could be done during parsing, and the parser could
* probably generate HIR directly. However, this results in frequent changes
* to the parser code. Since we do not assume that every system this complier
* is built on will have Flex and Bison installed, we have to store the code
* generated by these tools in our version control system. In other parts of
* the system we've seen problems where a parser was changed but the generated
* code was not committed, merge conflicts where created because two developers
* had slightly different versions of Bison installed, etc.
*
* I have also noticed that running Bison generated parsers in GDB is very
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
* well 'print $1' in GDB.
*
* As a result, my preference is to put as little C code as possible in the
* parser (and lexer) sources.
*/
#include <stdio.h>
#include "main/imports.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ast.h"
#include "glsl_types.h"
#include "ir.h"
void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
struct simple_node *ptr;
_mesa_glsl_initialize_variables(instructions, state);
_mesa_glsl_initialize_constructors(instructions, state);
state->current_function = NULL;
foreach (ptr, & state->translation_unit) {
((ast_node *)ptr)->hir(instructions, state);
}
}
static const struct glsl_type *
arithmetic_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
bool multiply,
struct _mesa_glsl_parse_state *state)
{
/* From GLSL 1.50 spec, page 56:
*
* "The arithmetic binary operators add (+), subtract (-),
* multiply (*), and divide (/) operate on integer and
* floating-point scalars, vectors, and matrices."
*/
if (!type_a->is_numeric() || !type_b->is_numeric()) {
return glsl_error_type;
}
/* "If one operand is floating-point based and the other is
* not, then the conversions from Section 4.1.10 "Implicit
* Conversions" are applied to the non-floating-point-based operand."
*
* This conversion was added in GLSL 1.20. If the compilation mode is
* GLSL 1.10, the conversion is skipped.
*/
if (state->language_version >= 120) {
if ((type_a->base_type == GLSL_TYPE_FLOAT)
&& (type_b->base_type != GLSL_TYPE_FLOAT)) {
} else if ((type_a->base_type != GLSL_TYPE_FLOAT)
&& (type_b->base_type == GLSL_TYPE_FLOAT)) {
}
}
/* "If the operands are integer types, they must both be signed or
* both be unsigned."
*
* From this rule and the preceeding conversion it can be inferred that
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
* The is_numeric check above already filtered out the case where either
* type is not one of these, so now the base types need only be tested for
* equality.
*/
if (type_a->base_type != type_b->base_type) {
return glsl_error_type;
}
/* "All arithmetic binary operators result in the same fundamental type
* (signed integer, unsigned integer, or floating-point) as the
* operands they operate on, after operand type conversion. After
* conversion, the following cases are valid
*
* * The two operands are scalars. In this case the operation is
* applied, resulting in a scalar."
*/
if (type_a->is_scalar() && type_b->is_scalar())
return type_a;
/* "* One operand is a scalar, and the other is a vector or matrix.
* In this case, the scalar operation is applied independently to each
* component of the vector or matrix, resulting in the same size
* vector or matrix."
*/
if (type_a->is_scalar()) {
if (!type_b->is_scalar())
return type_b;
} else if (type_b->is_scalar()) {
return type_a;
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
* handled.
*/
assert(!type_a->is_scalar());
assert(!type_b->is_scalar());
/* "* The two operands are vectors of the same size. In this case, the
* operation is done component-wise resulting in the same size
* vector."
*/
if (type_a->is_vector() && type_b->is_vector()) {
return (type_a == type_b) ? type_a : glsl_error_type;
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
* <vector, vector> have been handled. At least one of the operands must
* be matrix. Further, since there are no integer matrix types, the base
* type of both operands must be float.
*/
assert(type_a->is_matrix() || type_b->is_matrix());
assert(type_a->base_type == GLSL_TYPE_FLOAT);
assert(type_b->base_type == GLSL_TYPE_FLOAT);
/* "* The operator is add (+), subtract (-), or divide (/), and the
* operands are matrices with the same number of rows and the same
* number of columns. In this case, the operation is done component-
* wise resulting in the same size matrix."
* * The operator is multiply (*), where both operands are matrices or
* one operand is a vector and the other a matrix. A right vector
* operand is treated as a column vector and a left vector operand as a
* row vector. In all these cases, it is required that the number of
* columns of the left operand is equal to the number of rows of the
* right operand. Then, the multiply (*) operation does a linear
* algebraic multiply, yielding an object that has the same number of
* rows as the left operand and the same number of columns as the right
* operand. Section 5.10 "Vector and Matrix Operations" explains in
* more detail how vectors and matrices are operated on."
*/
if (! multiply) {
return (type_a == type_b) ? type_a : glsl_error_type;
} else {
if (type_a->is_matrix() && type_b->is_matrix()) {
/* Matrix multiply. The columns of A must match the rows of B. Given
* the other previously tested constraints, this means the vector type
* of a row from A must be the same as the vector type of a column from
* B.
*/
if (type_a->row_type() == type_b->column_type()) {
/* The resulting matrix has the number of columns of matrix B and
* the number of rows of matrix A. We get the row count of A by
* looking at the size of a vector that makes up a column. The
* transpose (size of a row) is done for B.
*/
return
glsl_type::get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
type_b->row_type()->vector_elements);
}
} else if (type_a->is_matrix()) {
/* A is a matrix and B is a column vector. Columns of A must match
* rows of B. Given the other previously tested constraints, this
* means the vector type of a row from A must be the same as the
* vector the type of B.
*/
if (type_a->row_type() == type_b)
return type_b;
} else {
assert(type_b->is_matrix());
/* A is a row vector and B is a matrix. Columns of A must match rows
* of B. Given the other previously tested constraints, this means
* the type of A must be the same as the vector type of a column from
* B.
*/
if (type_a == type_b->column_type())
return type_a;
}
}
/* "All other cases are illegal."
*/
return glsl_error_type;
}
static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type *type)
{
/* From GLSL 1.50 spec, page 57:
*
* "The arithmetic unary operators negate (-), post- and pre-increment
* and decrement (-- and ++) operate on integer or floating-point
* values (including vectors and matrices). All unary operators work
* component-wise on their operands. These result with the same type
* they operated on."
*/
if (!is_numeric_base_type(type->base_type))
return glsl_error_type;
return type;
}
static const struct glsl_type *
modulus_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b)
{
/* From GLSL 1.50 spec, page 56:
* "The operator modulus (%) operates on signed or unsigned integers or
* integer vectors. The operand types must both be signed or both be
* unsigned."
*/
if (! is_integer_base_type(type_a->base_type)
|| ! is_integer_base_type(type_b->base_type)
|| (type_a->base_type != type_b->base_type)) {
return glsl_error_type;
}
/* "The operands cannot be vectors of differing size. If one operand is
* a scalar and the other vector, then the scalar is applied component-
* wise to the vector, resulting in the same type as the vector. If both
* are vectors of the same size, the result is computed component-wise."
*/
if (type_a->is_vector()) {
if (!type_b->is_vector()
|| (type_a->vector_elements == type_b->vector_elements))
return type_a;
} else
return type_b;
/* "The operator modulus (%) is not defined for any other data types
* (non-integer types)."
*/
return glsl_error_type;
}
static const struct glsl_type *
relational_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
struct _mesa_glsl_parse_state *state)
{
/* From GLSL 1.50 spec, page 56:
* "The relational operators greater than (>), less than (<), greater
* than or equal (>=), and less than or equal (<=) operate only on
* scalar integer and scalar floating-point expressions."
*/
if (! is_numeric_base_type(type_a->base_type)
|| ! is_numeric_base_type(type_b->base_type)
|| !type_a->is_scalar()
|| !type_b->is_scalar())
return glsl_error_type;
/* "Either the operands' types must match, or the conversions from
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
* operand, after which the types must match."
*
* This conversion was added in GLSL 1.20. If the compilation mode is
* GLSL 1.10, the conversion is skipped.
*/
if (state->language_version >= 120) {
if ((type_a->base_type == GLSL_TYPE_FLOAT)
&& (type_b->base_type != GLSL_TYPE_FLOAT)) {
/* FINISHME: Generate the implicit type conversion. */
} else if ((type_a->base_type != GLSL_TYPE_FLOAT)
&& (type_b->base_type == GLSL_TYPE_FLOAT)) {
/* FINISHME: Generate the implicit type conversion. */
}
}
if (type_a->base_type != type_b->base_type)
return glsl_error_type;
/* "The result is scalar Boolean."
*/
return glsl_bool_type;
}
/**
* Validates that a value can be assigned to a location with a specified type
*
* Validates that \c rhs can be assigned to some location. If the types are
* not an exact match but an automatic conversion is possible, \c rhs will be
* converted.
*
* \return
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
* Otherwise the actual RHS to be assigned will be returned. This may be
* \c rhs, or it may be \c rhs after some type conversion.
*
* \note
* In addition to being used for assignments, this function is used to
* type-check return values.
*/
ir_instruction *
validate_assignment(const glsl_type *lhs_type, ir_instruction *rhs)
{
const glsl_type *const rhs_type = rhs->type;
/* If there is already some error in the RHS, just return it. Anything
* else will lead to an avalanche of error message back to the user.
*/
if (rhs_type->is_error())
return rhs;
/* FINISHME: For GLSL 1.10, check that the types are not arrays. */
/* If the types are identical, the assignment can trivially proceed.
*/
if (rhs_type == lhs_type)
return rhs;
/* FINISHME: Check for and apply automatic conversions. */
return NULL;
}
ir_instruction *
ast_node::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void) instructions;
(void) state;
return NULL;
}
ir_instruction *
ast_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
static const int operations[AST_NUM_OPERATORS] = {
-1, /* ast_assign doesn't convert to ir_expression. */
-1, /* ast_plus doesn't convert to ir_expression. */
ir_unop_neg,
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
ir_binop_mod,
ir_binop_lshift,
ir_binop_rshift,
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_equal,
ir_binop_nequal,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
ir_unop_bit_not,
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_unop_logic_not,
/* Note: The following block of expression types actually convert
* to multiple IR instructions.
*/
ir_binop_mul, /* ast_mul_assign */
ir_binop_div, /* ast_div_assign */
ir_binop_mod, /* ast_mod_assign */
ir_binop_add, /* ast_add_assign */
ir_binop_sub, /* ast_sub_assign */
ir_binop_lshift, /* ast_ls_assign */
ir_binop_rshift, /* ast_rs_assign */
ir_binop_bit_and, /* ast_and_assign */
ir_binop_bit_xor, /* ast_xor_assign */
ir_binop_bit_or, /* ast_or_assign */
-1, /* ast_conditional doesn't convert to ir_expression. */
-1, /* ast_pre_inc doesn't convert to ir_expression. */
-1, /* ast_pre_dec doesn't convert to ir_expression. */
-1, /* ast_post_inc doesn't convert to ir_expression. */
-1, /* ast_post_dec doesn't convert to ir_expression. */
-1, /* ast_field_selection doesn't conv to ir_expression. */
-1, /* ast_array_index doesn't convert to ir_expression. */
-1, /* ast_function_call doesn't conv to ir_expression. */
-1, /* ast_identifier doesn't convert to ir_expression. */
-1, /* ast_int_constant doesn't convert to ir_expression. */
-1, /* ast_uint_constant doesn't conv to ir_expression. */
-1, /* ast_float_constant doesn't conv to ir_expression. */
-1, /* ast_bool_constant doesn't conv to ir_expression. */
-1, /* ast_sequence doesn't convert to ir_expression. */
};
ir_instruction *result = NULL;
ir_instruction *op[2];
struct simple_node op_list;
const struct glsl_type *type = glsl_error_type;
bool error_emitted = false;
YYLTYPE loc;
loc = this->get_location();
make_empty_list(& op_list);
switch (this->oper) {
case ast_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
error_emitted = ((op[0]->type == glsl_error_type)
|| (op[1]->type == glsl_error_type));
type = op[0]->type;
if (!error_emitted) {
YYLTYPE loc;
/* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
loc = this->subexpressions[0]->get_location();
const ir_dereference *const ref = op[0]->as_dereference();
if (ref == NULL) {
_mesa_glsl_error(& loc, state, "invalid lvalue in assignment");
error_emitted = true;
type = glsl_error_type;
} else {
const ir_variable *const var = (ir_variable *) ref->var;
if (var != NULL && var->read_only) {
_mesa_glsl_error(& loc, state, "cannot assign to read-only "
"variable `%s'", var->name);
error_emitted = true;
type = glsl_error_type;
}
}
}
ir_instruction *rhs = validate_assignment(op[0]->type, op[1]);
if (rhs == NULL) {
type = glsl_error_type;
rhs = op[1];
}
ir_instruction *tmp = new ir_assignment(op[0], op[1], NULL);
instructions->push_tail(tmp);
result = op[0];
break;
}
case ast_plus:
op[0] = this->subexpressions[0]->hir(instructions, state);
error_emitted = (op[0]->type == glsl_error_type);
if (type == glsl_error_type)
op[0]->type = type;
result = op[0];
break;
case ast_neg:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type);
error_emitted = (op[0]->type == glsl_error_type);
result = new ir_expression(operations[this->oper], type,
op[0], NULL);
break;
case ast_add:
case ast_sub:
case ast_mul:
case ast_div:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0]->type, op[1]->type,
(this->oper == ast_mul),
state);
result = new ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_mod:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
error_emitted = ((op[0]->type == glsl_error_type)
|| (op[1]->type == glsl_error_type));
type = modulus_result_type(op[0]->type, op[1]->type);
assert(operations[this->oper] == ir_binop_mod);
result = new ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_lshift:
case ast_rshift:
/* FINISHME: Implement bit-shift operators. */
break;
case ast_less:
case ast_greater:
case ast_lequal:
case ast_gequal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
error_emitted = ((op[0]->type == glsl_error_type)
|| (op[1]->type == glsl_error_type));
type = relational_result_type(op[0]->type, op[1]->type, state);
/* The relational operators must either generate an error or result
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
*/
assert((type == glsl_error_type)
|| ((type->base_type == GLSL_TYPE_BOOL)
&& type->is_scalar()));
result = new ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_nequal:
case ast_equal:
/* FINISHME: Implement equality operators. */
break;
case ast_bit_and:
case ast_bit_xor:
case ast_bit_or:
case ast_bit_not:
/* FINISHME: Implement bit-wise operators. */
break;
case ast_logic_and:
case ast_logic_xor:
case ast_logic_or:
case ast_logic_not:
/* FINISHME: Implement logical operators. */
break;
case ast_mul_assign:
case ast_div_assign:
case ast_add_assign:
case ast_sub_assign: {
struct ir_instruction *temp_rhs;
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
error_emitted = ((op[0]->type == glsl_error_type)
|| (op[1]->type == glsl_error_type));
type = arithmetic_result_type(op[0]->type, op[1]->type,
(this->oper == ast_mul_assign),
state);
temp_rhs = new ir_expression(operations[this->oper], type,
op[0], op[1]);
/* FINISHME: This is copied from ast_assign above. It should
* FINISHME: probably be consolidated.
*/
error_emitted = ((op[0]->type == glsl_error_type)
|| (temp_rhs->type == glsl_error_type));
type = op[0]->type;
if (!error_emitted) {
YYLTYPE loc;
/* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
loc = this->subexpressions[0]->get_location();
const ir_dereference *const ref = op[0]->as_dereference();
if (ref == NULL) {
_mesa_glsl_error(& loc, state, "invalid lvalue in assignment");
error_emitted = true;
type = glsl_error_type;
} else {
const ir_variable *const var = (ir_variable *) ref->var;
if (var != NULL && var->read_only) {
_mesa_glsl_error(& loc, state, "cannot assign to read-only "
"variable `%s'", var->name);
error_emitted = true;
type = glsl_error_type;
}
}
}
ir_instruction *rhs = validate_assignment(op[0]->type, temp_rhs);
if (rhs == NULL) {
type = glsl_error_type;
rhs = temp_rhs;
}
ir_instruction *tmp = new ir_assignment(op[0], rhs, NULL);
instructions->push_tail(tmp);
/* GLSL 1.10 does not allow array assignment. However, we don't have to
* explicitly test for this because none of the binary expression
* operators allow array operands either.
*/
result = op[0];
break;
}
case ast_mod_assign:
case ast_ls_assign:
case ast_rs_assign:
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign:
case ast_conditional:
case ast_pre_inc:
case ast_pre_dec:
case ast_post_inc:
case ast_post_dec:
break;
case ast_field_selection:
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
type = result->type;
break;
case ast_array_index:
break;
case ast_function_call:
/* Should *NEVER* get here. ast_function_call should always be handled
* by ast_function_expression::hir.
*/
assert(0);
break;
case ast_identifier: {
/* ast_identifier can appear several places in a full abstract syntax
* tree. This particular use must be at location specified in the grammar
* as 'variable_identifier'.
*/
ir_variable *var =
state->symbols->get_variable(this->primary_expression.identifier);
result = new ir_dereference(var);
if (var != NULL) {
type = result->type;
} else {
_mesa_glsl_error(& loc, state, "`%s' undeclared",
this->primary_expression.identifier);
error_emitted = true;
}
break;
}
case ast_int_constant:
type = glsl_int_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_uint_constant:
type = glsl_uint_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_float_constant:
type = glsl_float_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_bool_constant:
type = glsl_bool_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_sequence: {
struct simple_node *ptr;
/* It should not be possible to generate a sequence in the AST without
* any expressions in it.
*/
assert(!is_empty_list(&this->expressions));
/* The r-value of a sequence is the last expression in the sequence. If
* the other expressions in the sequence do not have side-effects (and
* therefore add instructions to the instruction list), they get dropped
* on the floor.
*/
foreach (ptr, &this->expressions)
result = ((ast_node *)ptr)->hir(instructions, state);
type = result->type;
/* Any errors should have already been emitted in the loop above.
*/
error_emitted = true;
break;
}
}
if (is_error_type(type) && !error_emitted)
_mesa_glsl_error(& loc, state, "type mismatch");
return result;
}
ir_instruction *
ast_expression_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* It is possible to have expression statements that don't have an
* expression. This is the solitary semicolon:
*
* for (i = 0; i < 5; i++)
* ;
*
* In this case the expression will be NULL. Test for NULL and don't do
* anything in that case.
*/
if (expression != NULL)
expression->hir(instructions, state);
/* Statements do not have r-values.
*/
return NULL;
}
ir_instruction *
ast_compound_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
struct simple_node *ptr;
if (new_scope)
state->symbols->push_scope();
foreach (ptr, &statements)
((ast_node *)ptr)->hir(instructions, state);
if (new_scope)
state->symbols->pop_scope();
/* Compound statements do not have r-values.
*/
return NULL;
}
static const struct glsl_type *
type_specifier_to_glsl_type(const struct ast_type_specifier *spec,
const char **name,
struct _mesa_glsl_parse_state *state)
{
struct glsl_type *type;
if (spec->type_specifier == ast_struct) {
/* FINISHME: Handle annonymous structures. */
type = NULL;
} else {
type = state->symbols->get_type(spec->type_name);
*name = spec->type_name;
/* FINISHME: Handle array declarations. Note that this requires complete
* FINISHME: handling of constant expressions.
*/
}
return type;
}
static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
struct ir_variable *var,
struct _mesa_glsl_parse_state *state)
{
if (qual->invariant)
var->invariant = 1;
/* FINISHME: Mark 'in' variables at global scope as read-only. */
if (qual->constant || qual->attribute || qual->uniform
|| (qual->varying && (state->target == fragment_shader)))
var->read_only = 1;
if (qual->centroid)
var->centroid = 1;
if (qual->in && qual->out)
var->mode = ir_var_inout;
else if (qual->attribute || qual->in
|| (qual->varying && (state->target == fragment_shader)))
var->mode = ir_var_in;
else if (qual->out || (qual->varying && (state->target == vertex_shader)))
var->mode = ir_var_out;
else if (qual->uniform)
var->mode = ir_var_uniform;
else
var->mode = ir_var_auto;
if (qual->flat)
var->interpolation = ir_var_flat;
else if (qual->noperspective)
var->interpolation = ir_var_noperspective;
else
var->interpolation = ir_var_smooth;
}
ir_instruction *
ast_declarator_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
struct simple_node *ptr;
const struct glsl_type *decl_type;
const char *type_name = NULL;
/* FINISHME: Handle vertex shader "invariant" declarations that do not
* FINISHME: include a type. These re-declare built-in variables to be
* FINISHME: invariant.
*/
decl_type = type_specifier_to_glsl_type(this->type->specifier,
& type_name, state);
foreach (ptr, &this->declarations) {
struct ast_declaration *const decl = (struct ast_declaration * )ptr;
const struct glsl_type *var_type;
struct ir_variable *var;
/* FINISHME: Emit a warning if a variable declaration shadows a
* FINISHME: declaration at a higher scope.
*/
if ((decl_type == NULL) || decl_type->is_void()) {
YYLTYPE loc;
loc = this->get_location();
if (type_name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
type_name, decl->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
decl->identifier);
}
continue;
}
if (decl->is_array) {
/* FINISHME: Handle array declarations. Note that this requires
* FINISHME: complete handling of constant expressions.
*/
/* FINISHME: Reject delcarations of multidimensional arrays. */
} else {
var_type = decl_type;
}
var = new ir_variable(var_type, decl->identifier);
/* FINISHME: Variables that are attribute, uniform, varying, in, or
* FINISHME: out varibles must be declared either at global scope or
* FINISHME: in a parameter list (in and out only).
*/
apply_type_qualifier_to_variable(& this->type->qualifier, var, state);
/* Attempt to add the variable to the symbol table. If this fails, it
* means the variable has already been declared at this scope.
*/
if (state->symbols->name_declared_this_scope(decl->identifier)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "`%s' redeclared",
decl->identifier);
continue;
}
const bool added_variable =
state->symbols->add_variable(decl->identifier, var);
assert(added_variable);
instructions->push_tail(var);
/* FINISHME: Process the declaration initializer. */
}
/* Variable declarations do not have r-values.
*/
return NULL;
}
ir_instruction *
ast_parameter_declarator::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
const struct glsl_type *type;
const char *name = NULL;
type = type_specifier_to_glsl_type(this->type->specifier, & name, state);
if (type == NULL) {
YYLTYPE loc = this->get_location();
if (name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
name, this->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
this->identifier);
}
type = glsl_error_type;
}
ir_variable *var = new ir_variable(type, this->identifier);
/* FINISHME: Handle array declarations. Note that this requires
* FINISHME: complete handling of constant expressions.
*/
/* Apply any specified qualifiers to the parameter declaration. Note that
* for function parameters the default mode is 'in'.
*/
apply_type_qualifier_to_variable(& this->type->qualifier, var, state);
if (var->mode == ir_var_auto)
var->mode = ir_var_in;
instructions->push_tail(var);
/* Parameter declarations do not have r-values.
*/
return NULL;
}
static void
ast_function_parameters_to_hir(struct simple_node *ast_parameters,
exec_list *ir_parameters,
struct _mesa_glsl_parse_state *state)
{
struct simple_node *ptr;
foreach (ptr, ast_parameters) {
((ast_node *)ptr)->hir(ir_parameters, state);
}
}
static bool
parameter_lists_match(exec_list *list_a, exec_list *list_b)
{
exec_list_iterator iter_a = list_a->iterator();
exec_list_iterator iter_b = list_b->iterator();
while (iter_a.has_next()) {
/* If all of the parameters from the other parameter list have been
* exhausted, the lists have different length and, by definition,
* do not match.
*/
if (!iter_b.has_next())
return false;
/* If the types of the parameters do not match, the parameters lists
* are different.
*/
/* FINISHME */
iter_a.next();
iter_b.next();
}
return true;
}
ir_instruction *
ast_function_definition::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
ir_label *label;
ir_function_signature *signature = NULL;
ir_function *f = NULL;
exec_list parameters;
/* Convert the list of function parameters to HIR now so that they can be
* used below to compare this function's signature with previously seen
* signatures for functions with the same name.
*/
ast_function_parameters_to_hir(& this->prototype->parameters, & parameters,
state);
const char *return_type_name;
const glsl_type *return_type =
type_specifier_to_glsl_type(this->prototype->return_type->specifier,
& return_type_name, state);
assert(return_type != NULL);
/* Verify that this function's signature either doesn't match a previously
* seen signature for a function with the same name, or, if a match is found,
* that the previously seen signature does not have an associated definition.
*/
const char *const name = this->prototype->identifier;
f = state->symbols->get_function(name);
if (f != NULL) {
foreach_iter(exec_list_iterator, iter, f->signatures) {
signature = (struct ir_function_signature *) iter.get();
/* Compare the parameter list of the function being defined to the
* existing function. If the parameter lists match, then the return
* type must also match and the existing function must not have a
* definition.
*/
if (parameter_lists_match(& parameters, & signature->parameters)) {
/* FINISHME: Compare return types. */
if (signature->definition != NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
signature = NULL;
break;
}
}
signature = NULL;
}
} else if (state->symbols->name_declared_this_scope(name)) {
/* This function name shadows a non-function use of the same name.
*/
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
"non-function", name);
signature = NULL;
} else {
f = new ir_function(name);
state->symbols->add_function(f->name, f);
}
/* Finish storing the information about this new function in its signature.
*/
if (signature == NULL) {
signature = new ir_function_signature(return_type);
f->signatures.push_tail(signature);
} else {
/* Destroy all of the previous parameter information. The previous
* parameter information comes from the function prototype, and it can
* either include invalid parameter names or may not have names at all.
*/
foreach_iter(exec_list_iterator, iter, signature->parameters) {
assert(((ir_instruction *) iter.get())->as_variable() != NULL);
iter.remove();
delete iter.get();
}
}
assert(state->current_function == NULL);
state->current_function = signature;
ast_function_parameters_to_hir(& this->prototype->parameters,
& signature->parameters,
state);
/* FINISHME: Set signature->return_type */
label = new ir_label(name);
if (signature->definition == NULL) {
signature->definition = label;
}
instructions->push_tail(label);
/* Add the function parameters to the symbol table. During this step the
* parameter declarations are also moved from the temporary "parameters" list
* to the instruction list. There are other more efficient ways to do this,
* but they involve ugly linked-list gymnastics.
*/
state->symbols->push_scope();
foreach_iter(exec_list_iterator, iter, parameters) {
ir_variable *const var = (ir_variable *) iter.get();
assert(((ir_instruction *) var)->as_variable() != NULL);
iter.remove();
instructions->push_tail(var);
/* The only way a parameter would "exist" is if two parameters have
* the same name.
*/
if (state->symbols->name_declared_this_scope(var->name)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
} else {
state->symbols->add_variable(var->name, var);
}
}
/* Convert the body of the function to HIR, and append the resulting
* instructions to the list that currently consists of the function label
* and the function parameters.
*/
this->body->hir(instructions, state);
state->symbols->pop_scope();
assert(state->current_function == signature);
state->current_function = NULL;
/* Function definitions do not have r-values.
*/
return NULL;
}
ir_instruction *
ast_jump_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (mode == ast_return) {
ir_return *inst;
if (opt_return_value) {
/* FINISHME: Make sure the enclosing function has a non-void return
* FINISHME: type.
*/
ir_expression *const ret = (ir_expression *)
opt_return_value->hir(instructions, state);
assert(ret != NULL);
/* FINISHME: Make sure the type of the return value matches the return
* FINISHME: type of the enclosing function.
*/
inst = new ir_return(ret);
} else {
/* FINISHME: Make sure the enclosing function has a void return type.
*/
inst = new ir_return;
}
instructions->push_tail(inst);
}
/* Jump instructions do not have r-values.
*/
return NULL;
}
|