summaryrefslogtreecommitdiff
path: root/src/glu/sgi/libtess/render.c
blob: c2b12b35c3aee28793981907052e3c7dfbccbc6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
** 
** http://oss.sgi.com/projects/FreeB
** 
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
** 
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
** 
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
*/
/*
** Author: Eric Veach, July 1994.
**
*/

#include "gluos.h"
#include <assert.h>
#include <stddef.h>
#include "mesh.h"
#include "tess.h"
#include "render.h"

#define TRUE 1
#define FALSE 0

/* This structure remembers the information we need about a primitive
 * to be able to render it later, once we have determined which
 * primitive is able to use the most triangles.
 */
struct FaceCount {
  long		size;		/* number of triangles used */
  GLUhalfEdge	*eStart;	/* edge where this primitive starts */
  void		(*render)(GLUtesselator *, GLUhalfEdge *, long);
                                /* routine to render this primitive */
};

static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );

static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
			    long size );

static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );



/************************ Strips and Fans decomposition ******************/

/* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
 * fans, strips, and separate triangles.  A substantial effort is made
 * to use as few rendering primitives as possible (ie. to make the fans
 * and strips as large as possible).
 *
 * The rendering output is provided as callbacks (see the api).
 */
void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
{
  GLUface *f;

  /* Make a list of separate triangles so we can render them all at once */
  tess->lonelyTriList = NULL;

  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
    f->marked = FALSE;
  }
  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {

    /* We examine all faces in an arbitrary order.  Whenever we find
     * an unprocessed face F, we output a group of faces including F
     * whose size is maximum.
     */
    if( f->inside && ! f->marked ) {
      RenderMaximumFaceGroup( tess, f );
      assert( f->marked );
    }
  }
  if( tess->lonelyTriList != NULL ) {
    RenderLonelyTriangles( tess, tess->lonelyTriList );
    tess->lonelyTriList = NULL;
  }
}


static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
{
  /* We want to find the largest triangle fan or strip of unmarked faces
   * which includes the given face fOrig.  There are 3 possible fans
   * passing through fOrig (one centered at each vertex), and 3 possible
   * strips (one for each CCW permutation of the vertices).  Our strategy
   * is to try all of these, and take the primitive which uses the most
   * triangles (a greedy approach).
   */
  GLUhalfEdge *e = fOrig->anEdge;
  struct FaceCount max, newFace;

  max.size = 1;
  max.eStart = e;
  max.render = &RenderTriangle;

  if( ! tess->flagBoundary ) {
    newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
    newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
    newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }

    newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
    newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
    newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
  }
  (*(max.render))( tess, max.eStart, max.size );
}


/* Macros which keep track of faces we have marked temporarily, and allow
 * us to backtrack when necessary.  With triangle fans, this is not
 * really necessary, since the only awkward case is a loop of triangles
 * around a single origin vertex.  However with strips the situation is
 * more complicated, and we need a general tracking method like the
 * one here.
 */
#define Marked(f)	(! (f)->inside || (f)->marked)

#define AddToTrail(f,t)	((f)->trail = (t), (t) = (f), (f)->marked = TRUE)

#define FreeTrail(t)	if( 1 ) { \
			  while( (t) != NULL ) { \
			    (t)->marked = FALSE; t = (t)->trail; \
			  } \
			} else /* absorb trailing semicolon */



static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
{
  /* eOrig->Lface is the face we want to render.  We want to find the size
   * of a maximal fan around eOrig->Org.  To do this we just walk around
   * the origin vertex as far as possible in both directions.
   */
  struct FaceCount newFace = { 0, NULL, &RenderFan };
  GLUface *trail = NULL;
  GLUhalfEdge *e;

  for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
    AddToTrail( e->Lface, trail );
    ++newFace.size;
  }
  for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
    AddToTrail( e->Rface, trail );
    ++newFace.size;
  }
  newFace.eStart = e;
  /*LINTED*/
  FreeTrail( trail );
  return newFace;
}


#define IsEven(n)	(((n) & 1) == 0)

static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
{
  /* Here we are looking for a maximal strip that contains the vertices
   * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
   * reverse, such that all triangles are oriented CCW).
   *
   * Again we walk forward and backward as far as possible.  However for
   * strips there is a twist: to get CCW orientations, there must be
   * an *even* number of triangles in the strip on one side of eOrig.
   * We walk the strip starting on a side with an even number of triangles;
   * if both side have an odd number, we are forced to shorten one side.
   */
  struct FaceCount newFace = { 0, NULL, &RenderStrip };
  long headSize = 0, tailSize = 0;
  GLUface *trail = NULL;
  GLUhalfEdge *e, *eTail, *eHead;

  for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
    AddToTrail( e->Lface, trail );
    ++tailSize;
    e = e->Dprev;
    if( Marked( e->Lface )) break;
    AddToTrail( e->Lface, trail );
  }
  eTail = e;

  for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
    AddToTrail( e->Rface, trail );
    ++headSize;
    e = e->Oprev;
    if( Marked( e->Rface )) break;
    AddToTrail( e->Rface, trail );
  }
  eHead = e;

  newFace.size = tailSize + headSize;
  if( IsEven( tailSize )) {
    newFace.eStart = eTail->Sym;
  } else if( IsEven( headSize )) {
    newFace.eStart = eHead;
  } else {
    /* Both sides have odd length, we must shorten one of them.  In fact,
     * we must start from eHead to guarantee inclusion of eOrig->Lface.
     */
    --newFace.size;
    newFace.eStart = eHead->Onext;
  }
  /*LINTED*/
  FreeTrail( trail );
  return newFace;
}


static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
{
  /* Just add the triangle to a triangle list, so we can render all
   * the separate triangles at once.
   */
  assert( size == 1 );
  AddToTrail( e->Lface, tess->lonelyTriList );
}


static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
{
  /* Now we render all the separate triangles which could not be
   * grouped into a triangle fan or strip.
   */
  GLUhalfEdge *e;
  int newState;
  int edgeState = -1;	/* force edge state output for first vertex */

  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );

  for( ; f != NULL; f = f->trail ) {
    /* Loop once for each edge (there will always be 3 edges) */

    e = f->anEdge;
    do {
      if( tess->flagBoundary ) {
	/* Set the "edge state" to TRUE just before we output the
	 * first vertex of each edge on the polygon boundary.
	 */
	newState = ! e->Rface->inside;
	if( edgeState != newState ) {
	  edgeState = newState;
          CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
	}
      }
      CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );

      e = e->Lnext;
    } while( e != f->anEdge );
  }
  CALL_END_OR_END_DATA();
}


static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
{
  /* Render as many CCW triangles as possible in a fan starting from
   * edge "e".  The fan *should* contain exactly "size" triangles
   * (otherwise we've goofed up somewhere).
   */
  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN ); 
  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data ); 
  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data ); 

  while( ! Marked( e->Lface )) {
    e->Lface->marked = TRUE;
    --size;
    e = e->Onext;
    CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data ); 
  }

  assert( size == 0 );
  CALL_END_OR_END_DATA();
}


static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
{
  /* Render as many CCW triangles as possible in a strip starting from
   * edge "e".  The strip *should* contain exactly "size" triangles
   * (otherwise we've goofed up somewhere).
   */
  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data ); 
  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data ); 

  while( ! Marked( e->Lface )) {
    e->Lface->marked = TRUE;
    --size;
    e = e->Dprev;
    CALL_VERTEX_OR_VERTEX_DATA( e->Org->data ); 
    if( Marked( e->Lface )) break;

    e->Lface->marked = TRUE;
    --size;
    e = e->Onext;
    CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data ); 
  }

  assert( size == 0 );
  CALL_END_OR_END_DATA();
}


/************************ Boundary contour decomposition ******************/

/* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
 * contour for each face marked "inside".  The rendering output is
 * provided as callbacks (see the api).
 */
void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
{
  GLUface *f;
  GLUhalfEdge *e;

  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
    if( f->inside ) {
      CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
      e = f->anEdge;
      do {
        CALL_VERTEX_OR_VERTEX_DATA( e->Org->data ); 
	e = e->Lnext;
      } while( e != f->anEdge );
      CALL_END_OR_END_DATA();
    }
  }
}


/************************ Quick-and-dirty decomposition ******************/

#define SIGN_INCONSISTENT 2

static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
/*
 * If check==FALSE, we compute the polygon normal and place it in norm[].
 * If check==TRUE, we check that each triangle in the fan from v0 has a
 * consistent orientation with respect to norm[].  If triangles are
 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
 * are degenerate return 0; otherwise (no consistent orientation) return
 * SIGN_INCONSISTENT.
 */
{
  CachedVertex *v0 = tess->cache;
  CachedVertex *vn = v0 + tess->cacheCount;
  CachedVertex *vc;
  GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
  int sign = 0;

  /* Find the polygon normal.  It is important to get a reasonable
   * normal even when the polygon is self-intersecting (eg. a bowtie).
   * Otherwise, the computed normal could be very tiny, but perpendicular
   * to the true plane of the polygon due to numerical noise.  Then all
   * the triangles would appear to be degenerate and we would incorrectly
   * decompose the polygon as a fan (or simply not render it at all).
   *
   * We use a sum-of-triangles normal algorithm rather than the more
   * efficient sum-of-trapezoids method (used in CheckOrientation()
   * in normal.c).  This lets us explicitly reverse the signed area
   * of some triangles to get a reasonable normal in the self-intersecting
   * case.
   */
  if( ! check ) {
    norm[0] = norm[1] = norm[2] = 0.0;
  }

  vc = v0 + 1;
  xc = vc->coords[0] - v0->coords[0];
  yc = vc->coords[1] - v0->coords[1];
  zc = vc->coords[2] - v0->coords[2];
  while( ++vc < vn ) {
    xp = xc; yp = yc; zp = zc;
    xc = vc->coords[0] - v0->coords[0];
    yc = vc->coords[1] - v0->coords[1];
    zc = vc->coords[2] - v0->coords[2];

    /* Compute (vp - v0) cross (vc - v0) */
    n[0] = yp*zc - zp*yc;
    n[1] = zp*xc - xp*zc;
    n[2] = xp*yc - yp*xc;

    dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
    if( ! check ) {
      /* Reverse the contribution of back-facing triangles to get
       * a reasonable normal for self-intersecting polygons (see above)
       */
      if( dot >= 0 ) {
	norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
      } else {
	norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
      }
    } else if( dot != 0 ) {
      /* Check the new orientation for consistency with previous triangles */
      if( dot > 0 ) {
	if( sign < 0 ) return SIGN_INCONSISTENT;
	sign = 1;
      } else {
	if( sign > 0 ) return SIGN_INCONSISTENT;
	sign = -1;
      }
    }
  }
  return sign;
}

/* __gl_renderCache( tess ) takes a single contour and tries to render it
 * as a triangle fan.  This handles convex polygons, as well as some
 * non-convex polygons if we get lucky.
 *
 * Returns TRUE if the polygon was successfully rendered.  The rendering
 * output is provided as callbacks (see the api).
 */
GLboolean __gl_renderCache( GLUtesselator *tess )
{
  CachedVertex *v0 = tess->cache;
  CachedVertex *vn = v0 + tess->cacheCount;
  CachedVertex *vc;
  GLdouble norm[3];
  int sign;

  if( tess->cacheCount < 3 ) {
    /* Degenerate contour -- no output */
    return TRUE;
  }

  norm[0] = tess->normal[0];
  norm[1] = tess->normal[1];
  norm[2] = tess->normal[2];
  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
    ComputeNormal( tess, norm, FALSE );
  }

  sign = ComputeNormal( tess, norm, TRUE );
  if( sign == SIGN_INCONSISTENT ) {
    /* Fan triangles did not have a consistent orientation */
    return FALSE;
  }
  if( sign == 0 ) {
    /* All triangles were degenerate */
    return TRUE;
  }

  /* Make sure we do the right thing for each winding rule */
  switch( tess->windingRule ) {
  case GLU_TESS_WINDING_ODD:
  case GLU_TESS_WINDING_NONZERO:
    break;
  case GLU_TESS_WINDING_POSITIVE:
    if( sign < 0 ) return TRUE;
    break;
  case GLU_TESS_WINDING_NEGATIVE:
    if( sign > 0 ) return TRUE;
    break;
  case GLU_TESS_WINDING_ABS_GEQ_TWO:
    return TRUE;
  }

  CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
			  : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
			  : GL_TRIANGLES );

  CALL_VERTEX_OR_VERTEX_DATA( v0->data ); 
  if( sign > 0 ) {
    for( vc = v0+1; vc < vn; ++vc ) {
      CALL_VERTEX_OR_VERTEX_DATA( vc->data ); 
    }
  } else {
    for( vc = vn-1; vc > v0; --vc ) {
      CALL_VERTEX_OR_VERTEX_DATA( vc->data ); 
    }
  }
  CALL_END_OR_END_DATA();
  return TRUE;
}