1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
|
//
// TODO:
// - implement sin, asin, acos, atan, pow, log2, floor, ceil,
// - implement texture1D, texture2D, texture3D, textureCube,
// - implement shadow1D, shadow2D,
// - implement noise1, noise2, noise3, noise4,
//
//
// From Shader Spec, ver. 1.10, rev. 59
//
// The following built-in constants are provided to vertex and fragment shaders.
//
//
// Implementation dependent constants. The example values below
// are the minimum values allowed for these maximums.
//
const int gl_MaxLights = 8; // GL 1.0
const int gl_MaxClipPlanes = 6; // GL 1.0
const int gl_MaxTextureUnits = 2; // GL 1.3
const int gl_MaxTextureCoords = 2; // ARB_fragment_program
const int gl_MaxVertexAttribs = 16; // ARB_vertex_shader
const int gl_MaxVertexUniformComponents = 512; // ARB_vertex_shader
const int gl_MaxVaryingFloats = 32; // ARB_vertex_shader
const int gl_MaxVertexTextureImageUnits = 0; // ARB_vertex_shader
const int gl_MaxCombinedTextureImageUnits = 2; // ARB_vertex_shader
const int gl_MaxTextureImageUnits = 2; // ARB_fragment_shader
const int gl_MaxFragmentUniformComponents = 64; // ARB_fragment_shader
const int gl_MaxDrawBuffers = 1; // proposed ARB_draw_buffers
//
// As an aid to accessing OpenGL processing state, the following uniform variables are built into
// the OpenGL Shading Language. All page numbers and notations are references to the 1.4
// specification.
//
//
// Matrix state. p. 31, 32, 37, 39, 40.
//
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];
//
// Derived matrix state that provides inverse and transposed versions
// of the matrices above. Poorly conditioned matrices may result
// in unpredictable values in their inverse forms.
//
uniform mat3 gl_NormalMatrix; // transpose of the inverse of the
// upper leftmost 3x3 of gl_ModelViewMatrix
uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];
uniform mat4 gl_ModelViewMatrixTranspose;
uniform mat4 gl_ProjectionMatrixTranspose;
uniform mat4 gl_ModelViewProjectionMatrixTranspose;
uniform mat4 gl_TextureMatrixTranspose[gl_MaxTextureCoords];
uniform mat4 gl_ModelViewMatrixInverseTranspose;
uniform mat4 gl_ProjectionMatrixInverseTranspose;
uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];
//
// Normal scaling p. 39.
//
uniform float gl_NormalScale;
//
// Depth range in window coordinates, p. 33
//
struct gl_DepthRangeParameters {
float near; // n
float far; // f
float diff; // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;
//
// Clip planes p. 42.
//
uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];
//
// Point Size, p. 66, 67.
//
struct gl_PointParameters {
float size;
float sizeMin;
float sizeMax;
float fadeThresholdSize;
float distanceConstantAttenuation;
float distanceLinearAttenuation;
float distanceQuadraticAttenuation;
};
uniform gl_PointParameters gl_Point;
//
// Material State p. 50, 55.
//
struct gl_MaterialParameters {
vec4 emission; // Ecm
vec4 ambient; // Acm
vec4 diffuse; // Dcm
vec4 specular; // Scm
float shininess; // Srm
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;
//
// Light State p 50, 53, 55.
//
struct gl_LightSourceParameters {
vec4 ambient; // Acli
vec4 diffuse; // Dcli
vec4 specular; // Scli
vec4 position; // Ppli
vec4 halfVector; // Derived: Hi
vec3 spotDirection; // Sdli
float spotExponent; // Srli
float spotCutoff; // Crli
// (range: [0.0,90.0], 180.0)
float spotCosCutoff; // Derived: cos(Crli)
// (range: [1.0,0.0],-1.0)
float constantAttenuation; // K0
float linearAttenuation; // K1
float quadraticAttenuation; // K2
};
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];
struct gl_LightModelParameters {
vec4 ambient; // Acs
};
uniform gl_LightModelParameters gl_LightModel;
//
// Derived state from products of light and material.
//
struct gl_LightModelProducts {
vec4 sceneColor; // Derived. Ecm + Acm * Acs
};
uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;
struct gl_LightProducts {
vec4 ambient; // Acm * Acli
vec4 diffuse; // Dcm * Dcli
vec4 specular; // Scm * Scli
};
uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];
//
// Texture Environment and Generation, p. 152, p. 40-42.
//
uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits];
uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];
//
// Fog p. 161
//
struct gl_FogParameters {
vec4 color;
float density;
float start;
float end;
float scale; // Derived: 1.0 / (end - start)
};
uniform gl_FogParameters gl_Fog;
//
// The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar
// and vector operations. Many of these built-in functions can be used in more than one type
// of shader, but some are intended to provide a direct mapping to hardware and so are available
// only for a specific type of shader.
//
// The built-in functions basically fall into three categories:
//
// • They expose some necessary hardware functionality in a convenient way such as accessing
// a texture map. There is no way in the language for these functions to be emulated by a shader.
//
// • They represent a trivial operation (clamp, mix, etc.) that is very simple for the user
// to write, but they are very common and may have direct hardware support. It is a very hard
// problem for the compiler to map expressions to complex assembler instructions.
//
// • They represent an operation graphics hardware is likely to accelerate at some point. The
// trigonometry functions fall into this category.
//
// Many of the functions are similar to the same named ones in common C libraries, but they support
// vector input as well as the more traditional scalar input.
//
// Applications should be encouraged to use the built-in functions rather than do the equivalent
// computations in their own shader code since the built-in functions are assumed to be optimal
// (e.g., perhaps supported directly in hardware).
//
// User code can replace built-in functions with their own if they choose, by simply re-declaring
// and defining the same name and argument list.
//
//
// 8.1 Angle and Trigonometry Functions
//
// Function parameters specified as angle are assumed to be in units of radians. In no case will
// any of these functions result in a divide by zero error. If the divisor of a ratio is 0, then
// results will be undefined.
//
// These all operate component-wise. The description is per component.
//
//
// Converts degrees to radians and returns the result, i.e., result = PI*deg/180.
//
float radians (float deg) {
return 3.141593 * deg / 180.0;
}
vec2 radians (vec2 deg) {
return vec2 (radians (deg.x), radians (deg.y));
}
vec3 radians (vec3 deg) {
return vec3 (radians (deg.x), radians (deg.y), radians (deg.z));
}
vec4 radians (vec4 deg) {
return vec4 (radians (deg.x), radians (deg.y), radians (deg.z), radians (deg.w));
}
//
// Converts radians to degrees and returns the result, i.e., result = 180*rad/PI.
//
float degrees (float rad) {
return 180.0 * rad / 3.141593;
}
vec2 degrees (vec2 rad) {
return vec2 (degrees (rad.x), degrees (rad.y));
}
vec3 degrees (vec3 rad) {
return vec3 (degrees (rad.x), degrees (rad.y), degrees (rad.z));
}
vec4 degrees (vec4 rad) {
return vec4 (degrees (rad.x), degrees (rad.y), degrees (rad.z), degrees (rad.w));
}
//
// The standard trigonometric sine function.
//
// XXX
float sin (float angle) {
return 0.0;
}
vec2 sin (vec2 angle) {
return vec2 (sin (angle.x), sin (angle.y));
}
vec3 sin (vec3 angle) {
return vec3 (sin (angle.x), sin (angle.y), sin (angle.z));
}
vec4 sin (vec4 angle) {
return vec4 (sin (angle.x), sin (angle.y), sin (angle.z), sin (angle.w));
}
//
// The standard trigonometric cosine function.
//
float cos (float angle) {
return sin (angle + 1.5708);
}
vec2 cos (vec2 angle) {
return vec2 (cos (angle.x), cos (angle.y));
}
vec3 cos (vec3 angle) {
return vec3 (cos (angle.x), cos (angle.y), cos (angle.z));
}
vec4 cos (vec4 angle) {
return vec4 (cos (angle.x), cos (angle.y), cos (angle.z), cos (angle.w));
}
//
// The standard trigonometric tangent.
//
float tan (float angle) {
return sin (angle) / cos (angle);
}
vec2 tan (vec2 angle) {
return vec2 (tan (angle.x), tan (angle.y));
}
vec3 tan (vec3 angle) {
return vec3 (tan (angle.x), tan (angle.y), tan (angle.z));
}
vec4 tan (vec4 angle) {
return vec4 (tan (angle.x), tan (angle.y), tan (angle.z), tan (angle.w));
}
//
// Arc sine. Returns an angle whose sine is x. The range of values returned by this function is
// [–PI/2, PI/2]. Results are undefined if |x| > 1.
//
// XXX
float asin (float x) {
return 0.0;
}
vec2 asin (vec2 x) {
return vec2 (asin (x.x), asin (x.y));
}
vec3 asin (vec3 x) {
return vec3 (asin (x.x), asin (x.y), asin (x.z));
}
vec4 asin (vec4 x) {
return vec4 (asin (x.x), asin (x.y), asin (x.z), asin (x.w));
}
//
// Arc cosine. Returns an angle whose cosine is x. The range of values returned by this function is
// [0, PI]. Results are undefined if |x| > 1.
//
// XXX
float acos (float x) {
return 0.0;
}
vec2 acos (vec2 x) {
return vec2 (acos (x.x), acos (x.y));
}
vec3 acos (vec3 x) {
return vec3 (acos (x.x), acos (x.y), acos (x.z));
}
vec4 acos (vec4 x) {
return vec4 (acos (x.x), acos (x.y), acos (x.z), acos (x.w));
}
//
// Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine
// what quadrant the angle is in. The range of values returned by this function is [–PI, PI].
// Results are undefined if x and y are both 0.
//
// XXX
float atan (float x, float y) {
return 0.0;
}
vec2 atan (vec2 x, vec2 y) {
return vec2 (atan (x.x, y.x), atan (x.y, y.y));
}
vec3 atan (vec3 x, vec3 y) {
return vec3 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z));
}
vec4 atan (vec4 x, vec4 y) {
return vec4 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z), atan (x.w, y.w));
}
//
// Arc tangent. Returns an angle whose tangent is y_over_x. The range of values returned by this
// function is [–PI/2, PI/2].
//
// XXX
float atan (float y_over_x) {
return 0.0;
}
vec2 atan (vec2 y_over_x) {
return vec2 (atan (y_over_x.x), atan (y_over_x.y));
}
vec3 atan (vec3 y_over_x) {
return vec3 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z));
}
vec4 atan (vec4 y_over_x) {
return vec4 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z), atan (y_over_x.w));
}
//
// 8.2 Exponential Functions
//
// These all operate component-wise. The description is per component.
//
//
// Returns x raised to the y power, i.e., x^y.
// Results are undefined if x < 0.
// Results are undefined if x = 0 and y <= 0.
//
// XXX
float pow (float x, float y) {
return 0.0;
}
vec2 pow (vec2 x, vec2 y) {
return vec2 (pow (x.x, y.x), pow (x.y, y.y));
}
vec3 pow (vec3 x, vec3 y) {
return vec3 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z));
}
vec4 pow (vec4 x, vec4 y) {
return vec4 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z), pow (x.w, y.w));
}
//
// Returns the natural exponentiation of x, i.e., e^x.
//
float exp (float x) {
return pow (2.71828183, x);
}
vec2 exp (vec2 x) {
return vec2 (exp (x.x), exp (x.y));
}
vec3 exp (vec3 x) {
return vec3 (exp (x.x), exp (x.y), exp (x.z));
}
vec4 exp (vec4 x) {
return vec4 (exp (x.x), exp (x.y), exp (x.z), exp (x.w));
}
//
// Returns the natural logarithm of x, i.e., returns the value y which satisfies the equation
// x = e^y.
// Results are undefined if x <= 0.
//
float log (float x) {
return log2 (x) / log2 (2.71828183);
}
vec2 log (vec2 x) {
return vec2 (log (x.x), log (x.y));
}
vec3 log (vec3 x) {
return vec3 (log (x.x), log (x.y), log (x.z));
}
vec4 log (vec4 x) {
return vec4 (log (x.x), log (x.y), log (x.z), log (x.w));
}
//
// Returns 2 raised to the x power, i.e., 2^x
//
float exp2 (float x) {
return pow (2.0, x);
}
vec2 exp2 (vec2 x) {
return vec2 (exp2 (x.x), exp2 (x.y));
}
vec3 exp2 (vec3 x) {
return vec3 (exp2 (x.x), exp2 (x.y), exp2 (x.z));
}
vec4 exp2 (vec4 x) {
return vec4 (exp2 (x.x), exp2 (x.y), exp2 (x.z), exp2 (x.w));
}
//
// Returns the base 2 logarithm of x, i.e., returns the value y which satisfies the equation
// x = 2^y.
// Results are undefined if x <= 0.
//
// XXX
float log2 (float x) {
return 0.0;
}
vec2 log2 (vec2 x) {
return vec2 (log2 (x.x), log2 (x.y));
}
vec3 log2 (vec3 x) {
return vec3 (log2 (x.x), log2 (x.y), log2 (x.z));
}
vec4 log2 (vec4 x) {
return vec4 (log2 (x.x), log2 (x.y), log2 (x.z), log2 (x.w));
}
//
// Returns the positive square root of x.
// Results are undefined if x < 0.
//
float sqrt (float x) {
return pow (x, 0.5);
}
vec2 sqrt (vec2 x) {
return vec2 (sqrt (x.x), sqrt (x.y));
}
vec3 sqrt (vec3 x) {
return vec3 (sqrt (x.x), sqrt (x.y), sqrt (x.z));
}
vec4 sqrt (vec4 x) {
return vec4 (sqrt (x.x), sqrt (x.y), sqrt (x.z), sqrt (x.w));
}
//
// Returns the reciprocal of the positive square root of x.
// Results are undefined if x <= 0.
//
float inversesqrt (float x) {
return 1.0 / sqrt (x);
}
vec2 inversesqrt (vec2 x) {
return vec2 (inversesqrt (x.x), inversesqrt (x.y));
}
vec3 inversesqrt (vec3 x) {
return vec3 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z));
}
vec4 inversesqrt (vec4 x) {
return vec4 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z), inversesqrt (x.w));
}
//
// 8.3 Common Functions
//
// These all operate component-wise. The description is per component.
//
//
// Returns x if x >= 0, otherwise it returns –x
//
float abs (float x) {
return x >= 0.0 ? x : -x;
}
vec2 abs (vec2 x) {
return vec2 (abs (x.x), abs (x.y));
}
vec3 abs (vec3 x) {
return vec3 (abs (x.x), abs (x.y), abs (x.z));
}
vec4 abs (vec4 x) {
return vec4 (abs (x.x), abs (x.y), abs (x.z), abs (x.w));
}
//
// Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0
//
float sign (float x) {
return x > 0.0 ? 1.0 : x < 0.0 ? -1.0 : 0.0;
}
vec2 sign (vec2 x) {
return vec2 (sign (x.x), sign (x.y));
}
vec3 sign (vec3 x) {
return vec3 (sign (x.x), sign (x.y), sign (x.z));
}
vec4 sign (vec4 x) {
return vec4 (sign (x.x), sign (x.y), sign (x.z), sign (x.w));
}
//
// Returns a value equal to the nearest integer that is less than or equal to x
//
// XXX
float floor (float x) {
return 0.0;
}
vec2 floor (vec2 x) {
return vec2 (floor (x.x), floor (x.y));
}
vec3 floor (vec3 x) {
return vec3 (floor (x.x), floor (x.y), floor (x.z));
}
vec4 floor (vec4 x) {
return vec4 (floor (x.x), floor (x.y), floor (x.z), floor (x.w));
}
//
// Returns a value equal to the nearest integer that is greater than or equal to x
//
// XXX
float ceil (float x) {
return 0.0;
}
vec2 ceil (vec2 x) {
return vec2 (ceil (x.x), ceil (x.y));
}
vec3 ceil (vec3 x) {
return vec3 (ceil (x.x), ceil (x.y), ceil (x.z));
}
vec4 ceil (vec4 x) {
return vec4 (ceil (x.x), ceil (x.y), ceil (x.z), ceil (x.w));
}
//
// Returns x – floor (x)
//
float fract (float x) {
return x - floor (x);
}
vec2 fract (vec2 x) {
return vec2 (fract (x.x), fract (x.y));
}
vec3 fract (vec3 x) {
return vec3 (fract (x.x), fract (x.y), fract (x.z));
}
vec4 fract (vec4 x) {
return vec4 (fract (x.x), fract (x.y), fract (x.z), fract (x.w));
}
//
// Modulus. Returns x – y * floor (x/y)
//
float mod (float x, float y) {
return x - y * floor (x / y);
}
vec2 mod (vec2 x, float y) {
return vec2 (mod (x.x, y), mod (x.y, y));
}
vec3 mod (vec3 x, float y) {
return vec3 (mod (x.x, y), mod (x.y, y), mod (x.z, y));
}
vec4 mod (vec4 x, float y) {
return vec4 (mod (x.x, y), mod (x.y, y), mod (x.z, y), mod (x.w, y));
}
vec2 mod (vec2 x, vec2 y) {
return vec2 (mod (x.x, y.x), mod (x.y, y.y));
}
vec3 mod (vec3 x, vec3 y) {
return vec3 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z));
}
vec4 mod (vec4 x, vec4 y) {
return vec4 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z), mod (x.w, y.w));
}
//
// Returns y if y < x, otherwise it returns x
//
float min (float x, float y) {
return y < x ? y : x;
}
vec2 min (vec2 x, float y) {
return vec2 (min (x.x, y), min (x.y, y));
}
vec3 min (vec3 x, float y) {
return vec3 (min (x.x, y), min (x.y, y), min (x.z, y));
}
vec4 min (vec4 x, float y) {
return vec4 (min (x.x, y), min (x.y, y), min (x.z, y), min (x.w, y));
}
vec2 min (vec2 x, vec2 y) {
return vec2 (min (x.x, y.x), min (x.y, y.y));
}
vec3 min (vec3 x, vec3 y) {
return vec3 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z));
}
vec4 min (vec4 x, vec4 y) {
return vec4 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z), min (x.w, y.w));
}
//
// Returns y if x < y, otherwise it returns x
//
float max (float x, float y) {
return min (y, x);
}
vec2 max (vec2 x, float y) {
return vec2 (max (x.x, y), max (x.y, y));
}
vec3 max (vec3 x, float y) {
return vec3 (max (x.x, y), max (x.y, y), max (x.z, y));
}
vec4 max (vec4 x, float y) {
return vec4 (max (x.x, y), max (x.y, y), max (x.z, y), max (x.w, y));
}
vec2 max (vec2 x, vec2 y) {
return vec2 (max (x.x, y.x), max (x.y, y.y));
}
vec3 max (vec3 x, vec3 y) {
return vec3 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z));
}
vec4 max (vec4 x, vec4 y) {
return vec4 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z), max (x.w, y.w));
}
//
// Returns min (max (x, minVal), maxVal)
//
// Note that colors and depths written by fragment shaders will be clamped by the implementation
// after the fragment shader runs.
//
float clamp (float x, float minVal, float maxVal) {
return min (max (x, minVal), maxVal);
}
vec2 clamp (vec2 x, float minVal, float maxVal) {
return vec2 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal));
}
vec3 clamp (vec3 x, float minVal, float maxVal) {
return vec3 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal),
clamp (x.z, minVal, maxVal));
}
vec4 clamp (vec4 x, float minVal, float maxVal) {
return vec4 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal),
clamp (x.z, minVal, maxVal), clamp (x.w, minVal, maxVal));
}
vec2 clamp (vec2 x, vec2 minVal, vec2 maxVal) {
return vec2 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y));
}
vec3 clamp (vec3 x, vec3 minVal, vec3 maxVal) {
return vec3 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y),
clamp (x.z, minVal.z, maxVal.z));
}
vec4 clamp (vec4 x, vec4 minVal, vec4 maxVal) {
return vec4 (clamp (x.x, minVal.x, maxVal.y), clamp (x.y, minVal.y, maxVal.y),
clamp (x.z, minVal.z, maxVal.z), clamp (x.w, minVal.w, maxVal.w));
}
//
// Returns x * (1 – a) + y * a, i.e., the linear blend of x and y
//
float mix (float x, float y, float a) {
return x * (1.0 - a) + y * a;
}
vec2 mix (vec2 x, vec2 y, float a) {
return vec2 (mix (x.x, y.x, a), mix (x.y, y.y, a));
}
vec3 mix (vec3 x, vec3 y, float a) {
return vec3 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a));
}
vec4 mix (vec4 x, vec4 y, float a) {
return vec4 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a), mix (x.w, y.w, a));
}
vec2 mix (vec2 x, vec2 y, vec2 a) {
return vec2 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y));
}
vec3 mix (vec3 x, vec3 y, vec3 a) {
return vec3 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z));
}
vec4 mix (vec4 x, vec4 y, vec4 a) {
return vec4 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z),
mix (x.w, y.w, a.w));
}
//
// Returns 0.0 if x < edge, otherwise it returns 1.0
//
float step (float edge, float x) {
return x < edge ? 0.0 : 1.0;
}
vec2 step (float edge, vec2 x) {
return vec2 (step (edge, x.x), step (edge, x.y));
}
vec3 step (float edge, vec3 x) {
return vec3 (step (edge, x.x), step (edge, x.y), step (edge, x.z));
}
vec4 step (float edge, vec4 x) {
return vec4 (step (edge, x.x), step (edge, x.y), step (edge, x.z), step (edge, x.w));
}
vec2 step (vec2 edge, vec2 x) {
return vec2 (step (edge.x, x.x), step (edge.y, x.y));
}
vec3 step (vec3 edge, vec3 x) {
return vec3 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z));
}
vec4 step (vec4 edge, vec4 x) {
return vec4 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z), step (edge.w, x.w));
}
//
// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth Hermite interpolation
// between 0 and 1 when edge0 < x < edge1. This is useful in cases where you would want a threshold
// function with a smooth transition. This is equivalent to:
// <type> t;
// t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
// return t * t * (3 – 2 * t);
//
float smoothstep (float edge0, float edge1, float x) {
const float t = clamp ((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
}
vec2 smoothstep (float edge0, float edge1, vec2 x) {
return vec2 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y));
}
vec3 smoothstep (float edge0, float edge1, vec3 x) {
return vec3 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y),
smoothstep (edge0, edge1, x.z));
}
vec4 smoothstep (float edge0, float edge1, vec4 x) {
return vec4 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y),
smoothstep (edge0, edge1, x.z), smoothstep (edge0, edge1, x.w));
}
vec2 smoothstep (vec2 edge0, vec2 edge1, vec2 x) {
return vec2 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y));
}
vec3 smoothstep (vec3 edge0, vec3 edge1, vec3 x) {
return vec3 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y),
smoothstep (edge0.z, edge1.z, x.z));
}
vec4 smoothstep (vec4 edge0, vec4 edge1, vec4 x) {
return vec4 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y),
smoothstep (edge0.z, edge1.z, x.z), smoothstep (edge0.w, edge1.w, x.w));
}
//
// 8.4 Geometric Functions
//
// These operate on vectors as vectors, not component-wise.
//
//
// Returns the dot product of x and y, i.e., result = x[0] * y[0] + x[1] * y[1] + ...
//
float dot (float x, float y) {
return x * y;
}
float dot (vec2 x, vec2 y) {
return dot (x.x, y.x) + dot (x.y, y.y);
}
float dot (vec3 x, vec3 y) {
return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z);
}
float dot (vec4 x, vec4 y) {
return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z) + dot (x.w, y.w);
}
//
// Returns the length of vector x, i.e., sqrt (x[0] * x[0] + x[1] * x[1] + ...)
//
float length (float x) {
return sqrt (dot (x, x));
}
float length (vec2 x) {
return sqrt (dot (x, x));
}
float length (vec3 x) {
return sqrt (dot (x, x));
}
float length (vec4 x) {
return sqrt (dot (x, x));
}
//
// Returns the distance between p0 and p1, i.e. length (p0 – p1)
//
float distance (float x, float y) {
return length (x - y);
}
float distance (vec2 x, vec2 y) {
return length (x - y);
}
float distance (vec3 x, vec3 y) {
return length (x - y);
}
float distance (vec4 x, vec4 y) {
return length (x - y);
}
//
// Returns the cross product of x and y, i.e.
// result.0 = x[1] * y[2] - y[1] * x[2]
// result.1 = x[2] * y[0] - y[2] * x[0]
// result.2 = x[0] * y[1] - y[0] * x[1]
//
vec3 cross (vec3 x, vec3 y) {
return vec3 (x.y * y.z - y.y * x.z, x.z * y.x - y.z * x.x, x.x * y.y - y.x * x.y);
}
//
// Returns a vector in the same direction as x but with a length of 1.
//
float normalize (float x) {
return 1.0;
}
vec2 normalize (vec2 x) {
return x / length (x);
}
vec3 normalize (vec3 x) {
return x / length (x);
}
vec4 normalize (vec4 x) {
return x / length (x);
}
//
// If dot (Nref, I) < 0 return N otherwise return –N
//
float faceforward (float N, float I, float Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
}
vec2 faceforward (vec2 N, vec2 I, vec2 Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
}
vec3 faceforward (vec3 N, vec3 I, vec3 Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
}
vec4 faceforward (vec4 N, vec4 I, vec4 Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
}
//
// For the incident vector I and surface orientation N, returns the reflection direction:
// result = I - 2 * dot (N, I) * N
// N must already be normalized in order to achieve the desired result.
float reflect (float I, float N) {
return I - 2.0 * dot (N, I) * N;
}
vec2 reflect (vec2 I, vec2 N) {
return I - 2.0 * dot (N, I) * N;
}
vec3 reflect (vec3 I, vec3 N) {
return I - 2.0 * dot (N, I) * N;
}
vec4 reflect (vec4 I, vec4 N) {
return I - 2.0 * dot (N, I) * N;
}
//
// For the incident vector I and surface normal N, and the ratio of inidices of refraction eta,
// return the refraction vector. The returned result is computed by
//
// k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I))
// if (k < 0.0)
// result = genType (0.0)
// else
// result = eta * I - (eta * dot (N, I) + sqrt (k)) * N
//
// The input parameters for the incident vector I and the surface normal N must already be
// normalized to get the desired results.
//
float refract (float I, float N, float eta) {
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
}
vec2 refract (vec2 I, vec2 N, float eta) {
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return vec2 (0.0);
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
}
vec3 refract (vec3 I, vec3 N, float eta) {
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return vec3 (0.0);
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
}
vec4 refract (vec4 I, vec4 N, float eta) {
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return vec4 (0.0);
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
}
//
// 8.5 Matrix Functions
//
//
// Multiply matrix x by matrix y component-wise, i.e., result[i][j] is the scalar product
// of x[i][j] and y[i][j].
// Note: to get linear algebraic matrix multiplication, use the multiply operator (*).
//
mat2 matrixCompMult (mat2 x, mat2 y) {
return mat2 (
x[0].x * y[0].x, x[0].y * y[0].y,
x[1].x * y[1].x, x[1].y * y[1].y
);
}
mat3 matrixCompMult (mat3 x, mat3 y) {
return mat4 (
x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z,
x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z,
x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z
);
}
mat4 matrixCompMult (mat4 x, mat4 y) {
return mat4 (
x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z + x[0].w * y[0].w,
x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z + x[1].w * y[1].w,
x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z + x[2].w * y[2].w,
x[3].x * y[3].x, x[3].y * y[3].y, x[3].z * y[3].z + x[3].w * y[3].w
);
}
//
// 8.6 Vector Relational Functions
//
// Relational and equality operators (<, <=, >, >=, ==, !=) are defined (or reserved) to produce
// scalar Boolean results.
//
//
// Returns the component-wise compare of x < y.
//
bvec2 lessThan (vec2 x, vec2 y) {
return bvec2 (x.x < y.x, x.y < y.y);
}
bvec3 lessThan (vec3 x, vec3 y) {
return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z);
}
bvec4 lessThan (vec4 x, vec4 y) {
return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w);
}
bvec2 lessThan (ivec2 x, ivec2 y) {
return bvec2 (x.x < y.x, x.y < y.y);
}
bvec3 lessThan (ivec3 x, ivec3 y) {
return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z);
}
bvec4 lessThan (ivec4 x, ivec4 y) {
return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w);
}
//
// Returns the component-wise compare of x <= y.
//
bvec2 lessThanEqual (vec2 x, vec2 y) {
return bvec2 (x.x <= y.x, x.y <= y.y);
}
bvec3 lessThanEqual (vec3 x, vec3 y) {
return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z);
}
bvec4 lessThanEqual (vec4 x, vec4 y) {
return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w);
}
bvec2 lessThanEqual (ivec2 x, ivec2 y) {
return bvec2 (x.x <= y.x, x.y <= y.y);
}
bvec3 lessThanEqual (ivec3 x, ivec3 y) {
return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z);
}
bvec4 lessThanEqual (ivec4 x, ivec4 y) {
return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w);
}
//
// Returns the component-wise compare of x > y.
//
bvec2 greaterThan (vec2 x, vec2 y) {
return bvec2 (x.x > y.x, x.y > y.y);
}
bvec3 greaterThan (vec3 x, vec3 y) {
return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z);
}
bvec4 greaterThan (vec4 x, vec4 y) {
return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w);
}
bvec2 greaterThan (ivec2 x, ivec2 y) {
return bvec2 (x.x > y.x, x.y > y.y);
}
bvec3 greaterThan (ivec3 x, ivec3 y) {
return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z);
}
bvec4 greaterThan (ivec4 x, ivec4 y) {
return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w);
}
//
// Returns the component-wise compare of x >= y.
//
bvec2 greaterThanEqual (vec2 x, vec2 y) {
return bvec2 (x.x >= y.x, x.y >= y.y);
}
bvec3 greaterThanEqual (vec3 x, vec3 y) {
return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z);
}
bvec4 greaterThanEqual (vec4 x, vec4 y) {
return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w);
}
bvec2 greaterThanEqual (ivec2 x, ivec2 y) {
return bvec2 (x.x >= y.x, x.y >= y.y);
}
bvec3 greaterThanEqual (ivec3 x, ivec3 y) {
return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z);
}
bvec4 greaterThanEqual (ivec4 x, ivec4 y) {
return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w);
}
//
// Returns the component-wise compare of x == y.
//
bvec2 equal (vec2 x, vec2 y) {
return bvec2 (x.x == y.x, x.y == y.y);
}
bvec3 equal (vec3 x, vec3 y) {
return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z);
}
bvec4 equal (vec4 x, vec4 y) {
return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w);
}
bvec2 equal (ivec2 x, ivec2 y) {
return bvec2 (x.x == y.x, x.y == y.y);
}
bvec3 equal (ivec3 x, ivec3 y) {
return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z);
}
bvec4 equal (ivec4 x, ivec4 y) {
return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w);
}
//
// Returns the component-wise compare of x != y.
//
bvec2 notEqual (vec2 x, vec2 y) {
return bvec2 (x.x != y.x, x.y != y.y);
}
bvec3 notEqual (vec3 x, vec3 y) {
return bvec3 (x.x != y.x, x.y != y.y, x.z != y.z);
}
bvec4 notEqual (vec4 x, vec4 y) {
return (bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w);
}
bvec2 notEqual (ivec2 x, ivec2 y) {
return (bvec2 (x.x != y.x, x.y != y.y);
}
bvec3 notEqual (ivec3 x, ivec3 y) {
return (bvec3 (x.x != y.x, x.y != y.y, x.z != y.z);
}
bvec4 notEqual (ivec4 x, ivec4 y) {
return (bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w);
}
//
// Returns true if any component of x is true.
//
bool any (bvec2 x) {
return x.x || x.y;
}
bool any (bvec3 x) {
return x.x || x.y || x.z;
}
bool any (bvec4 x) {
return x.x || x.y || x.z || x.w;
}
//
// Returns true only if all components of x are true.
//
bool all (bvec2 x) {
return x.x && x.y;
}
bool all (bvec3 x) {
return x.x && x.y && x.z;
}
bool all (bvec4 x) {
return x.x && x.y && x.z && x.w;
}
//
// Returns the component-wise logical complement of x.
//
bvec2 not (bvec2 x) {
return bvec2 (!x.x, !x.y);
}
bvec3 not (bvec3 x) {
return bvec3 (!x.x, !x.y, !x.z);
}
bvec4 not (bvec4 x) {
return bvec4 (!x.x, !x.y, !x.z, !x.w);
}
//
// 8.7 Texture Lookup Functions
//
// Texture lookup functions are available to both vertex and fragment shaders. However, level
// of detail is not computed by fixed functionality for vertex shaders, so there are some
// differences in operation between vertex and fragment texture lookups. The functions in the table
// below provide access to textures through samplers, as set up through the OpenGL API. Texture
// properties such as size, pixel format, number of dimensions, filtering method, number of mip-map
// levels, depth comparison, and so on are also defined by OpenGL API calls. Such properties are
// taken into account as the texture is accessed via the built-in functions defined below.
//
// If a non-shadow texture call is made to a sampler that represents a depth texture with depth
// comparisons turned on, then results are undefined. If a shadow texture call is made to a sampler
// that represents a depth texture with depth comparisions turned off, the results are undefined.
// If a shadow texture call is made to a sampler that does not represent a depth texture, then
// results are undefined.
//
// In all functions below, the bias parameter is optional for fragment shaders. The bias parameter
// is not accepted in a vertex shader. For a fragment shader, if bias is present, it is added to
// the calculated level of detail prior to performing the texture access operation. If the bias
// parameter is not provided, then the implementation automatically selects level of detail:
// For a texture that is not mip-mapped, the texture is used directly. If it is mip-mapped and
// running in a fragment shader, the LOD computed by the implementation is used to do the texture
// lookup. If it is mip-mapped and running on the vertex shader, then the base texture is used.
//
// The built-ins suffixed with “Lod” are allowed only in a vertex shader. For the “Lod” functions,
// lod is directly used as the level of detail.
//
//
// Use the texture coordinate coord to do a texture lookup in the 1D texture currently bound
// to sampler. For the projective (“Proj”) versions, the texture coordinate coord.s is divided by
// the last component of coord.
//
// XXX
vec4 texture1D (sampler1D sampler, float coord) {
return vec4 (0.0);
}
vec4 texture1DProj (sampler1D sampler, vec2 coord) {
return texture1D (sampler, coord.s / coord.t);
}
vec4 texture1DProj (sampler1D sampler, vec4 coord) {
return texture1D (sampler, coord.s / coord.q);
}
//
// Use the texture coordinate coord to do a texture lookup in the 2D texture currently bound
// to sampler. For the projective (“Proj”) versions, the texture coordinate (coord.s, coord.t) is
// divided by the last component of coord. The third component of coord is ignored for the vec4
// coord variant.
//
// XXX
vec4 texture2D (sampler2D sampler, vec2 coord) {
return vec4 (0.0);
}
vec4 texture2DProj (sampler2D sampler, vec3 coord) {
return texture2D (sampler, vec2 (coord.s / coord.p, coord.t / coord.p));
}
vec4 texture2DProj (sampler2D sampler, vec4 coord) {
return texture2D (sampler, vec2 (coord.s / coord.q, coord.t / coord.q));
}
//
// Use the texture coordinate coord to do a texture lookup in the 3D texture currently bound
// to sampler. For the projective (“Proj”) versions, the texture coordinate is divided by coord.q.
//
// XXX
vec4 texture3D (sampler3D sampler, vec3 coord) {
return vec4 (0.0);
}
vec4 texture3DProj (sampler3D sampler, vec4 coord) {
return texture3D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q));
}
//
// Use the texture coordinate coord to do a texture lookup in the cube map texture currently bound
// to sampler. The direction of coord is used to select which face to do a 2-dimensional texture
// lookup in, as described in section 3.8.6 in version 1.4 of the OpenGL specification.
//
// XXX
vec4 textureCube (samplerCube sampler, vec3 coord) {
return vec4 (0.0);
}
//
// Use texture coordinate coord to do a depth comparison lookup on the depth texture bound
// to sampler, as described in section 3.8.14 of version 1.4 of the OpenGL specification. The 3rd
// component of coord (coord.p) is used as the R value. The texture bound to sampler must be a
// depth texture, or results are undefined. For the projective (“Proj”) version of each built-in,
// the texture coordinate is divide by coord.q, giving a depth value R of coord.p/coord.q. The
// second component of coord is ignored for the “1D” variants.
//
// XXX
vec4 shadow1D (sampler1DShadow sampler, vec3 coord) {
return vec4 (0.0);
}
// XXX
vec4 shadow2D (sampler2DShadow sampler, vec3 coord) {
return vec4 (0.0);
}
vec4 shadow1DProj (sampler1DShadow sampler, vec4 coord) {
return shadow1D (sampler, vec3 (coord.s / coord.q, 0.0, coord.p / coord.q));
}
vec4 shadow2DProj (sampler2DShadow sampler, vec4 coord) {
return shadow2D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q));
}
//
// 8.9 Noise Functions
//
// Noise functions are available to both fragment and vertex shaders. They are stochastic functions
// that can be used to increase visual complexity. Values returned by the following noise functions
// give the appearance of randomness, but are not truly random. The noise functions below are
// defined to have the following characteristics:
//
// - The return value(s) are always in the range [-1,1], and cover at least the range [-0.6, 0.6],
// with a gaussian-like distribution.
// • The return value(s) have an overall average of 0.0
// • They are repeatable, in that a particular input value will always produce the same return value
// • They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it
// has the same statistical character)
// • They have a statistical invariance under translation (i.e., no matter how the domain is
// translated, it has the same statistical character)
// • They typically give different results under translation.
// - The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.
//
//
// Returns a 1D noise value based on the input value x.
//
// XXX
float noise1 (float x) {
return 0.0;
}
// XXX
float noise1 (vec2 x) {
return 0.0;
}
// XXX
float noise1 (vec3 x) {
return 0.0;
}
// XXX
float noise1 (vec4 x) {
return 0.0;
}
//
// Returns a 2D noise value based on the input value x.
//
// XXX
vec2 noise2 (float x) {
return vec2 (0.0);
}
// XXX
vec2 noise2 (vec2 x) {
return vec2 (0.0);
}
// XXX
vec2 noise2 (vec3 x) {
return vec2 (0.0);
}
// XXX
vec2 noise2 (vec4 x) {
return vec2 (0.0);
}
//
// Returns a 3D noise value based on the input value x.
//
// XXX
vec3 noise3 (float x) {
return vec3 (0.0);
}
// XXX
vec3 noise3 (vec2 x) {
return vec3 (0.0);
}
// XXX
vec3 noise3 (vec3 x) {
return vec3 (0.0);
}
// XXX
vec3 noise3 (vec4 x) {
return vec3 (0.0);
}
//
// Returns a 4D noise value based on the input value x.
//
// XXX
vec4 noise4 (float x) {
return vec4 (0.0);
}
// XXX
vec4 noise4 (vec2 x) {
return vec4 (0.0);
}
// XXX
vec4 noise4 (vec3 x) {
return vec4 (0.0);
}
// XXX
vec4 noise4 (vec4 x) {
return vec4 (0.0);
}
|