1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
/*
* GLX Hardware Device Driver for Intel i810
* Copyright (C) 1999 Keith Whitwell
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* KEITH WHITWELL, OR ANY OTHER CONTRIBUTORS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "glheader.h"
#include "macros.h"
#include "mtypes.h"
#include "texformat.h"
#include "simple_list.h"
#include "enums.h"
#include "mm.h"
#include "i810screen.h"
#include "i810_dri.h"
#include "i810context.h"
#include "i810tex.h"
#include "i810state.h"
#include "i810ioctl.h"
static void i810SetTexImages( i810ContextPtr imesa,
struct gl_texture_object *tObj )
{
GLuint height, width, pitch, i, textureFormat, log_pitch;
i810TextureObjectPtr t = (i810TextureObjectPtr) tObj->DriverData;
const struct gl_texture_image *baseImage = tObj->Image[0][tObj->BaseLevel];
GLint numLevels;
GLint log2Width, log2Height;
/* fprintf(stderr, "%s\n", __FUNCTION__); */
t->texelBytes = 2;
switch (baseImage->TexFormat->MesaFormat) {
case MESA_FORMAT_ARGB1555:
textureFormat = MI1_FMT_16BPP | MI1_PF_16BPP_ARGB1555;
break;
case MESA_FORMAT_ARGB4444:
textureFormat = MI1_FMT_16BPP | MI1_PF_16BPP_ARGB4444;
break;
case MESA_FORMAT_RGB565:
textureFormat = MI1_FMT_16BPP | MI1_PF_16BPP_RGB565;
break;
case MESA_FORMAT_AL88:
textureFormat = MI1_FMT_16BPP | MI1_PF_16BPP_AY88;
break;
case MESA_FORMAT_YCBCR:
textureFormat = MI1_FMT_422 | MI1_PF_422_YCRCB_SWAP_Y
| MI1_COLOR_CONV_ENABLE;
break;
case MESA_FORMAT_YCBCR_REV:
textureFormat = MI1_FMT_422 | MI1_PF_422_YCRCB
| MI1_COLOR_CONV_ENABLE;
break;
case MESA_FORMAT_CI8:
textureFormat = MI1_FMT_8CI | MI1_PF_8CI_ARGB4444;
t->texelBytes = 1;
break;
default:
fprintf(stderr, "i810SetTexImages: bad image->Format\n" );
return;
}
driCalculateTextureFirstLastLevel( (driTextureObject *) t );
numLevels = t->base.lastLevel - t->base.firstLevel + 1;
log2Width = tObj->Image[0][t->base.firstLevel]->WidthLog2;
log2Height = tObj->Image[0][t->base.firstLevel]->HeightLog2;
/* Figure out the amount of memory required to hold all the mipmap
* levels. Choose the smallest pitch to accomodate the largest
* mipmap:
*/
width = tObj->Image[0][t->base.firstLevel]->Width * t->texelBytes;
for (pitch = 32, log_pitch=2 ; pitch < width ; pitch *= 2 )
log_pitch++;
/* All images must be loaded at this pitch. Count the number of
* lines required:
*/
for ( height = i = 0 ; i < numLevels ; i++ ) {
t->image[i].image = tObj->Image[0][t->base.firstLevel + i];
t->image[i].offset = height * pitch;
t->image[i].internalFormat = baseImage->Format;
height += t->image[i].image->Height;
}
t->Pitch = pitch;
t->base.totalSize = height*pitch;
t->max_level = i-1;
t->dirty = I810_UPLOAD_TEX0 | I810_UPLOAD_TEX1;
t->Setup[I810_TEXREG_MI1] = (MI1_MAP_0 | textureFormat | log_pitch);
t->Setup[I810_TEXREG_MI2] = (MI2_DIMENSIONS_ARE_LOG2 |
(log2Height << 16) | log2Width);
t->Setup[I810_TEXREG_MLL] = (GFX_OP_MAP_LOD_LIMITS |
MLL_MAP_0 |
MLL_UPDATE_MAX_MIP |
MLL_UPDATE_MIN_MIP |
((numLevels - 1) << MLL_MIN_MIP_SHIFT));
LOCK_HARDWARE( imesa );
i810UploadTexImagesLocked( imesa, t );
UNLOCK_HARDWARE( imesa );
}
/* ================================================================
* Texture combine functions
*/
static void set_color_stage( unsigned color, int stage,
i810ContextPtr imesa )
{
if ( color != imesa->Setup[I810_CTXREG_MC0 + stage] ) {
I810_STATECHANGE( imesa, I810_UPLOAD_CTX );
imesa->Setup[I810_CTXREG_MC0 + stage] = color;
}
}
static void set_alpha_stage( unsigned alpha, int stage,
i810ContextPtr imesa )
{
if ( alpha != imesa->Setup[I810_CTXREG_MA0 + stage] ) {
I810_STATECHANGE( imesa, I810_UPLOAD_CTX );
imesa->Setup[I810_CTXREG_MA0 + stage] = alpha;
}
}
static const unsigned operand_modifiers[] = {
0, MC_ARG_INVERT,
MC_ARG_REPLICATE_ALPHA, MC_ARG_INVERT | MC_ARG_REPLICATE_ALPHA
};
/**
* Configure the hardware bits for the specified texture environment.
*
* Configures the hardware bits for the texture environment state for the
* specified texture unit. As combine stages are added, the values pointed
* to by \c color_stage and \c alpha_stage are incremented.
*
* \param ctx GL context pointer.
* \param unit Texture unit to be added.
* \param color_stage Next available hardware color combine stage.
* \param alpha_stage Next available hardware alpha combine stage.
*
* \returns
* If the combine mode for the specified texture unit could be added without
* requiring a software fallback, \c GL_TRUE is returned. Otherwise,
* \c GL_FALSE is returned.
*
* \todo
* If the mode is (GL_REPLACE, GL_PREVIOUS), treat it as though the texture
* stage is disabled. That is, don't emit any combine stages.
*
* \todo
* Add support for ATI_texture_env_combine3 modes. This will require using
* two combine stages.
*
* \todo
* Add support for the missing \c GL_INTERPOLATE modes. This will require
* using all three combine stages. There is a comment in the function
* describing how this might work.
*
* \todo
* If, after all the combine stages have been emitted, a texture is never
* actually used, disable the texture unit. That should save texture some
* memory bandwidth. This won't happen in this function, but this seems like
* a reasonable place to make note of it.
*/
static GLboolean
i810UpdateTexEnvCombine( GLcontext *ctx, GLuint unit,
int * color_stage, int * alpha_stage )
{
i810ContextPtr imesa = I810_CONTEXT(ctx);
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
GLuint color_arg[3] = {
MC_ARG_ONE, MC_ARG_ONE, MC_ARG_ONE
};
GLuint alpha_arg[3] = {
MA_ARG_ITERATED_ALPHA, MA_ARG_ITERATED_ALPHA, MA_ARG_ITERATED_ALPHA
};
GLuint i;
GLuint color_combine, alpha_combine;
const GLuint numColorArgs = texUnit->_CurrentCombine->_NumArgsRGB;
const GLuint numAlphaArgs = texUnit->_CurrentCombine->_NumArgsA;
GLuint RGBshift = texUnit->_CurrentCombine->ScaleShiftRGB;
GLuint Ashift = texUnit->_CurrentCombine->ScaleShiftA;
if ( !texUnit->_ReallyEnabled ) {
return GL_TRUE;
}
if ((*color_stage >= 3) || (*alpha_stage >= 3)) {
return GL_FALSE;
}
/* Step 1:
* Extract the color and alpha combine function arguments.
*/
for ( i = 0 ; i < numColorArgs ; i++ ) {
unsigned op = texUnit->_CurrentCombine->OperandRGB[i] - GL_SRC_COLOR;
assert(op >= 0);
assert(op <= 3);
switch ( texUnit->_CurrentCombine->SourceRGB[i] ) {
case GL_TEXTURE0:
color_arg[i] = MC_ARG_TEX0_COLOR;
break;
case GL_TEXTURE1:
color_arg[i] = MC_ARG_TEX1_COLOR;
break;
case GL_TEXTURE:
color_arg[i] = (unit == 0)
? MC_ARG_TEX0_COLOR : MC_ARG_TEX1_COLOR;
break;
case GL_CONSTANT:
color_arg[i] = MC_ARG_COLOR_FACTOR;
break;
case GL_PRIMARY_COLOR:
color_arg[i] = MC_ARG_ITERATED_COLOR;
break;
case GL_PREVIOUS:
color_arg[i] = (unit == 0)
? MC_ARG_ITERATED_COLOR : MC_ARG_CURRENT_COLOR;
break;
case GL_ZERO:
/* Toggle the low bit of the op value. The is the 'invert' bit,
* and it acts to convert GL_ZERO+op to the equivalent GL_ONE+op.
*/
op ^= 1;
/*FALLTHROUGH*/
case GL_ONE:
color_arg[i] = MC_ARG_ONE;
break;
default:
return GL_FALSE;
}
color_arg[i] |= operand_modifiers[op];
}
for ( i = 0 ; i < numAlphaArgs ; i++ ) {
unsigned op = texUnit->_CurrentCombine->OperandA[i] - GL_SRC_ALPHA;
assert(op >= 0);
assert(op <= 1);
switch ( texUnit->_CurrentCombine->SourceA[i] ) {
case GL_TEXTURE0:
alpha_arg[i] = MA_ARG_TEX0_ALPHA;
break;
case GL_TEXTURE1:
alpha_arg[i] = MA_ARG_TEX1_ALPHA;
break;
case GL_TEXTURE:
alpha_arg[i] = (unit == 0)
? MA_ARG_TEX0_ALPHA : MA_ARG_TEX1_ALPHA;
break;
case GL_CONSTANT:
alpha_arg[i] = MA_ARG_ALPHA_FACTOR;
break;
case GL_PRIMARY_COLOR:
alpha_arg[i] = MA_ARG_ITERATED_ALPHA;
break;
case GL_PREVIOUS:
alpha_arg[i] = (unit == 0)
? MA_ARG_ITERATED_ALPHA : MA_ARG_CURRENT_ALPHA;
break;
case GL_ZERO:
/* Toggle the low bit of the op value. The is the 'invert' bit,
* and it acts to convert GL_ZERO+op to the equivalent GL_ONE+op.
*/
op ^= 1;
/*FALLTHROUGH*/
case GL_ONE:
if (i != 2) {
return GL_FALSE;
}
alpha_arg[i] = MA_ARG_ONE;
break;
default:
return GL_FALSE;
}
alpha_arg[i] |= operand_modifiers[op];
}
/* Step 2:
* Build up the color and alpha combine functions.
*/
switch ( texUnit->_CurrentCombine->ModeRGB ) {
case GL_REPLACE:
color_combine = MC_OP_ARG1;
break;
case GL_MODULATE:
color_combine = MC_OP_MODULATE + RGBshift;
RGBshift = 0;
break;
case GL_ADD:
color_combine = MC_OP_ADD;
break;
case GL_ADD_SIGNED:
color_combine = MC_OP_ADD_SIGNED;
break;
case GL_SUBTRACT:
color_combine = MC_OP_SUBTRACT;
break;
case GL_INTERPOLATE:
/* For interpolation, the i810 hardware has some limitations. It
* can't handle using the secondary or diffuse color (diffuse alpha
* is okay) for the third argument.
*
* It is possible to emulate the missing modes by using multiple
* combine stages. Unfortunately it requires all three stages to
* emulate a single interpolate stage. The (arg0*arg2) portion is
* done in stage zero and writes to MC_DEST_ACCUMULATOR. The
* (arg1*(1-arg2)) portion is done in stage 1, and the final stage is
* (MC_ARG1_ACCUMULATOR | MC_ARG2_CURRENT_COLOR | MC_OP_ADD).
*
* It can also be done without using the accumulator by rearranging
* the equation as (arg1 + (arg2 * (arg0 - arg1))). Too bad the i810
* doesn't support the MODULATE_AND_ADD mode that the i830 supports.
* If it did, the interpolate could be done in only two stages.
*/
if ( (color_arg[2] & MC_ARG_INVERT) != 0 ) {
unsigned temp = color_arg[0];
color_arg[0] = color_arg[1];
color_arg[1] = temp;
color_arg[2] &= ~MC_ARG_INVERT;
}
switch (color_arg[2]) {
case (MC_ARG_ONE):
case (MC_ARG_ONE | MC_ARG_REPLICATE_ALPHA):
color_combine = MC_OP_ARG1;
color_arg[1] = MC_ARG_ONE;
break;
case (MC_ARG_COLOR_FACTOR):
return GL_FALSE;
case (MC_ARG_COLOR_FACTOR | MC_ARG_REPLICATE_ALPHA):
color_combine = MC_OP_LIN_BLEND_ALPHA_FACTOR;
break;
case (MC_ARG_ITERATED_COLOR):
return GL_FALSE;
case (MC_ARG_ITERATED_COLOR | MC_ARG_REPLICATE_ALPHA):
color_combine = MC_OP_LIN_BLEND_ITER_ALPHA;
break;
case (MC_ARG_SPECULAR_COLOR):
case (MC_ARG_SPECULAR_COLOR | MC_ARG_REPLICATE_ALPHA):
return GL_FALSE;
case (MC_ARG_TEX0_COLOR):
color_combine = MC_OP_LIN_BLEND_TEX0_COLOR;
break;
case (MC_ARG_TEX0_COLOR | MC_ARG_REPLICATE_ALPHA):
color_combine = MC_OP_LIN_BLEND_TEX0_ALPHA;
break;
case (MC_ARG_TEX1_COLOR):
color_combine = MC_OP_LIN_BLEND_TEX1_COLOR;
break;
case (MC_ARG_TEX1_COLOR | MC_ARG_REPLICATE_ALPHA):
color_combine = MC_OP_LIN_BLEND_TEX1_ALPHA;
break;
default:
return GL_FALSE;
}
break;
default:
return GL_FALSE;
}
switch ( texUnit->_CurrentCombine->ModeA ) {
case GL_REPLACE:
alpha_combine = MA_OP_ARG1;
break;
case GL_MODULATE:
alpha_combine = MA_OP_MODULATE + Ashift;
Ashift = 0;
break;
case GL_ADD:
alpha_combine = MA_OP_ADD;
break;
case GL_ADD_SIGNED:
alpha_combine = MA_OP_ADD_SIGNED;
break;
case GL_SUBTRACT:
alpha_combine = MA_OP_SUBTRACT;
break;
case GL_INTERPOLATE:
if ( (alpha_arg[2] & MA_ARG_INVERT) != 0 ) {
unsigned temp = alpha_arg[0];
alpha_arg[0] = alpha_arg[1];
alpha_arg[1] = temp;
alpha_arg[2] &= ~MA_ARG_INVERT;
}
switch (alpha_arg[2]) {
case MA_ARG_ONE:
alpha_combine = MA_OP_ARG1;
alpha_arg[1] = MA_ARG_ITERATED_ALPHA;
break;
case MA_ARG_ALPHA_FACTOR:
alpha_combine = MA_OP_LIN_BLEND_ALPHA_FACTOR;
break;
case MA_ARG_ITERATED_ALPHA:
alpha_combine = MA_OP_LIN_BLEND_ITER_ALPHA;
break;
case MA_ARG_TEX0_ALPHA:
alpha_combine = MA_OP_LIN_BLEND_TEX0_ALPHA;
break;
case MA_ARG_TEX1_ALPHA:
alpha_combine = MA_OP_LIN_BLEND_TEX1_ALPHA;
break;
default:
return GL_FALSE;
}
break;
default:
return GL_FALSE;
}
color_combine |= GFX_OP_MAP_COLOR_STAGES | (*color_stage << MC_STAGE_SHIFT)
| MC_UPDATE_DEST | MC_DEST_CURRENT
| MC_UPDATE_ARG1 | (color_arg[0] << MC_ARG1_SHIFT)
| MC_UPDATE_ARG2 | (color_arg[1] << MC_ARG2_SHIFT)
| MC_UPDATE_OP;
alpha_combine |= GFX_OP_MAP_ALPHA_STAGES | (*alpha_stage << MA_STAGE_SHIFT)
| MA_UPDATE_ARG1 | (alpha_arg[0] << MA_ARG1_SHIFT)
| MA_UPDATE_ARG2 | (alpha_arg[1] << MA_ARG2_SHIFT)
| MA_UPDATE_OP;
set_color_stage( color_combine, *color_stage, imesa );
set_alpha_stage( alpha_combine, *alpha_stage, imesa );
(*color_stage)++;
(*alpha_stage)++;
/* Step 3:
* Apply the scale factor.
*/
/* The only operation where the i810 directly supports adding a post-
* scale factor is modulate. For all the other modes the post-scale is
* emulated by inserting and extra modulate stage. For the modulate
* case, the scaling is handled above when color_combine / alpha_combine
* are initially set.
*/
if ( RGBshift != 0 ) {
const unsigned color_scale = GFX_OP_MAP_COLOR_STAGES
| (*color_stage << MC_STAGE_SHIFT)
| MC_UPDATE_DEST | MC_DEST_CURRENT
| MC_UPDATE_ARG1 | (MC_ARG_CURRENT_COLOR << MC_ARG1_SHIFT)
| MC_UPDATE_ARG2 | (MC_ARG_ONE << MC_ARG2_SHIFT)
| MC_UPDATE_OP | (MC_OP_MODULATE + RGBshift);
if ( *color_stage >= 3 ) {
return GL_FALSE;
}
set_color_stage( color_scale, *color_stage, imesa );
(*color_stage)++;
}
if ( Ashift != 0 ) {
const unsigned alpha_scale = GFX_OP_MAP_ALPHA_STAGES
| (*alpha_stage << MA_STAGE_SHIFT)
| MA_UPDATE_ARG1 | (MA_ARG_CURRENT_ALPHA << MA_ARG1_SHIFT)
| MA_UPDATE_ARG2 | (MA_ARG_ONE << MA_ARG2_SHIFT)
| MA_UPDATE_OP | (MA_OP_MODULATE + Ashift);
if ( *alpha_stage >= 3 ) {
return GL_FALSE;
}
set_alpha_stage( alpha_scale, *alpha_stage, imesa );
(*alpha_stage)++;
}
return GL_TRUE;
}
/**
* Update hardware state for a texture unit.
*
* \todo
* 1D textures should be supported! Just use a 2D texture with the second
* texture coordinate value fixed at 0.0.
*/
static void i810UpdateTexUnit( GLcontext *ctx, GLuint unit,
int * next_color_stage, int * next_alpha_stage )
{
i810ContextPtr imesa = I810_CONTEXT(ctx);
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
if ( (texUnit->_ReallyEnabled == TEXTURE_2D_BIT)
|| (texUnit->_ReallyEnabled == 0) ) {
if (texUnit->_ReallyEnabled != 0) {
struct gl_texture_object *tObj = texUnit->_Current;
i810TextureObjectPtr t = (i810TextureObjectPtr)tObj->DriverData;
if (tObj->Image[0][tObj->BaseLevel]->Border > 0) {
FALLBACK( imesa, I810_FALLBACK_TEXTURE, GL_TRUE );
return;
}
/* Upload teximages (not pipelined)
*/
if (t->base.dirty_images[0]) {
I810_FIREVERTICES(imesa);
i810SetTexImages( imesa, tObj );
if (!t->base.memBlock) {
FALLBACK( imesa, I810_FALLBACK_TEXTURE, GL_TRUE );
return;
}
}
/* Update state if this is a different texture object to last
* time.
*/
if (imesa->CurrentTexObj[unit] != t) {
I810_STATECHANGE(imesa, (I810_UPLOAD_TEX0<<unit));
imesa->CurrentTexObj[unit] = t;
t->base.bound |= (1U << unit);
/* XXX: should be locked */
driUpdateTextureLRU( (driTextureObject *) t );
}
/* Update texture environment if texture object image format or
* texture environment state has changed.
*/
imesa->TexEnvImageFmt[unit] = tObj->Image[0][tObj->BaseLevel]->Format;
}
else {
imesa->CurrentTexObj[unit] = 0;
imesa->TexEnvImageFmt[unit] = 0;
imesa->dirty &= ~(I810_UPLOAD_TEX0<<unit);
}
if (!i810UpdateTexEnvCombine( ctx, unit,
next_color_stage, next_alpha_stage )) {
FALLBACK( imesa, I810_FALLBACK_TEXTURE, GL_TRUE );
}
}
else if (texUnit->_ReallyEnabled) {
FALLBACK( imesa, I810_FALLBACK_TEXTURE, GL_TRUE );
}
return;
}
void i810UpdateTextureState( GLcontext *ctx )
{
static const unsigned color_pass[3] = {
GFX_OP_MAP_COLOR_STAGES | MC_STAGE_0 | MC_UPDATE_DEST | MC_DEST_CURRENT
| MC_UPDATE_ARG1 | (MC_ARG_ITERATED_COLOR << MC_ARG1_SHIFT)
| MC_UPDATE_ARG2 | (MC_ARG_ONE << MC_ARG2_SHIFT)
| MC_UPDATE_OP | MC_OP_ARG1,
GFX_OP_MAP_COLOR_STAGES | MC_STAGE_1 | MC_UPDATE_DEST | MC_DEST_CURRENT
| MC_UPDATE_ARG1 | (MC_ARG_CURRENT_COLOR << MC_ARG1_SHIFT)
| MC_UPDATE_ARG2 | (MC_ARG_ONE << MC_ARG2_SHIFT)
| MC_UPDATE_OP | MC_OP_ARG1,
GFX_OP_MAP_COLOR_STAGES | MC_STAGE_2 | MC_UPDATE_DEST | MC_DEST_CURRENT
| MC_UPDATE_ARG1 | (MC_ARG_CURRENT_COLOR << MC_ARG1_SHIFT)
| MC_UPDATE_ARG2 | (MC_ARG_ONE << MC_ARG2_SHIFT)
| MC_UPDATE_OP | MC_OP_ARG1
};
static const unsigned alpha_pass[3] = {
GFX_OP_MAP_ALPHA_STAGES | MA_STAGE_0
| MA_UPDATE_ARG1 | (MA_ARG_ITERATED_ALPHA << MA_ARG1_SHIFT)
| MA_UPDATE_ARG2 | (MA_ARG_ITERATED_ALPHA << MA_ARG2_SHIFT)
| MA_UPDATE_OP | MA_OP_ARG1,
GFX_OP_MAP_ALPHA_STAGES | MA_STAGE_1
| MA_UPDATE_ARG1 | (MA_ARG_CURRENT_ALPHA << MA_ARG1_SHIFT)
| MA_UPDATE_ARG2 | (MA_ARG_CURRENT_ALPHA << MA_ARG2_SHIFT)
| MA_UPDATE_OP | MA_OP_ARG1,
GFX_OP_MAP_ALPHA_STAGES | MA_STAGE_2
| MA_UPDATE_ARG1 | (MA_ARG_CURRENT_ALPHA << MA_ARG1_SHIFT)
| MA_UPDATE_ARG2 | (MA_ARG_CURRENT_ALPHA << MA_ARG2_SHIFT)
| MA_UPDATE_OP | MA_OP_ARG1
};
i810ContextPtr imesa = I810_CONTEXT(ctx);
int next_color_stage = 0;
int next_alpha_stage = 0;
/* fprintf(stderr, "%s\n", __FUNCTION__); */
FALLBACK( imesa, I810_FALLBACK_TEXTURE, GL_FALSE );
i810UpdateTexUnit( ctx, 0, & next_color_stage, & next_alpha_stage );
i810UpdateTexUnit( ctx, 1, & next_color_stage, & next_alpha_stage );
/* There needs to be at least one combine stage emitted that just moves
* the incoming primary color to the current color register. In addition,
* there number be the same number of color and alpha stages emitted.
* Finally, if there are less than 3 combine stages, a MC_OP_DISABLE stage
* must be emitted.
*/
while ( (next_color_stage == 0) ||
(next_color_stage < next_alpha_stage) ) {
set_color_stage( color_pass[ next_color_stage ], next_color_stage,
imesa );
next_color_stage++;
}
assert( next_color_stage <= 3 );
while ( next_alpha_stage < next_color_stage ) {
set_alpha_stage( alpha_pass[ next_alpha_stage ], next_alpha_stage,
imesa );
next_alpha_stage++;
}
assert( next_alpha_stage <= 3 );
assert( next_color_stage == next_alpha_stage );
if ( next_color_stage < 3 ) {
const unsigned color = GFX_OP_MAP_COLOR_STAGES
| (next_color_stage << MC_STAGE_SHIFT)
| MC_UPDATE_DEST | MC_DEST_CURRENT
| MC_UPDATE_ARG1 | (MC_ARG_ONE << MC_ARG1_SHIFT)
| MC_UPDATE_ARG2 | (MC_ARG_ONE << MC_ARG2_SHIFT)
| MC_UPDATE_OP | (MC_OP_DISABLE);
const unsigned alpha = GFX_OP_MAP_ALPHA_STAGES
| (next_color_stage << MC_STAGE_SHIFT)
| MA_UPDATE_ARG1 | (MA_ARG_CURRENT_ALPHA << MA_ARG1_SHIFT)
| MA_UPDATE_ARG2 | (MA_ARG_CURRENT_ALPHA << MA_ARG2_SHIFT)
| MA_UPDATE_OP | (MA_OP_ARG1);
set_color_stage( color, next_color_stage, imesa );
set_alpha_stage( alpha, next_alpha_stage, imesa );
}
}
|