summaryrefslogtreecommitdiff
path: root/src/glu/sgi/libtess/sweep.c
blob: d8d46e901a14a082e1de01e8d38cbe86ca4fb299 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
** 
** http://oss.sgi.com/projects/FreeB
** 
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
** 
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
** 
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
*/
/*
** Author: Eric Veach, July 1994.
**
** $Date: 2001/03/17 00:25:41 $ $Revision: 1.1 $
** $Header: /home/krh/git/sync/mesa-cvs-repo/Mesa/src/glu/sgi/libtess/sweep.c,v 1.1 2001/03/17 00:25:41 brianp Exp $
*/

#include "gluos.h"
#include <assert.h>
#include <stddef.h>
#include <setjmp.h>		/* longjmp */
#include <limits.h>		/* LONG_MAX */

#include "mesh.h"
#include "geom.h"
#include "tess.h"
#include "dict.h"
#include "priorityq.h"
#include "memalloc.h"
#include "sweep.h"

#define TRUE 1
#define FALSE 0

#ifdef FOR_TRITE_TEST_PROGRAM
extern void DebugEvent( GLUtesselator *tess );
#else
#define DebugEvent( tess )
#endif

/*
 * Invariants for the Edge Dictionary.
 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
 *   at any valid location of the sweep event
 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
 *   share a common endpoint
 * - for each e, e->Dst has been processed, but not e->Org
 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
 *   where "event" is the current sweep line event.
 * - no edge e has zero length
 *
 * Invariants for the Mesh (the processed portion).
 * - the portion of the mesh left of the sweep line is a planar graph,
 *   ie. there is *some* way to embed it in the plane
 * - no processed edge has zero length
 * - no two processed vertices have identical coordinates
 * - each "inside" region is monotone, ie. can be broken into two chains
 *   of monotonically increasing vertices according to VertLeq(v1,v2)
 *   - a non-invariant: these chains may intersect (very slightly)
 *
 * Invariants for the Sweep.
 * - if none of the edges incident to the event vertex have an activeRegion
 *   (ie. none of these edges are in the edge dictionary), then the vertex
 *   has only right-going edges.
 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
 *   by ConnectRightVertex), then it is the only right-going edge from
 *   its associated vertex.  (This says that these edges exist only
 *   when it is necessary.)
 */

#define MAX(x,y)	((x) >= (y) ? (x) : (y))
#define MIN(x,y)	((x) <= (y) ? (x) : (y))

/* When we merge two edges into one, we need to compute the combined
 * winding of the new edge.
 */
#define AddWinding(eDst,eSrc)	(eDst->winding += eSrc->winding, \
				 eDst->Sym->winding += eSrc->Sym->winding)

static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );

static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
		    ActiveRegion *reg2 )
/*
 * Both edges must be directed from right to left (this is the canonical
 * direction for the upper edge of each region).
 *
 * The strategy is to evaluate a "t" value for each edge at the
 * current sweep line position, given by tess->event.  The calculations
 * are designed to be very stable, but of course they are not perfect.
 *
 * Special case: if both edge destinations are at the sweep event,
 * we sort the edges by slope (they would otherwise compare equally).
 */
{
  GLUvertex *event = tess->event;
  GLUhalfEdge *e1, *e2;
  GLdouble t1, t2;

  e1 = reg1->eUp;
  e2 = reg2->eUp;

  if( e1->Dst == event ) {
    if( e2->Dst == event ) {
      /* Two edges right of the sweep line which meet at the sweep event.
       * Sort them by slope.
       */
      if( VertLeq( e1->Org, e2->Org )) {
	return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
      }
      return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
    }
    return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
  }
  if( e2->Dst == event ) {
    return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
  }

  /* General case - compute signed distance *from* e1, e2 to event */
  t1 = EdgeEval( e1->Dst, event, e1->Org );
  t2 = EdgeEval( e2->Dst, event, e2->Org );
  return (t1 >= t2);
}


static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
{
  if( reg->fixUpperEdge ) {
    /* It was created with zero winding number, so it better be
     * deleted with zero winding number (ie. it better not get merged
     * with a real edge).
     */
    assert( reg->eUp->winding == 0 );
  }
  reg->eUp->activeRegion = NULL;
  dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
  memFree( reg );
}


static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
/*
 * Replace an upper edge which needs fixing (see ConnectRightVertex).
 */
{
  assert( reg->fixUpperEdge );
  if ( !__gl_meshDelete( reg->eUp ) ) return 0;
  reg->fixUpperEdge = FALSE;
  reg->eUp = newEdge;
  newEdge->activeRegion = reg;

  return 1; 
}

static ActiveRegion *TopLeftRegion( ActiveRegion *reg )
{
  GLUvertex *org = reg->eUp->Org;
  GLUhalfEdge *e;

  /* Find the region above the uppermost edge with the same origin */
  do {
    reg = RegionAbove( reg );
  } while( reg->eUp->Org == org );

  /* If the edge above was a temporary edge introduced by ConnectRightVertex,
   * now is the time to fix it.
   */
  if( reg->fixUpperEdge ) {
    e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
    if (e == NULL) return NULL;
    if ( !FixUpperEdge( reg, e ) ) return NULL;
    reg = RegionAbove( reg );
  }
  return reg;
}

static ActiveRegion *TopRightRegion( ActiveRegion *reg )
{
  GLUvertex *dst = reg->eUp->Dst;

  /* Find the region above the uppermost edge with the same destination */
  do {
    reg = RegionAbove( reg );
  } while( reg->eUp->Dst == dst );
  return reg;
}

static ActiveRegion *AddRegionBelow( GLUtesselator *tess,
				     ActiveRegion *regAbove,
				     GLUhalfEdge *eNewUp )
/*
 * Add a new active region to the sweep line, *somewhere* below "regAbove"
 * (according to where the new edge belongs in the sweep-line dictionary).
 * The upper edge of the new region will be "eNewUp".
 * Winding number and "inside" flag are not updated.
 */
{
  ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
  if (regNew == NULL) longjmp(tess->env,1);

  regNew->eUp = eNewUp;
  /* __gl_dictListInsertBefore */ 
  regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
  if (regNew->nodeUp == NULL) longjmp(tess->env,1);
  regNew->fixUpperEdge = FALSE;
  regNew->sentinel = FALSE;
  regNew->dirty = FALSE;

  eNewUp->activeRegion = regNew;
  return regNew;
}

static GLboolean IsWindingInside( GLUtesselator *tess, int n )
{
  switch( tess->windingRule ) {
  case GLU_TESS_WINDING_ODD:
    return (n & 1);
  case GLU_TESS_WINDING_NONZERO:
    return (n != 0);
  case GLU_TESS_WINDING_POSITIVE:
    return (n > 0);
  case GLU_TESS_WINDING_NEGATIVE:
    return (n < 0);
  case GLU_TESS_WINDING_ABS_GEQ_TWO:
    return (n >= 2) || (n <= -2);
  }
  /*LINTED*/
  assert( FALSE );
  /*NOTREACHED*/
}


static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
{
  reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
  reg->inside = IsWindingInside( tess, reg->windingNumber );
}


static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
/*
 * Delete a region from the sweep line.  This happens when the upper
 * and lower chains of a region meet (at a vertex on the sweep line).
 * The "inside" flag is copied to the appropriate mesh face (we could
 * not do this before -- since the structure of the mesh is always
 * changing, this face may not have even existed until now).
 */
{
  GLUhalfEdge *e = reg->eUp;
  GLUface *f = e->Lface;

  f->inside = reg->inside;
  f->anEdge = e;   /* optimization for __gl_meshTessellateMonoRegion() */
  DeleteRegion( tess, reg );
}


static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess,
	       ActiveRegion *regFirst, ActiveRegion *regLast )
/*
 * We are given a vertex with one or more left-going edges.  All affected
 * edges should be in the edge dictionary.  Starting at regFirst->eUp,
 * we walk down deleting all regions where both edges have the same
 * origin vOrg.  At the same time we copy the "inside" flag from the
 * active region to the face, since at this point each face will belong
 * to at most one region (this was not necessarily true until this point
 * in the sweep).  The walk stops at the region above regLast; if regLast
 * is NULL we walk as far as possible.  At the same time we relink the
 * mesh if necessary, so that the ordering of edges around vOrg is the
 * same as in the dictionary.
 */
{
  ActiveRegion *reg, *regPrev;
  GLUhalfEdge *e, *ePrev;

  regPrev = regFirst;
  ePrev = regFirst->eUp;
  while( regPrev != regLast ) {
    regPrev->fixUpperEdge = FALSE;	/* placement was OK */
    reg = RegionBelow( regPrev );
    e = reg->eUp;
    if( e->Org != ePrev->Org ) {
      if( ! reg->fixUpperEdge ) {
	/* Remove the last left-going edge.  Even though there are no further
	 * edges in the dictionary with this origin, there may be further
	 * such edges in the mesh (if we are adding left edges to a vertex
	 * that has already been processed).  Thus it is important to call
	 * FinishRegion rather than just DeleteRegion.
	 */
	FinishRegion( tess, regPrev );
	break;
      }
      /* If the edge below was a temporary edge introduced by
       * ConnectRightVertex, now is the time to fix it.
       */
      e = __gl_meshConnect( ePrev->Lprev, e->Sym );
      if (e == NULL) longjmp(tess->env,1);
      if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
    }

    /* Relink edges so that ePrev->Onext == e */
    if( ePrev->Onext != e ) {
      if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
      if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
    }
    FinishRegion( tess, regPrev );	/* may change reg->eUp */
    ePrev = reg->eUp;
    regPrev = reg;
  }
  return ePrev;
}


static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
       GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
       GLboolean cleanUp )
/*
 * Purpose: insert right-going edges into the edge dictionary, and update
 * winding numbers and mesh connectivity appropriately.  All right-going
 * edges share a common origin vOrg.  Edges are inserted CCW starting at
 * eFirst; the last edge inserted is eLast->Oprev.  If vOrg has any
 * left-going edges already processed, then eTopLeft must be the edge
 * such that an imaginary upward vertical segment from vOrg would be
 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
 * should be NULL.
 */
{
  ActiveRegion *reg, *regPrev;
  GLUhalfEdge *e, *ePrev;
  int firstTime = TRUE;

  /* Insert the new right-going edges in the dictionary */
  e = eFirst;
  do {
    assert( VertLeq( e->Org, e->Dst ));
    AddRegionBelow( tess, regUp, e->Sym );
    e = e->Onext;
  } while ( e != eLast );

  /* Walk *all* right-going edges from e->Org, in the dictionary order,
   * updating the winding numbers of each region, and re-linking the mesh
   * edges to match the dictionary ordering (if necessary).
   */
  if( eTopLeft == NULL ) {
    eTopLeft = RegionBelow( regUp )->eUp->Rprev;
  }
  regPrev = regUp;
  ePrev = eTopLeft;
  for( ;; ) {
    reg = RegionBelow( regPrev );
    e = reg->eUp->Sym;
    if( e->Org != ePrev->Org ) break;

    if( e->Onext != ePrev ) {
      /* Unlink e from its current position, and relink below ePrev */
      if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
      if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
    }
    /* Compute the winding number and "inside" flag for the new regions */
    reg->windingNumber = regPrev->windingNumber - e->winding;
    reg->inside = IsWindingInside( tess, reg->windingNumber );

    /* Check for two outgoing edges with same slope -- process these
     * before any intersection tests (see example in __gl_computeInterior).
     */
    regPrev->dirty = TRUE;
    if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
      AddWinding( e, ePrev );
      DeleteRegion( tess, regPrev );
      if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
    }
    firstTime = FALSE;
    regPrev = reg;
    ePrev = e;
  }
  regPrev->dirty = TRUE;
  assert( regPrev->windingNumber - e->winding == reg->windingNumber );

  if( cleanUp ) {
    /* Check for intersections between newly adjacent edges. */
    WalkDirtyRegions( tess, regPrev );
  }
}


static void CallCombine( GLUtesselator *tess, GLUvertex *isect,
			 void *data[4], GLfloat weights[4], int needed )
{
  GLdouble coords[3];

  /* Copy coord data in case the callback changes it. */
  coords[0] = isect->coords[0];
  coords[1] = isect->coords[1];
  coords[2] = isect->coords[2];

  isect->data = NULL;
  CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
  if( isect->data == NULL ) {
    if( ! needed ) {
      isect->data = data[0];
    } else if( ! tess->fatalError ) {
      /* The only way fatal error is when two edges are found to intersect,
       * but the user has not provided the callback necessary to handle
       * generated intersection points.
       */
      CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
      tess->fatalError = TRUE;
    }
  }
}

static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
				 GLUhalfEdge *e2 )
/*
 * Two vertices with idential coordinates are combined into one.
 * e1->Org is kept, while e2->Org is discarded.
 */
{
  void *data[4] = { NULL, NULL, NULL, NULL };
  GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };

  data[0] = e1->Org->data;
  data[1] = e2->Org->data;
  CallCombine( tess, e1->Org, data, weights, FALSE );
  if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1); 
}

static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
                           GLfloat *weights )
/*
 * Find some weights which describe how the intersection vertex is
 * a linear combination of "org" and "dest".  Each of the two edges
 * which generated "isect" is allocated 50% of the weight; each edge
 * splits the weight between its org and dst according to the
 * relative distance to "isect".
 */
{
  GLdouble t1 = VertL1dist( org, isect );
  GLdouble t2 = VertL1dist( dst, isect );

  weights[0] = 0.5 * t2 / (t1 + t2);
  weights[1] = 0.5 * t1 / (t1 + t2);
  isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
  isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
  isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
}


static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
       GLUvertex *orgUp, GLUvertex *dstUp,
       GLUvertex *orgLo, GLUvertex *dstLo )
/*
 * We've computed a new intersection point, now we need a "data" pointer
 * from the user so that we can refer to this new vertex in the
 * rendering callbacks.
 */
{
  void *data[4];
  GLfloat weights[4];

  data[0] = orgUp->data;
  data[1] = dstUp->data;
  data[2] = orgLo->data;
  data[3] = dstLo->data;

  isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
  VertexWeights( isect, orgUp, dstUp, &weights[0] );
  VertexWeights( isect, orgLo, dstLo, &weights[2] );

  CallCombine( tess, isect, data, weights, TRUE );
}

static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
 * origin is leftmost).
 *
 * The main purpose is to splice right-going edges with the same
 * dest vertex and nearly identical slopes (ie. we can't distinguish
 * the slopes numerically).  However the splicing can also help us
 * to recover from numerical errors.  For example, suppose at one
 * point we checked eUp and eLo, and decided that eUp->Org is barely
 * above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * our test so that now eUp->Org is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants.
 *
 * One possibility is to check these edges for intersection again
 * (ie. CheckForIntersect).  This is what we do if possible.  However
 * CheckForIntersect requires that tess->event lies between eUp and eLo,
 * so that it has something to fall back on when the intersection
 * calculation gives us an unusable answer.  So, for those cases where
 * we can't check for intersection, this routine fixes the problem
 * by just splicing the offending vertex into the other edge.
 * This is a guaranteed solution, no matter how degenerate things get.
 * Basically this is a combinatorial solution to a numerical problem.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;

  if( VertLeq( eUp->Org, eLo->Org )) {
    if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;

    /* eUp->Org appears to be below eLo */
    if( ! VertEq( eUp->Org, eLo->Org )) {
      /* Splice eUp->Org into eLo */
      if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
      regUp->dirty = regLo->dirty = TRUE;

    } else if( eUp->Org != eLo->Org ) {
      /* merge the two vertices, discarding eUp->Org */
      pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
      SpliceMergeVertices( tess, eLo->Oprev, eUp );
    }
  } else {
    if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;

    /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
    RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
  }
  return TRUE;
}

static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
 * destination is rightmost).
 *
 * Theoretically, this should always be true.  However, splitting an edge
 * into two pieces can change the results of previous tests.  For example,
 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
 * is barely above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * the test so that now eUp->Dst is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants
 * (otherwise new edges might get inserted in the wrong place in the
 * dictionary, and bad stuff will happen).
 *
 * We fix the problem by just splicing the offending vertex into the
 * other edge.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  GLUhalfEdge *e;

  assert( ! VertEq( eUp->Dst, eLo->Dst ));

  if( VertLeq( eUp->Dst, eLo->Dst )) {
    if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;

    /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
    RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    e = __gl_meshSplitEdge( eUp );
    if (e == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
    e->Lface->inside = regUp->inside;
  } else {
    if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;

    /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
    regUp->dirty = regLo->dirty = TRUE;
    e = __gl_meshSplitEdge( eLo );
    if (e == NULL) longjmp(tess->env,1);    
    if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
    e->Rface->inside = regUp->inside;
  }
  return TRUE;
}


static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edges of the given region to see if
 * they intersect.  If so, create the intersection and add it
 * to the data structures.
 *
 * Returns TRUE if adding the new intersection resulted in a recursive
 * call to AddRightEdges(); in this case all "dirty" regions have been
 * checked for intersections, and possibly regUp has been deleted.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  GLUvertex *orgUp = eUp->Org;
  GLUvertex *orgLo = eLo->Org;
  GLUvertex *dstUp = eUp->Dst;
  GLUvertex *dstLo = eLo->Dst;
  GLdouble tMinUp, tMaxLo;
  GLUvertex isect, *orgMin;
  GLUhalfEdge *e;

  assert( ! VertEq( dstLo, dstUp ));
  assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
  assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
  assert( orgUp != tess->event && orgLo != tess->event );
  assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );

  if( orgUp == orgLo ) return FALSE;	/* right endpoints are the same */

  tMinUp = MIN( orgUp->t, dstUp->t );
  tMaxLo = MAX( orgLo->t, dstLo->t );
  if( tMinUp > tMaxLo ) return FALSE;	/* t ranges do not overlap */

  if( VertLeq( orgUp, orgLo )) {
    if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
  } else {
    if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
  }

  /* At this point the edges intersect, at least marginally */
  DebugEvent( tess );

  __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
  /* The following properties are guaranteed: */
  assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
  assert( isect.t <= MAX( orgLo->t, dstLo->t ));
  assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
  assert( isect.s <= MAX( orgLo->s, orgUp->s ));

  if( VertLeq( &isect, tess->event )) {
    /* The intersection point lies slightly to the left of the sweep line,
     * so move it until it''s slightly to the right of the sweep line.
     * (If we had perfect numerical precision, this would never happen
     * in the first place).  The easiest and safest thing to do is
     * replace the intersection by tess->event.
     */
    isect.s = tess->event->s;
    isect.t = tess->event->t;
  }
  /* Similarly, if the computed intersection lies to the right of the
   * rightmost origin (which should rarely happen), it can cause
   * unbelievable inefficiency on sufficiently degenerate inputs.
   * (If you have the test program, try running test54.d with the
   * "X zoom" option turned on).
   */
  orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
  if( VertLeq( orgMin, &isect )) {
    isect.s = orgMin->s;
    isect.t = orgMin->t;
  }

  if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
    /* Easy case -- intersection at one of the right endpoints */
    (void) CheckForRightSplice( tess, regUp );
    return FALSE;
  }

  if(    (! VertEq( dstUp, tess->event )
	  && EdgeSign( dstUp, tess->event, &isect ) >= 0)
      || (! VertEq( dstLo, tess->event )
	  && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
  {
    /* Very unusual -- the new upper or lower edge would pass on the
     * wrong side of the sweep event, or through it.  This can happen
     * due to very small numerical errors in the intersection calculation.
     */
    if( dstLo == tess->event ) {
      /* Splice dstLo into eUp, and process the new region(s) */
      if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
      regUp = TopLeftRegion( regUp );
      if (regUp == NULL) longjmp(tess->env,1);
      eUp = RegionBelow(regUp)->eUp;
      FinishLeftRegions( tess, RegionBelow(regUp), regLo );
      AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
      return TRUE;
    }
    if( dstUp == tess->event ) {
      /* Splice dstUp into eLo, and process the new region(s) */
      if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1); 
      regLo = regUp;
      regUp = TopRightRegion( regUp );
      e = RegionBelow(regUp)->eUp->Rprev;
      regLo->eUp = eLo->Oprev;
      eLo = FinishLeftRegions( tess, regLo, NULL );
      AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
      return TRUE;
    }
    /* Special case: called from ConnectRightVertex.  If either
     * edge passes on the wrong side of tess->event, split it
     * (and wait for ConnectRightVertex to splice it appropriately).
     */
    if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
      RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
      if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
      eUp->Org->s = tess->event->s;
      eUp->Org->t = tess->event->t;
    }
    if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
      regUp->dirty = regLo->dirty = TRUE;
      if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      eLo->Org->s = tess->event->s;
      eLo->Org->t = tess->event->t;
    }
    /* leave the rest for ConnectRightVertex */
    return FALSE;
  }

  /* General case -- split both edges, splice into new vertex.
   * When we do the splice operation, the order of the arguments is
   * arbitrary as far as correctness goes.  However, when the operation
   * creates a new face, the work done is proportional to the size of
   * the new face.  We expect the faces in the processed part of
   * the mesh (ie. eUp->Lface) to be smaller than the faces in the
   * unprocessed original contours (which will be eLo->Oprev->Lface).
   */
  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
  if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
  if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
  eUp->Org->s = isect.s;
  eUp->Org->t = isect.t;
  eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
  if (eUp->Org->pqHandle == LONG_MAX) {
     pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
     tess->pq = NULL;
     longjmp(tess->env,1);
  }
  GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
  RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
  return FALSE;
}

static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * When the upper or lower edge of any region changes, the region is
 * marked "dirty".  This routine walks through all the dirty regions
 * and makes sure that the dictionary invariants are satisfied
 * (see the comments at the beginning of this file).  Of course
 * new dirty regions can be created as we make changes to restore
 * the invariants.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp, *eLo;

  for( ;; ) {
    /* Find the lowest dirty region (we walk from the bottom up). */
    while( regLo->dirty ) {
      regUp = regLo;
      regLo = RegionBelow(regLo);
    }
    if( ! regUp->dirty ) {
      regLo = regUp;
      regUp = RegionAbove( regUp );
      if( regUp == NULL || ! regUp->dirty ) {
	/* We've walked all the dirty regions */
	return;
      }
    }
    regUp->dirty = FALSE;
    eUp = regUp->eUp;
    eLo = regLo->eUp;

    if( eUp->Dst != eLo->Dst ) {
      /* Check that the edge ordering is obeyed at the Dst vertices. */
      if( CheckForLeftSplice( tess, regUp )) {

	/* If the upper or lower edge was marked fixUpperEdge, then
	 * we no longer need it (since these edges are needed only for
	 * vertices which otherwise have no right-going edges).
	 */
	if( regLo->fixUpperEdge ) {
	  DeleteRegion( tess, regLo );
	  if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
	  regLo = RegionBelow( regUp );
	  eLo = regLo->eUp;
	} else if( regUp->fixUpperEdge ) {
	  DeleteRegion( tess, regUp );
	  if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
	  regUp = RegionAbove( regLo );
	  eUp = regUp->eUp;
	}
      }
    }
    if( eUp->Org != eLo->Org ) {
      if(    eUp->Dst != eLo->Dst
	  && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
          && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
      {
	/* When all else fails in CheckForIntersect(), it uses tess->event
	 * as the intersection location.  To make this possible, it requires
	 * that tess->event lie between the upper and lower edges, and also
	 * that neither of these is marked fixUpperEdge (since in the worst
	 * case it might splice one of these edges into tess->event, and
	 * violate the invariant that fixable edges are the only right-going
	 * edge from their associated vertex).
         */
	if( CheckForIntersect( tess, regUp )) {
	  /* WalkDirtyRegions() was called recursively; we're done */
	  return;
	}
      } else {
	/* Even though we can't use CheckForIntersect(), the Org vertices
	 * may violate the dictionary edge ordering.  Check and correct this.
	 */
	(void) CheckForRightSplice( tess, regUp );
      }
    }
    if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
      /* A degenerate loop consisting of only two edges -- delete it. */
      AddWinding( eLo, eUp );
      DeleteRegion( tess, regUp );
      if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
      regUp = RegionAbove( regLo );
    }
  }
}


static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
			        GLUhalfEdge *eBottomLeft )
/*
 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
 * to the unprocessed portion of the mesh.  Since there are no right-going
 * edges, two regions (one above vEvent and one below) are being merged
 * into one.  "regUp" is the upper of these two regions.
 *
 * There are two reasons for doing this (adding a right-going edge):
 *  - if the two regions being merged are "inside", we must add an edge
 *    to keep them separated (the combined region would not be monotone).
 *  - in any case, we must leave some record of vEvent in the dictionary,
 *    so that we can merge vEvent with features that we have not seen yet.
 *    For example, maybe there is a vertical edge which passes just to
 *    the right of vEvent; we would like to splice vEvent into this edge.
 *
 * However, we don't want to connect vEvent to just any vertex.  We don''t
 * want the new edge to cross any other edges; otherwise we will create
 * intersection vertices even when the input data had no self-intersections.
 * (This is a bad thing; if the user's input data has no intersections,
 * we don't want to generate any false intersections ourselves.)
 *
 * Our eventual goal is to connect vEvent to the leftmost unprocessed
 * vertex of the combined region (the union of regUp and regLo).
 * But because of unseen vertices with all right-going edges, and also
 * new vertices which may be created by edge intersections, we don''t
 * know where that leftmost unprocessed vertex is.  In the meantime, we
 * connect vEvent to the closest vertex of either chain, and mark the region
 * as "fixUpperEdge".  This flag says to delete and reconnect this edge
 * to the next processed vertex on the boundary of the combined region.
 * Quite possibly the vertex we connected to will turn out to be the
 * closest one, in which case we won''t need to make any changes.
 */
{
  GLUhalfEdge *eNew;
  GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  int degenerate = FALSE;

  if( eUp->Dst != eLo->Dst ) {
    (void) CheckForIntersect( tess, regUp );
  }

  /* Possible new degeneracies: upper or lower edge of regUp may pass
   * through vEvent, or may coincide with new intersection vertex
   */
  if( VertEq( eUp->Org, tess->event )) {
    if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
    regUp = TopLeftRegion( regUp );
    if (regUp == NULL) longjmp(tess->env,1);
    eTopLeft = RegionBelow( regUp )->eUp;
    FinishLeftRegions( tess, RegionBelow(regUp), regLo );
    degenerate = TRUE;
  }
  if( VertEq( eLo->Org, tess->event )) {
    if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
    eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
    degenerate = TRUE;
  }
  if( degenerate ) {
    AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
    return;
  }

  /* Non-degenerate situation -- need to add a temporary, fixable edge.
   * Connect to the closer of eLo->Org, eUp->Org.
   */
  if( VertLeq( eLo->Org, eUp->Org )) {
    eNew = eLo->Oprev;
  } else {
    eNew = eUp;
  }
  eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
  if (eNew == NULL) longjmp(tess->env,1);

  /* Prevent cleanup, otherwise eNew might disappear before we've even
   * had a chance to mark it as a temporary edge.
   */
  AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
  eNew->Sym->activeRegion->fixUpperEdge = TRUE;
  WalkDirtyRegions( tess, regUp );
}

/* Because vertices at exactly the same location are merged together
 * before we process the sweep event, some degenerate cases can't occur.
 * However if someone eventually makes the modifications required to
 * merge features which are close together, the cases below marked
 * TOLERANCE_NONZERO will be useful.  They were debugged before the
 * code to merge identical vertices in the main loop was added.
 */
#define TOLERANCE_NONZERO	FALSE

static void ConnectLeftDegenerate( GLUtesselator *tess,
				   ActiveRegion *regUp, GLUvertex *vEvent )
/*
 * The event vertex lies exacty on an already-processed edge or vertex.
 * Adding the new vertex involves splicing it into the already-processed
 * part of the mesh.
 */
{
  GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
  ActiveRegion *reg;

  e = regUp->eUp;
  if( VertEq( e->Org, vEvent )) {
    /* e->Org is an unprocessed vertex - just combine them, and wait
     * for e->Org to be pulled from the queue
     */
    assert( TOLERANCE_NONZERO );
    SpliceMergeVertices( tess, e, vEvent->anEdge );
    return;
  }
  
  if( ! VertEq( e->Dst, vEvent )) {
    /* General case -- splice vEvent into edge e which passes through it */
    if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
    if( regUp->fixUpperEdge ) {
      /* This edge was fixable -- delete unused portion of original edge */
      if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
      regUp->fixUpperEdge = FALSE;
    }
    if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
    SweepEvent( tess, vEvent );	/* recurse */
    return;
  }

  /* vEvent coincides with e->Dst, which has already been processed.
   * Splice in the additional right-going edges.
   */
  assert( TOLERANCE_NONZERO );
  regUp = TopRightRegion( regUp );
  reg = RegionBelow( regUp );
  eTopRight = reg->eUp->Sym;
  eTopLeft = eLast = eTopRight->Onext;
  if( reg->fixUpperEdge ) {
    /* Here e->Dst has only a single fixable edge going right.
     * We can delete it since now we have some real right-going edges.
     */
    assert( eTopLeft != eTopRight );   /* there are some left edges too */
    DeleteRegion( tess, reg );
    if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
    eTopRight = eTopLeft->Oprev;
  }
  if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
  if( ! EdgeGoesLeft( eTopLeft )) {
    /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
    eTopLeft = NULL;
  }
  AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
}


static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
/*
 * Purpose: connect a "left" vertex (one where both edges go right)
 * to the processed portion of the mesh.  Let R be the active region
 * containing vEvent, and let U and L be the upper and lower edge
 * chains of R.  There are two possibilities:
 *
 * - the normal case: split R into two regions, by connecting vEvent to
 *   the rightmost vertex of U or L lying to the left of the sweep line
 *
 * - the degenerate case: if vEvent is close enough to U or L, we
 *   merge vEvent into that edge chain.  The subcases are:
 *	- merging with the rightmost vertex of U or L
 *	- merging with the active edge of U or L
 *	- merging with an already-processed portion of U or L
 */
{
  ActiveRegion *regUp, *regLo, *reg;
  GLUhalfEdge *eUp, *eLo, *eNew;
  ActiveRegion tmp;

  /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */

  /* Get a pointer to the active region containing vEvent */
  tmp.eUp = vEvent->anEdge->Sym;
  /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
  regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
  regLo = RegionBelow( regUp );
  eUp = regUp->eUp;
  eLo = regLo->eUp;

  /* Try merging with U or L first */
  if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
    ConnectLeftDegenerate( tess, regUp, vEvent );
    return;
  }

  /* Connect vEvent to rightmost processed vertex of either chain.
   * e->Dst is the vertex that we will connect to vEvent.
   */
  reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;

  if( regUp->inside || reg->fixUpperEdge) {
    if( reg == regUp ) {
      eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
      if (eNew == NULL) longjmp(tess->env,1);
    } else {
      GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
      if (tempHalfEdge == NULL) longjmp(tess->env,1);

      eNew = tempHalfEdge->Sym;
    }
    if( reg->fixUpperEdge ) {
      if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
    } else {
      ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
    }
    SweepEvent( tess, vEvent );
  } else {
    /* The new vertex is in a region which does not belong to the polygon.
     * We don''t need to connect this vertex to the rest of the mesh.
     */
    AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
  }
}


static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
/*
 * Does everything necessary when the sweep line crosses a vertex.
 * Updates the mesh and the edge dictionary.
 */
{
  ActiveRegion *regUp, *reg;
  GLUhalfEdge *e, *eTopLeft, *eBottomLeft;

  tess->event = vEvent;		/* for access in EdgeLeq() */
  DebugEvent( tess );
  
  /* Check if this vertex is the right endpoint of an edge that is
   * already in the dictionary.  In this case we don't need to waste
   * time searching for the location to insert new edges.
   */
  e = vEvent->anEdge;
  while( e->activeRegion == NULL ) {
    e = e->Onext;
    if( e == vEvent->anEdge ) {
      /* All edges go right -- not incident to any processed edges */
      ConnectLeftVertex( tess, vEvent );
      return;
    }
  }

  /* Processing consists of two phases: first we "finish" all the
   * active regions where both the upper and lower edges terminate
   * at vEvent (ie. vEvent is closing off these regions).
   * We mark these faces "inside" or "outside" the polygon according
   * to their winding number, and delete the edges from the dictionary.
   * This takes care of all the left-going edges from vEvent.
   */
  regUp = TopLeftRegion( e->activeRegion );
  if (regUp == NULL) longjmp(tess->env,1);
  reg = RegionBelow( regUp );
  eTopLeft = reg->eUp;
  eBottomLeft = FinishLeftRegions( tess, reg, NULL );

  /* Next we process all the right-going edges from vEvent.  This
   * involves adding the edges to the dictionary, and creating the
   * associated "active regions" which record information about the
   * regions between adjacent dictionary edges.
   */
  if( eBottomLeft->Onext == eTopLeft ) {
    /* No right-going edges -- add a temporary "fixable" edge */
    ConnectRightVertex( tess, regUp, eBottomLeft );
  } else {
    AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
  }
}


/* Make the sentinel coordinates big enough that they will never be
 * merged with real input features.  (Even with the largest possible
 * input contour and the maximum tolerance of 1.0, no merging will be
 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
 */
#define SENTINEL_COORD	(4 * GLU_TESS_MAX_COORD)

static void AddSentinel( GLUtesselator *tess, GLdouble t )
/*
 * We add two sentinel edges above and below all other edges,
 * to avoid special cases at the top and bottom.
 */
{
  GLUhalfEdge *e;
  ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
  if (reg == NULL) longjmp(tess->env,1);

  e = __gl_meshMakeEdge( tess->mesh );
  if (e == NULL) longjmp(tess->env,1);

  e->Org->s = SENTINEL_COORD;
  e->Org->t = t;
  e->Dst->s = -SENTINEL_COORD;
  e->Dst->t = t;
  tess->event = e->Dst;		/* initialize it */

  reg->eUp = e;
  reg->windingNumber = 0;
  reg->inside = FALSE;
  reg->fixUpperEdge = FALSE;
  reg->sentinel = TRUE;
  reg->dirty = FALSE;
  reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
  if (reg->nodeUp == NULL) longjmp(tess->env,1);
}


static void InitEdgeDict( GLUtesselator *tess )
/*
 * We maintain an ordering of edge intersections with the sweep line.
 * This order is maintained in a dynamic dictionary.
 */
{
  /* __gl_dictListNewDict */
  tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
  if (tess->dict == NULL) longjmp(tess->env,1);

  AddSentinel( tess, -SENTINEL_COORD );
  AddSentinel( tess, SENTINEL_COORD );
}


static void DoneEdgeDict( GLUtesselator *tess )
{
  ActiveRegion *reg;
  int fixedEdges = 0;

  /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
  while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
    /*
     * At the end of all processing, the dictionary should contain
     * only the two sentinel edges, plus at most one "fixable" edge
     * created by ConnectRightVertex().
     */
    if( ! reg->sentinel ) {
      assert( reg->fixUpperEdge );
      assert( ++fixedEdges == 1 );
    }
    assert( reg->windingNumber == 0 );
    DeleteRegion( tess, reg );
/*    __gl_meshDelete( reg->eUp );*/
  }
  dictDeleteDict( tess->dict );	/* __gl_dictListDeleteDict */
}


static void RemoveDegenerateEdges( GLUtesselator *tess )
/*
 * Remove zero-length edges, and contours with fewer than 3 vertices.
 */
{
  GLUhalfEdge *e, *eNext, *eLnext;
  GLUhalfEdge *eHead = &tess->mesh->eHead;

  /*LINTED*/
  for( e = eHead->next; e != eHead; e = eNext ) {
    eNext = e->next;
    eLnext = e->Lnext;
    
    if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
      /* Zero-length edge, contour has at least 3 edges */
      
      SpliceMergeVertices( tess, eLnext, e );	/* deletes e->Org */
      if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
      e = eLnext;
      eLnext = e->Lnext;
    }
    if( eLnext->Lnext == e ) {
      /* Degenerate contour (one or two edges) */
      
      if( eLnext != e ) {
	if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
	if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
      }
      if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
      if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
    }
  }
}

static int InitPriorityQ( GLUtesselator *tess )
/*
 * Insert all vertices into the priority queue which determines the
 * order in which vertices cross the sweep line.
 */
{
  PriorityQ *pq;
  GLUvertex *v, *vHead;

  /* __gl_pqSortNewPriorityQ */
  pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
  if (pq == NULL) return 0;

  vHead = &tess->mesh->vHead;
  for( v = vHead->next; v != vHead; v = v->next ) {
    v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
    if (v->pqHandle == LONG_MAX) break;
  }
  if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
    pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
    tess->pq = NULL;
    return 0;
  }

  return 1;
}


static void DonePriorityQ( GLUtesselator *tess )
{
  pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
}


static int RemoveDegenerateFaces( GLUmesh *mesh )
/*
 * Delete any degenerate faces with only two edges.  WalkDirtyRegions()
 * will catch almost all of these, but it won't catch degenerate faces
 * produced by splice operations on already-processed edges.
 * The two places this can happen are in FinishLeftRegions(), when
 * we splice in a "temporary" edge produced by ConnectRightVertex(),
 * and in CheckForLeftSplice(), where we splice already-processed
 * edges to ensure that our dictionary invariants are not violated
 * by numerical errors.
 *
 * In both these cases it is *very* dangerous to delete the offending
 * edge at the time, since one of the routines further up the stack
 * will sometimes be keeping a pointer to that edge.
 */
{
  GLUface *f, *fNext;
  GLUhalfEdge *e;

  /*LINTED*/
  for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
    fNext = f->next;
    e = f->anEdge;
    assert( e->Lnext != e );

    if( e->Lnext->Lnext == e ) {
      /* A face with only two edges */
      AddWinding( e->Onext, e );
      if ( !__gl_meshDelete( e ) ) return 0;
    }
  }
  return 1;
}

int __gl_computeInterior( GLUtesselator *tess )
/*
 * __gl_computeInterior( tess ) computes the planar arrangement specified
 * by the given contours, and further subdivides this arrangement
 * into regions.  Each region is marked "inside" if it belongs
 * to the polygon, according to the rule given by tess->windingRule.
 * Each interior region is guaranteed be monotone.
 */
{
  GLUvertex *v, *vNext;

  tess->fatalError = FALSE;

  /* Each vertex defines an event for our sweep line.  Start by inserting
   * all the vertices in a priority queue.  Events are processed in
   * lexicographic order, ie.
   *
   *	e1 < e2  iff  e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
   */
  RemoveDegenerateEdges( tess );
  if ( !InitPriorityQ( tess ) ) return 0; /* if error */
  InitEdgeDict( tess );

  /* __gl_pqSortExtractMin */
  while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
    for( ;; ) {
      vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
      if( vNext == NULL || ! VertEq( vNext, v )) break;
      
      /* Merge together all vertices at exactly the same location.
       * This is more efficient than processing them one at a time,
       * simplifies the code (see ConnectLeftDegenerate), and is also
       * important for correct handling of certain degenerate cases.
       * For example, suppose there are two identical edges A and B
       * that belong to different contours (so without this code they would
       * be processed by separate sweep events).  Suppose another edge C
       * crosses A and B from above.  When A is processed, we split it
       * at its intersection point with C.  However this also splits C,
       * so when we insert B we may compute a slightly different
       * intersection point.  This might leave two edges with a small
       * gap between them.  This kind of error is especially obvious
       * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
       */
      vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
      SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
    }
    SweepEvent( tess, v );
  }

  /* Set tess->event for debugging purposes */
  /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ 
  tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
  DebugEvent( tess );
  DoneEdgeDict( tess );
  DonePriorityQ( tess );

  if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0;
  __gl_meshCheckMesh( tess->mesh );

  return 1;
}