summaryrefslogtreecommitdiff
path: root/src/mesa/swrast/s_fragprog.c
blob: 517b63c91b2da322594a355005a46635f7c712b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
/*
 * Mesa 3-D graphics library
 * Version:  6.5.2
 *
 * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "prog_instruction.h"
#include "prog_parameter.h"
#include "prog_print.h"
#include "program.h"

#include "s_fragprog.h"
#include "s_span.h"


/* See comments below for info about this */
#define LAMBDA_ZERO 1

/* debug predicate */
#define DEBUG_FRAG 0


/**
 * Virtual machine state used during execution of a fragment programs.
 */
struct fp_machine
{
   GLfloat Temporaries[MAX_PROGRAM_TEMPS][4];
   GLfloat Inputs[FRAG_ATTRIB_MAX][4];
   GLfloat Outputs[FRAG_RESULT_MAX][4];
   GLuint CondCodes[4];  /**< COND_* value for x/y/z/w */

   GLuint CallStack[MAX_PROGRAM_CALL_DEPTH]; /**< For CAL/RET instructions */
   GLuint StackDepth; /**< Index/ptr to top of CallStack[] */
};


#if FEATURE_MESA_program_debug
static struct fp_machine *CurrentMachine = NULL;

/**
 * For GL_MESA_program_debug.
 * Return current value (4*GLfloat) of a fragment program register.
 * Called via ctx->Driver.GetFragmentProgramRegister().
 */
void
_swrast_get_program_register(GLcontext *ctx, enum register_file file,
                             GLuint index, GLfloat val[4])
{
   if (CurrentMachine) {
      switch (file) {
      case PROGRAM_INPUT:
         COPY_4V(val, CurrentMachine->Inputs[index]);
         break;
      case PROGRAM_OUTPUT:
         COPY_4V(val, CurrentMachine->Outputs[index]);
         break;
      case PROGRAM_TEMPORARY:
         COPY_4V(val, CurrentMachine->Temporaries[index]);
         break;
      default:
         _mesa_problem(NULL,
                       "bad register file in _swrast_get_program_register");
      }
   }
}
#endif /* FEATURE_MESA_program_debug */


/**
 * Fetch a texel.
 */
static void
fetch_texel( GLcontext *ctx, const GLfloat texcoord[4], GLfloat lambda,
             GLuint unit, GLfloat color[4] )
{
   GLchan rgba[4];
   SWcontext *swrast = SWRAST_CONTEXT(ctx);

   /* XXX use a float-valued TextureSample routine here!!! */
   swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current,
                               1, (const GLfloat (*)[4]) texcoord,
                               &lambda, &rgba);
   color[0] = CHAN_TO_FLOAT(rgba[0]);
   color[1] = CHAN_TO_FLOAT(rgba[1]);
   color[2] = CHAN_TO_FLOAT(rgba[2]);
   color[3] = CHAN_TO_FLOAT(rgba[3]);
}


/**
 * Fetch a texel with the given partial derivatives to compute a level
 * of detail in the mipmap.
 */
static void
fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4],
                   const GLfloat texdx[4], const GLfloat texdy[4],
                   GLuint unit, GLfloat color[4] )
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
   const struct gl_texture_image *texImg = texObj->Image[0][texObj->BaseLevel];
   const GLfloat texW = (GLfloat) texImg->WidthScale;
   const GLfloat texH = (GLfloat) texImg->HeightScale;
   GLchan rgba[4];

   GLfloat lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */
                                         texdx[1], texdy[1], /* dt/dx, dt/dy */
                                         texdx[3], texdy[2], /* dq/dx, dq/dy */
                                         texW, texH,
                                         texcoord[0], texcoord[1], texcoord[3],
                                         1.0F / texcoord[3]);

   swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current,
                               1, (const GLfloat (*)[4]) texcoord,
                               &lambda, &rgba);
   color[0] = CHAN_TO_FLOAT(rgba[0]);
   color[1] = CHAN_TO_FLOAT(rgba[1]);
   color[2] = CHAN_TO_FLOAT(rgba[2]);
   color[3] = CHAN_TO_FLOAT(rgba[3]);
}


/**
 * Return a pointer to the 4-element float vector specified by the given
 * source register.
 */
static INLINE const GLfloat *
get_register_pointer( GLcontext *ctx,
                      const struct prog_src_register *source,
                      const struct fp_machine *machine,
                      const struct gl_fragment_program *program )
{
   switch (source->File) {
   case PROGRAM_TEMPORARY:
      ASSERT(source->Index < MAX_PROGRAM_TEMPS);
      return machine->Temporaries[source->Index];
   case PROGRAM_INPUT:
      ASSERT(source->Index < FRAG_ATTRIB_MAX);
      return machine->Inputs[source->Index];
   case PROGRAM_OUTPUT:
      /* This is only for PRINT */
      ASSERT(source->Index < FRAG_RESULT_MAX);
      return machine->Outputs[source->Index];
   case PROGRAM_LOCAL_PARAM:
      ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
      return program->Base.LocalParams[source->Index];
   case PROGRAM_ENV_PARAM:
      ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_PARAMS);
      return ctx->FragmentProgram.Parameters[source->Index];
   case PROGRAM_STATE_VAR:
      /* Fallthrough */
   case PROGRAM_CONSTANT:
      /* Fallthrough */
   case PROGRAM_UNIFORM:
      /* Fallthrough */
   case PROGRAM_NAMED_PARAM:
      ASSERT(source->Index < (GLint) program->Base.Parameters->NumParameters);
      return program->Base.Parameters->ParameterValues[source->Index];
   default:
      _mesa_problem(ctx, "Invalid input register file %d in fp "
                    "get_register_pointer", source->File);
      return NULL;
   }
}


/**
 * Fetch a 4-element float vector from the given source register.
 * Apply swizzling and negating as needed.
 */
static void
fetch_vector4( GLcontext *ctx,
               const struct prog_src_register *source,
               const struct fp_machine *machine,
               const struct gl_fragment_program *program,
               GLfloat result[4] )
{
   const GLfloat *src = get_register_pointer(ctx, source, machine, program);
   ASSERT(src);

   if (source->Swizzle == MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
                                        SWIZZLE_Z, SWIZZLE_W)) {
      /* no swizzling */
      COPY_4V(result, src);
   }
   else {
      result[0] = src[GET_SWZ(source->Swizzle, 0)];
      result[1] = src[GET_SWZ(source->Swizzle, 1)];
      result[2] = src[GET_SWZ(source->Swizzle, 2)];
      result[3] = src[GET_SWZ(source->Swizzle, 3)];
   }

   if (source->NegateBase) {
      result[0] = -result[0];
      result[1] = -result[1];
      result[2] = -result[2];
      result[3] = -result[3];
   }
   if (source->Abs) {
      result[0] = FABSF(result[0]);
      result[1] = FABSF(result[1]);
      result[2] = FABSF(result[2]);
      result[3] = FABSF(result[3]);
   }
   if (source->NegateAbs) {
      result[0] = -result[0];
      result[1] = -result[1];
      result[2] = -result[2];
      result[3] = -result[3];
   }
}


/**
 * Fetch the derivative with respect to X for the given register.
 * \return GL_TRUE if it was easily computed or GL_FALSE if we
 * need to execute another instance of the program (ugh)!
 */
static GLboolean
fetch_vector4_deriv( GLcontext *ctx,
                     const struct prog_src_register *source,
                     const SWspan *span,
                     char xOrY, GLint column, GLfloat result[4] )
{
   GLfloat src[4];

   ASSERT(xOrY == 'X' || xOrY == 'Y');

   switch (source->Index) {
   case FRAG_ATTRIB_WPOS:
      if (xOrY == 'X') {
         src[0] = 1.0;
         src[1] = 0.0;
         src[2] = span->dzdx / ctx->DrawBuffer->_DepthMaxF;
         src[3] = span->dwdx;
      }
      else {
         src[0] = 0.0;
         src[1] = 1.0;
         src[2] = span->dzdy / ctx->DrawBuffer->_DepthMaxF;
         src[3] = span->dwdy;
      }
      break;
   case FRAG_ATTRIB_COL0:
      if (xOrY == 'X') {
         src[0] = span->drdx * (1.0F / CHAN_MAXF);
         src[1] = span->dgdx * (1.0F / CHAN_MAXF);
         src[2] = span->dbdx * (1.0F / CHAN_MAXF);
         src[3] = span->dadx * (1.0F / CHAN_MAXF);
      }
      else {
         src[0] = span->drdy * (1.0F / CHAN_MAXF);
         src[1] = span->dgdy * (1.0F / CHAN_MAXF);
         src[2] = span->dbdy * (1.0F / CHAN_MAXF);
         src[3] = span->dady * (1.0F / CHAN_MAXF);
      }
      break;
   case FRAG_ATTRIB_COL1:
      if (xOrY == 'X') {
         src[0] = span->dsrdx * (1.0F / CHAN_MAXF);
         src[1] = span->dsgdx * (1.0F / CHAN_MAXF);
         src[2] = span->dsbdx * (1.0F / CHAN_MAXF);
         src[3] = 0.0; /* XXX need this */
      }
      else {
         src[0] = span->dsrdy * (1.0F / CHAN_MAXF);
         src[1] = span->dsgdy * (1.0F / CHAN_MAXF);
         src[2] = span->dsbdy * (1.0F / CHAN_MAXF);
         src[3] = 0.0; /* XXX need this */
      }
      break;
   case FRAG_ATTRIB_FOGC:
      if (xOrY == 'X') {
         src[0] = span->dfogdx;
         src[1] = 0.0;
         src[2] = 0.0;
         src[3] = 0.0;
      }
      else {
         src[0] = span->dfogdy;
         src[1] = 0.0;
         src[2] = 0.0;
         src[3] = 0.0;
      }
      break;
   case FRAG_ATTRIB_TEX0:
   case FRAG_ATTRIB_TEX1:
   case FRAG_ATTRIB_TEX2:
   case FRAG_ATTRIB_TEX3:
   case FRAG_ATTRIB_TEX4:
   case FRAG_ATTRIB_TEX5:
   case FRAG_ATTRIB_TEX6:
   case FRAG_ATTRIB_TEX7:
      if (xOrY == 'X') {
         const GLuint u = source->Index - FRAG_ATTRIB_TEX0;
         /* this is a little tricky - I think I've got it right */
         const GLfloat invQ = 1.0f / (span->tex[u][3]
                                      + span->texStepX[u][3] * column);
         src[0] = span->texStepX[u][0] * invQ;
         src[1] = span->texStepX[u][1] * invQ;
         src[2] = span->texStepX[u][2] * invQ;
         src[3] = span->texStepX[u][3] * invQ;
      }
      else {
         const GLuint u = source->Index - FRAG_ATTRIB_TEX0;
         /* Tricky, as above, but in Y direction */
         const GLfloat invQ = 1.0f / (span->tex[u][3] + span->texStepY[u][3]);
         src[0] = span->texStepY[u][0] * invQ;
         src[1] = span->texStepY[u][1] * invQ;
         src[2] = span->texStepY[u][2] * invQ;
         src[3] = span->texStepY[u][3] * invQ;
      }
      break;
   default:
      return GL_FALSE;
   }

   result[0] = src[GET_SWZ(source->Swizzle, 0)];
   result[1] = src[GET_SWZ(source->Swizzle, 1)];
   result[2] = src[GET_SWZ(source->Swizzle, 2)];
   result[3] = src[GET_SWZ(source->Swizzle, 3)];

   if (source->NegateBase) {
      result[0] = -result[0];
      result[1] = -result[1];
      result[2] = -result[2];
      result[3] = -result[3];
   }
   if (source->Abs) {
      result[0] = FABSF(result[0]);
      result[1] = FABSF(result[1]);
      result[2] = FABSF(result[2]);
      result[3] = FABSF(result[3]);
   }
   if (source->NegateAbs) {
      result[0] = -result[0];
      result[1] = -result[1];
      result[2] = -result[2];
      result[3] = -result[3];
   }
   return GL_TRUE;
}


/**
 * As above, but only return result[0] element.
 */
static void
fetch_vector1( GLcontext *ctx,
               const struct prog_src_register *source,
               const struct fp_machine *machine,
               const struct gl_fragment_program *program,
               GLfloat result[4] )
{
   const GLfloat *src = get_register_pointer(ctx, source, machine, program);
   ASSERT(src);

   result[0] = src[GET_SWZ(source->Swizzle, 0)];

   if (source->NegateBase) {
      result[0] = -result[0];
   }
   if (source->Abs) {
      result[0] = FABSF(result[0]);
   }
   if (source->NegateAbs) {
      result[0] = -result[0];
   }
}


/**
 * Test value against zero and return GT, LT, EQ or UN if NaN.
 */
static INLINE GLuint
generate_cc( float value )
{
   if (value != value)
      return COND_UN;  /* NaN */
   if (value > 0.0F)
      return COND_GT;
   if (value < 0.0F)
      return COND_LT;
   return COND_EQ;
}


/**
 * Test if the ccMaskRule is satisfied by the given condition code.
 * Used to mask destination writes according to the current condition code.
 */
static INLINE GLboolean
test_cc(GLuint condCode, GLuint ccMaskRule)
{
   switch (ccMaskRule) {
   case COND_EQ: return (condCode == COND_EQ);
   case COND_NE: return (condCode != COND_EQ);
   case COND_LT: return (condCode == COND_LT);
   case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
   case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
   case COND_GT: return (condCode == COND_GT);
   case COND_TR: return GL_TRUE;
   case COND_FL: return GL_FALSE;
   default:      return GL_TRUE;
   }
}


/**
 * Store 4 floats into a register.  Observe the instructions saturate and
 * set-condition-code flags.
 */
static void
store_vector4( const struct prog_instruction *inst,
               struct fp_machine *machine,
               const GLfloat value[4] )
{
   const struct prog_dst_register *dest = &(inst->DstReg);
   const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
   GLfloat *dstReg;
   GLfloat dummyReg[4];
   GLfloat clampedValue[4];
   GLuint writeMask = dest->WriteMask;

   switch (dest->File) {
      case PROGRAM_OUTPUT:
         dstReg = machine->Outputs[dest->Index];
         break;
      case PROGRAM_TEMPORARY:
         dstReg = machine->Temporaries[dest->Index];
         break;
      case PROGRAM_WRITE_ONLY:
         dstReg = dummyReg;
         return;
      default:
         _mesa_problem(NULL, "bad register file in store_vector4(fp)");
         return;
   }

#if 0
   if (value[0] > 1.0e10 ||
       IS_INF_OR_NAN(value[0]) ||
       IS_INF_OR_NAN(value[1]) ||
       IS_INF_OR_NAN(value[2]) ||
       IS_INF_OR_NAN(value[3])  )
      printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
#endif

   if (clamp) {
      clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
      clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
      clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
      clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
      value = clampedValue;
   }

   if (dest->CondMask != COND_TR) {
      /* condition codes may turn off some writes */
      if (writeMask & WRITEMASK_X) {
         if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)],
                      dest->CondMask))
            writeMask &= ~WRITEMASK_X;
      }
      if (writeMask & WRITEMASK_Y) {
         if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)],
                      dest->CondMask))
            writeMask &= ~WRITEMASK_Y;
      }
      if (writeMask & WRITEMASK_Z) {
         if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)],
                      dest->CondMask))
            writeMask &= ~WRITEMASK_Z;
      }
      if (writeMask & WRITEMASK_W) {
         if (!test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)],
                      dest->CondMask))
            writeMask &= ~WRITEMASK_W;
      }
   }

   if (writeMask & WRITEMASK_X)
      dstReg[0] = value[0];
   if (writeMask & WRITEMASK_Y)
      dstReg[1] = value[1];
   if (writeMask & WRITEMASK_Z)
      dstReg[2] = value[2];
   if (writeMask & WRITEMASK_W)
      dstReg[3] = value[3];

   if (inst->CondUpdate) {
      if (writeMask & WRITEMASK_X)
         machine->CondCodes[0] = generate_cc(value[0]);
      if (writeMask & WRITEMASK_Y)
         machine->CondCodes[1] = generate_cc(value[1]);
      if (writeMask & WRITEMASK_Z)
         machine->CondCodes[2] = generate_cc(value[2]);
      if (writeMask & WRITEMASK_W)
         machine->CondCodes[3] = generate_cc(value[3]);
   }
}


/**
 * Initialize a new machine state instance from an existing one, adding
 * the partial derivatives onto the input registers.
 * Used to implement DDX and DDY instructions in non-trivial cases.
 */
static void
init_machine_deriv( GLcontext *ctx,
                    const struct fp_machine *machine,
                    const struct gl_fragment_program *program,
                    const SWspan *span, char xOrY,
                    struct fp_machine *dMachine )
{
   GLuint u, v;

   ASSERT(xOrY == 'X' || xOrY == 'Y');

   /* copy existing machine */
   _mesa_memcpy(dMachine, machine, sizeof(struct fp_machine));

   if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
      /* Clear temporary registers (undefined for ARB_f_p) */
      _mesa_bzero( (void*) machine->Temporaries,
                   MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
   }

   /* Add derivatives */
   if (program->Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) {
      GLfloat *wpos = (GLfloat*) machine->Inputs[FRAG_ATTRIB_WPOS];
      if (xOrY == 'X') {
         wpos[0] += 1.0F;
         wpos[1] += 0.0F;
         wpos[2] += span->dzdx;
         wpos[3] += span->dwdx;
      }
      else {
         wpos[0] += 0.0F;
         wpos[1] += 1.0F;
         wpos[2] += span->dzdy;
         wpos[3] += span->dwdy;
      }
   }
   if (program->Base.InputsRead & (1 << FRAG_ATTRIB_COL0)) {
      GLfloat *col0 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL0];
      if (xOrY == 'X') {
         col0[0] += span->drdx * (1.0F / CHAN_MAXF);
         col0[1] += span->dgdx * (1.0F / CHAN_MAXF);
         col0[2] += span->dbdx * (1.0F / CHAN_MAXF);
         col0[3] += span->dadx * (1.0F / CHAN_MAXF);
      }
      else {
         col0[0] += span->drdy * (1.0F / CHAN_MAXF);
         col0[1] += span->dgdy * (1.0F / CHAN_MAXF);
         col0[2] += span->dbdy * (1.0F / CHAN_MAXF);
         col0[3] += span->dady * (1.0F / CHAN_MAXF);
      }
   }
   if (program->Base.InputsRead & (1 << FRAG_ATTRIB_COL1)) {
      GLfloat *col1 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL1];
      if (xOrY == 'X') {
         col1[0] += span->dsrdx * (1.0F / CHAN_MAXF);
         col1[1] += span->dsgdx * (1.0F / CHAN_MAXF);
         col1[2] += span->dsbdx * (1.0F / CHAN_MAXF);
         col1[3] += 0.0; /*XXX fix */
      }
      else {
         col1[0] += span->dsrdy * (1.0F / CHAN_MAXF);
         col1[1] += span->dsgdy * (1.0F / CHAN_MAXF);
         col1[2] += span->dsbdy * (1.0F / CHAN_MAXF);
         col1[3] += 0.0; /*XXX fix */
      }
   }
   if (program->Base.InputsRead & (1 << FRAG_ATTRIB_FOGC)) {
      GLfloat *fogc = (GLfloat*) machine->Inputs[FRAG_ATTRIB_FOGC];
      if (xOrY == 'X') {
         fogc[0] += span->dfogdx;
      }
      else {
         fogc[0] += span->dfogdy;
      }
   }
   for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
      if (program->Base.InputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
         GLfloat *tex = (GLfloat*) machine->Inputs[FRAG_ATTRIB_TEX0 + u];
         /* XXX perspective-correct interpolation */
         if (xOrY == 'X') {
            tex[0] += span->texStepX[u][0];
            tex[1] += span->texStepX[u][1];
            tex[2] += span->texStepX[u][2];
            tex[3] += span->texStepX[u][3];
         }
         else {
            tex[0] += span->texStepY[u][0];
            tex[1] += span->texStepY[u][1];
            tex[2] += span->texStepY[u][2];
            tex[3] += span->texStepY[u][3];
         }
      }
   }

   for (v = 0; v < ctx->Const.MaxVarying; v++) {
      if (program->Base.InputsRead & (1 << (FRAG_ATTRIB_VAR0 + v))) {
         GLfloat *var = (GLfloat*) machine->Inputs[FRAG_ATTRIB_VAR0 + v];
         /* XXXX finish this */
         var[0] += span->varStepX[v][0];
         var[1] += span->varStepX[v][1];
         var[2] += span->varStepX[v][2];
         var[3] += span->varStepX[v][3];
      }
   }

   /* init condition codes */
   dMachine->CondCodes[0] = COND_EQ;
   dMachine->CondCodes[1] = COND_EQ;
   dMachine->CondCodes[2] = COND_EQ;
   dMachine->CondCodes[3] = COND_EQ;
}


/**
 * Execute the given vertex program.
 * NOTE: we do everything in single-precision floating point; we don't
 * currently observe the single/half/fixed-precision qualifiers.
 * \param ctx - rendering context
 * \param program - the fragment program to execute
 * \param machine - machine state (register file)
 * \param maxInst - max number of instructions to execute
 * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
 */
static GLboolean
execute_program( GLcontext *ctx,
                 const struct gl_fragment_program *program, GLuint maxInst,
                 struct fp_machine *machine, const SWspan *span,
                 GLuint column )
{
   const GLuint MAX_EXEC = 5000;
   GLuint pc, total = 0;

   if (DEBUG_FRAG) {
      printf("execute fragment program --------------------\n");
   }

   for (pc = 0; pc < maxInst; pc++) {
      const struct prog_instruction *inst = program->Base.Instructions + pc;

      if (ctx->FragmentProgram.CallbackEnabled &&
          ctx->FragmentProgram.Callback) {
         ctx->FragmentProgram.CurrentPosition = inst->StringPos;
         ctx->FragmentProgram.Callback(program->Base.Target,
                                       ctx->FragmentProgram.CallbackData);
      }

      if (DEBUG_FRAG) {
         _mesa_print_instruction(inst);
      }

      switch (inst->Opcode) {
         case OPCODE_ABS:
            {
               GLfloat a[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = FABSF(a[0]);
               result[1] = FABSF(a[1]);
               result[2] = FABSF(a[2]);
               result[3] = FABSF(a[3]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_ADD:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = a[0] + b[0];
               result[1] = a[1] + b[1];
               result[2] = a[2] + b[2];
               result[3] = a[3] + b[3];
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3], 
                         a[0], a[1], a[2], a[3],
                         b[0], b[1], b[2], b[3]);
               }
            }
            break;
         case OPCODE_BRA: /* conditional branch */
            {
               /* NOTE: The branch is conditional! */
               const GLuint swizzle = inst->DstReg.CondSwizzle;
               const GLuint condMask = inst->DstReg.CondMask;
               if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
                  /* take branch */
                  pc = inst->BranchTarget;
                  /*
                  printf("Take branch to %u\n", pc);
                  */
               }
            }
            break;
         case OPCODE_CAL: /* Call subroutine */
            {
               /* NOTE: The call is conditional! */
               const GLuint swizzle = inst->DstReg.CondSwizzle;
               const GLuint condMask = inst->DstReg.CondMask;
               if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
                  if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
                     return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
                  }
                  machine->CallStack[machine->StackDepth++] = pc + 1;
                  pc = inst->BranchTarget;
               }
            }
            break;
         case OPCODE_CMP:
            {
               GLfloat a[4], b[4], c[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
               result[0] = a[0] < 0.0F ? b[0] : c[0];
               result[1] = a[1] < 0.0F ? b[1] : c[1];
               result[2] = a[2] < 0.0F ? b[2] : c[2];
               result[3] = a[3] < 0.0F ? b[3] : c[3];
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_COS:
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = result[1] = result[2] = result[3]
                  = (GLfloat) _mesa_cos(a[0]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_DDX: /* Partial derivative with respect to X */
            {
               GLfloat a[4], aNext[4], result[4];
               struct fp_machine dMachine;
               if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X',
                                        column, result)) {
                  /* This is tricky.  Make a copy of the current machine state,
                   * increment the input registers by the dx or dy partial
                   * derivatives, then re-execute the program up to the
                   * preceeding instruction, then fetch the source register.
                   * Finally, find the difference in the register values for
                   * the original and derivative runs.
                   */
                  fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
                  init_machine_deriv(ctx, machine, program, span,
                                     'X', &dMachine);
                  execute_program(ctx, program, pc, &dMachine, span, column);
                  fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
                  result[0] = aNext[0] - a[0];
                  result[1] = aNext[1] - a[1];
                  result[2] = aNext[2] - a[2];
                  result[3] = aNext[3] - a[3];
               }
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_DDY: /* Partial derivative with respect to Y */
            {
               GLfloat a[4], aNext[4], result[4];
               struct fp_machine dMachine;
               if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y',
                                        column, result)) {
                  init_machine_deriv(ctx, machine, program, span,
                                     'Y', &dMachine);
                  fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
                  execute_program(ctx, program, pc, &dMachine, span, column);
                  fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
                  result[0] = aNext[0] - a[0];
                  result[1] = aNext[1] - a[1];
                  result[2] = aNext[2] - a[2];
                  result[3] = aNext[3] - a[3];
               }
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_DP3:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
                         result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
               }
            }
            break;
         case OPCODE_DP4:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = result[1] = result[2] = result[3] = DOT4(a,b);
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
                         result[0], a[0], a[1], a[2], a[3],
                         b[0], b[1], b[2], b[3]);
               }
            }
            break;
         case OPCODE_DPH:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = result[1] = result[2] = result[3] = 
                  a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_DST: /* Distance vector */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = 1.0F;
               result[1] = a[1] * b[1];
               result[2] = a[2];
               result[3] = b[3];
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_EX2: /* Exponential base 2 */
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = result[1] = result[2] = result[3] =
                  (GLfloat) _mesa_pow(2.0, a[0]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_FLR:
            {
               GLfloat a[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = FLOORF(a[0]);
               result[1] = FLOORF(a[1]);
               result[2] = FLOORF(a[2]);
               result[3] = FLOORF(a[3]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_FRC:
            {
               GLfloat a[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = a[0] - FLOORF(a[0]);
               result[1] = a[1] - FLOORF(a[1]);
               result[2] = a[2] - FLOORF(a[2]);
               result[3] = a[3] - FLOORF(a[3]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_KIL_NV: /* NV_f_p only */
            {
               const GLuint swizzle = inst->DstReg.CondSwizzle;
               const GLuint condMask = inst->DstReg.CondMask;
               if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
                  return GL_FALSE;
               }
            }
            break;
         case OPCODE_KIL: /* ARB_f_p only */
            {
               GLfloat a[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
                  return GL_FALSE;
               }
            }
            break;
         case OPCODE_LG2:  /* log base 2 */
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = result[1] = result[2] = result[3] = LOG2(a[0]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_LIT:
            {
               const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
               GLfloat a[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               a[0] = MAX2(a[0], 0.0F);
               a[1] = MAX2(a[1], 0.0F);
               /* XXX ARB version clamps a[3], NV version doesn't */
               a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
               result[0] = 1.0F;
               result[1] = a[0];
               /* XXX we could probably just use pow() here */
               if (a[0] > 0.0F) {
                  if (a[1] == 0.0 && a[3] == 0.0)
                     result[2] = 1.0;
                  else
                     result[2] = EXPF(a[3] * LOGF(a[1]));
               }
               else {
                  result[2] = 0.0;
               }
               result[3] = 1.0F;
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3],
                         a[0], a[1], a[2], a[3]);
               }
            }
            break;
         case OPCODE_LRP:
            {
               GLfloat a[4], b[4], c[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
               result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
               result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
               result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
               result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("LRP (%g %g %g %g) = (%g %g %g %g), "
                         "(%g %g %g %g), (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3],
                         a[0], a[1], a[2], a[3],
                         b[0], b[1], b[2], b[3],
                         c[0], c[1], c[2], c[3]);
               }
            }
            break;
         case OPCODE_MAD:
            {
               GLfloat a[4], b[4], c[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
               result[0] = a[0] * b[0] + c[0];
               result[1] = a[1] * b[1] + c[1];
               result[2] = a[2] * b[2] + c[2];
               result[3] = a[3] * b[3] + c[3];
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
                         "(%g %g %g %g) + (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3],
                         a[0], a[1], a[2], a[3],
                         b[0], b[1], b[2], b[3],
                         c[0], c[1], c[2], c[3]);
               }
            }
            break;
         case OPCODE_MAX:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = MAX2(a[0], b[0]);
               result[1] = MAX2(a[1], b[1]);
               result[2] = MAX2(a[2], b[2]);
               result[3] = MAX2(a[3], b[3]);
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3], 
                         a[0], a[1], a[2], a[3],
                         b[0], b[1], b[2], b[3]);
               }
            }
            break;
         case OPCODE_MIN:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = MIN2(a[0], b[0]);
               result[1] = MIN2(a[1], b[1]);
               result[2] = MIN2(a[2], b[2]);
               result[3] = MIN2(a[3], b[3]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_MOV:
            {
               GLfloat result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, result );
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("MOV (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3]);
               }
            }
            break;
         case OPCODE_MUL:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = a[0] * b[0];
               result[1] = a[1] * b[1];
               result[2] = a[2] * b[2];
               result[3] = a[3] * b[3];
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3], 
                         a[0], a[1], a[2], a[3],
                         b[0], b[1], b[2], b[3]);
               }
            }
            break;
         case OPCODE_NOP:
            break;
         case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
            {
               GLfloat a[4], result[4];
               GLhalfNV hx, hy;
               GLuint *rawResult = (GLuint *) result;
               GLuint twoHalves;
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               hx = _mesa_float_to_half(a[0]);
               hy = _mesa_float_to_half(a[1]);
               twoHalves = hx | (hy << 16);
               rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
                  = twoHalves;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
            {
               GLfloat a[4], result[4];
               GLuint usx, usy, *rawResult = (GLuint *) result;
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               a[0] = CLAMP(a[0], 0.0F, 1.0F);
               a[1] = CLAMP(a[1], 0.0F, 1.0F);
               usx = IROUND(a[0] * 65535.0F);
               usy = IROUND(a[1] * 65535.0F);
               rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
                  = usx | (usy << 16);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
            {
               GLfloat a[4], result[4];
               GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
               a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
               a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
               a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
               ubx = IROUND(127.0F * a[0] + 128.0F);
               uby = IROUND(127.0F * a[1] + 128.0F);
               ubz = IROUND(127.0F * a[2] + 128.0F);
               ubw = IROUND(127.0F * a[3] + 128.0F);
               rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
                  = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
            {
               GLfloat a[4], result[4];
               GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               a[0] = CLAMP(a[0], 0.0F, 1.0F);
               a[1] = CLAMP(a[1], 0.0F, 1.0F);
               a[2] = CLAMP(a[2], 0.0F, 1.0F);
               a[3] = CLAMP(a[3], 0.0F, 1.0F);
               ubx = IROUND(255.0F * a[0]);
               uby = IROUND(255.0F * a[1]);
               ubz = IROUND(255.0F * a[2]);
               ubw = IROUND(255.0F * a[3]);
               rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
                  = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_POW:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector1( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = result[1] = result[2] = result[3]
                  = (GLfloat)_mesa_pow(a[0], b[0]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_RCP:
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               if (DEBUG_FRAG) {
                  if (a[0] == 0)
                     printf("RCP(0)\n");
                  else if (IS_INF_OR_NAN(a[0]))
                     printf("RCP(inf)\n");
               }
               result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_RET: /* return from subroutine */
            {
               /* NOTE: The return is conditional! */
               const GLuint swizzle = inst->DstReg.CondSwizzle;
               const GLuint condMask = inst->DstReg.CondMask;
               if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
                   test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
                  if (machine->StackDepth == 0) {
                     return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
                  }
                  pc = machine->CallStack[--machine->StackDepth];
               }
            }
            break;
         case OPCODE_RFL: /* reflection vector */
            {
               GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, axis );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dir );
               tmpW = DOT3(axis, axis);
               tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
               result[0] = tmpX * axis[0] - dir[0];
               result[1] = tmpX * axis[1] - dir[1];
               result[2] = tmpX * axis[2] - dir[2];
               /* result[3] is never written! XXX enforce in parser! */
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_RSQ: /* 1 / sqrt() */
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               a[0] = FABSF(a[0]);
               result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
               }
            }
            break;
         case OPCODE_SCS: /* sine and cos */
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = (GLfloat)_mesa_cos(a[0]);
               result[1] = (GLfloat)_mesa_sin(a[0]);
               result[2] = 0.0;  /* undefined! */
               result[3] = 0.0;  /* undefined! */
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SEQ: /* set on equal */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
               result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
               result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
               result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SFL: /* set false, operands ignored */
            {
               static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SGE: /* set on greater or equal */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
               result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
               result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
               result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SGT: /* set on greater */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
               result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
               result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
               result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SIN:
            {
               GLfloat a[4], result[4];
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = result[1] = result[2] = result[3]
                  = (GLfloat) _mesa_sin(a[0]);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SLE: /* set on less or equal */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
               result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
               result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
               result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SLT: /* set on less */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
               result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
               result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
               result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SNE: /* set on not equal */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
               result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
               result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
               result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_STR: /* set true, operands ignored */
            {
               static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_SUB:
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = a[0] - b[0];
               result[1] = a[1] - b[1];
               result[2] = a[2] - b[2];
               result[3] = a[3] - b[3];
               store_vector4( inst, machine, result );
               if (DEBUG_FRAG) {
                  printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
                         result[0], result[1], result[2], result[3],
                         a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
               }
            }
            break;
         case OPCODE_SWZ: /* extended swizzle */
            {
               const struct prog_src_register *source = &inst->SrcReg[0];
               const GLfloat *src = get_register_pointer(ctx, source,
                                                         machine, program);
               GLfloat result[4];
               GLuint i;
               for (i = 0; i < 4; i++) {
                  const GLuint swz = GET_SWZ(source->Swizzle, i);
                  if (swz == SWIZZLE_ZERO)
                     result[i] = 0.0;
                  else if (swz == SWIZZLE_ONE)
                     result[i] = 1.0;
                  else {
                     ASSERT(swz >= 0);
                     ASSERT(swz <= 3);
                     result[i] = src[swz];
                  }
                  if (source->NegateBase & (1 << i))
                     result[i] = -result[i];
               }
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_TEX: /* Both ARB and NV frag prog */
            /* Texel lookup */
            {
               /* Note: only use the precomputed lambda value when we're
                * sampling texture unit [K] with texcoord[K].
                * Otherwise, the lambda value may have no relation to the
                * instruction's texcoord or texture image.  Using the wrong
                * lambda is usually bad news.
                * The rest of the time, just use zero (until we get a more
                * sophisticated way of computing lambda).
                */
               GLfloat coord[4], color[4], lambda;
               if (inst->SrcReg[0].File == PROGRAM_INPUT &&
                   inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0+inst->TexSrcUnit)
                  lambda = span->array->lambda[inst->TexSrcUnit][column];
               else
                  lambda = 0.0;
               fetch_vector4(ctx, &inst->SrcReg[0], machine, program, coord);
               fetch_texel( ctx, coord, lambda, inst->TexSrcUnit, color );
               if (DEBUG_FRAG) {
                  printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g], "
                         "lod %f\n",
                         color[0], color[1], color[2], color[3],
                         inst->TexSrcUnit,
                         coord[0], coord[1], coord[2], coord[3], lambda);
               }
               store_vector4( inst, machine, color );
            }
            break;
         case OPCODE_TXB: /* GL_ARB_fragment_program only */
            /* Texel lookup with LOD bias */
            {
               const struct gl_texture_unit *texUnit
                  = &ctx->Texture.Unit[inst->TexSrcUnit];
               GLfloat coord[4], color[4], lambda, bias;
               if (inst->SrcReg[0].File == PROGRAM_INPUT &&
                   inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0+inst->TexSrcUnit)
                  lambda = span->array->lambda[inst->TexSrcUnit][column];
               else
                  lambda = 0.0;
               fetch_vector4(ctx, &inst->SrcReg[0], machine, program, coord);
               /* coord[3] is the bias to add to lambda */
               bias = texUnit->LodBias + coord[3];
               if (texUnit->_Current)
                  bias += texUnit->_Current->LodBias;
               fetch_texel(ctx, coord, lambda + bias, inst->TexSrcUnit, color);
               store_vector4( inst, machine, color );
            }
            break;
         case OPCODE_TXD: /* GL_NV_fragment_program only */
            /* Texture lookup w/ partial derivatives for LOD */
            {
               GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dtdx );
               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, dtdy );
               fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit,
                                  color );
               store_vector4( inst, machine, color );
            }
            break;
         case OPCODE_TXP: /* GL_ARB_fragment_program only */
            /* Texture lookup w/ projective divide */
            {
               GLfloat texcoord[4], color[4], lambda;
               if (inst->SrcReg[0].File == PROGRAM_INPUT &&
                   inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0+inst->TexSrcUnit)
                  lambda = span->array->lambda[inst->TexSrcUnit][column];
               else
                  lambda = 0.0;
               fetch_vector4(ctx, &inst->SrcReg[0], machine, program,texcoord);
	       /* Not so sure about this test - if texcoord[3] is
		* zero, we'd probably be fine except for an ASSERT in
		* IROUND_POS() which gets triggered by the inf values created.
		*/
	       if (texcoord[3] != 0.0) {
		  texcoord[0] /= texcoord[3];
		  texcoord[1] /= texcoord[3];
		  texcoord[2] /= texcoord[3];
	       }
               fetch_texel( ctx, texcoord, lambda, inst->TexSrcUnit, color );
               store_vector4( inst, machine, color );
            }
            break;
         case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
            /* Texture lookup w/ projective divide */
            {
               GLfloat texcoord[4], color[4], lambda;
               if (inst->SrcReg[0].File == PROGRAM_INPUT &&
                   inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0+inst->TexSrcUnit)
                  lambda = span->array->lambda[inst->TexSrcUnit][column];
               else
                  lambda = 0.0;
               fetch_vector4(ctx, &inst->SrcReg[0], machine, program,texcoord);
               if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
		   texcoord[3] != 0.0) {
                  texcoord[0] /= texcoord[3];
                  texcoord[1] /= texcoord[3];
                  texcoord[2] /= texcoord[3];
               }
               fetch_texel( ctx, texcoord, lambda, inst->TexSrcUnit, color );
               store_vector4( inst, machine, color );
            }
            break;
         case OPCODE_UP2H: /* unpack two 16-bit floats */
            {
               GLfloat a[4], result[4];
               const GLuint *rawBits = (const GLuint *) a;
               GLhalfNV hx, hy;
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               hx = rawBits[0] & 0xffff;
               hy = rawBits[0] >> 16;
               result[0] = result[2] = _mesa_half_to_float(hx);
               result[1] = result[3] = _mesa_half_to_float(hy);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_UP2US: /* unpack two GLushorts */
            {
               GLfloat a[4], result[4];
               const GLuint *rawBits = (const GLuint *) a;
               GLushort usx, usy;
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               usx = rawBits[0] & 0xffff;
               usy = rawBits[0] >> 16;
               result[0] = result[2] = usx * (1.0f / 65535.0f);
               result[1] = result[3] = usy * (1.0f / 65535.0f);
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_UP4B: /* unpack four GLbytes */
            {
               GLfloat a[4], result[4];
               const GLuint *rawBits = (const GLuint *) a;
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = (((rawBits[0] >>  0) & 0xff) - 128) / 127.0F;
               result[1] = (((rawBits[0] >>  8) & 0xff) - 128) / 127.0F;
               result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
               result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_UP4UB: /* unpack four GLubytes */
            {
               GLfloat a[4], result[4];
               const GLuint *rawBits = (const GLuint *) a;
               fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
               result[0] = ((rawBits[0] >>  0) & 0xff) / 255.0F;
               result[1] = ((rawBits[0] >>  8) & 0xff) / 255.0F;
               result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
               result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_XPD: /* cross product */
            {
               GLfloat a[4], b[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               result[0] = a[1] * b[2] - a[2] * b[1];
               result[1] = a[2] * b[0] - a[0] * b[2];
               result[2] = a[0] * b[1] - a[1] * b[0];
               result[3] = 1.0;
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_X2D: /* 2-D matrix transform */
            {
               GLfloat a[4], b[4], c[4], result[4];
               fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
               fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
               fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
               result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
               result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
               result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
               result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
               store_vector4( inst, machine, result );
            }
            break;
         case OPCODE_PRINT:
            {
               if (inst->SrcReg[0].File != -1) {
                  GLfloat a[4];
                  fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
                  _mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
                               a[0], a[1], a[2], a[3]);
               }
               else {
                  _mesa_printf("%s\n", (const char *) inst->Data);
               }
            }
            break;
         case OPCODE_END:
            return GL_TRUE;
         default:
            _mesa_problem(ctx, "Bad opcode %d in _mesa_exec_fragment_program",
                          inst->Opcode);
            return GL_TRUE; /* return value doesn't matter */

      }
      total++;
      if (total > MAX_EXEC) {
         _mesa_problem(ctx, "Infinite loop detected in fragment program");
         abort();
      }
   }
   return GL_TRUE;
}


/**
 * Initialize the virtual fragment program machine state prior to running
 * fragment program on a fragment.  This involves initializing the input
 * registers, condition codes, etc.
 * \param machine  the virtual machine state to init
 * \param program  the fragment program we're about to run
 * \param span  the span of pixels we'll operate on
 * \param col  which element (column) of the span we'll operate on
 */
static void
init_machine( GLcontext *ctx, struct fp_machine *machine,
              const struct gl_fragment_program *program,
              const SWspan *span, GLuint col )
{
   GLuint inputsRead = program->Base.InputsRead;
   GLuint u, v;

   if (ctx->FragmentProgram.CallbackEnabled)
      inputsRead = ~0;

   if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
      /* Clear temporary registers (undefined for ARB_f_p) */
      _mesa_bzero(machine->Temporaries,
                  MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
   }

   /* Load input registers */
   if (inputsRead & (1 << FRAG_ATTRIB_WPOS)) {
      GLfloat *wpos = machine->Inputs[FRAG_ATTRIB_WPOS];
      ASSERT(span->arrayMask & SPAN_Z);
      if (span->arrayMask & SPAN_XY) {
         wpos[0] = (GLfloat) span->array->x[col];
         wpos[1] = (GLfloat) span->array->y[col];
      }
      else {
         wpos[0] = (GLfloat) span->x + col;
         wpos[1] = (GLfloat) span->y;
      }
      wpos[2] = (GLfloat) span->array->z[col] / ctx->DrawBuffer->_DepthMaxF;
      wpos[3] = span->w + col * span->dwdx;
   }
   if (inputsRead & (1 << FRAG_ATTRIB_COL0)) {
      ASSERT(span->arrayMask & SPAN_RGBA);
      COPY_4V(machine->Inputs[FRAG_ATTRIB_COL0],
              span->array->color.sz4.rgba[col]);
   }
   if (inputsRead & (1 << FRAG_ATTRIB_COL1)) {
      ASSERT(span->arrayMask & SPAN_SPEC);
      COPY_4V(machine->Inputs[FRAG_ATTRIB_COL1],
              span->array->color.sz4.spec[col]);
   }
   if (inputsRead & (1 << FRAG_ATTRIB_FOGC)) {
      GLfloat *fogc = machine->Inputs[FRAG_ATTRIB_FOGC];
      ASSERT(span->arrayMask & SPAN_FOG);
      fogc[0] = span->array->fog[col];
      fogc[1] = 0.0F;
      fogc[2] = 0.0F;
      fogc[3] = 0.0F;
   }
   for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
      if (inputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
         GLfloat *tex = machine->Inputs[FRAG_ATTRIB_TEX0 + u];
         /*ASSERT(ctx->Texture._EnabledCoordUnits & (1 << u));*/
         COPY_4V(tex, span->array->texcoords[u][col]);
         /*ASSERT(tex[0] != 0 || tex[1] != 0 || tex[2] != 0);*/
      }
   }
   for (v = 0; v < ctx->Const.MaxVarying; v++) {
      if (inputsRead & (1 << (FRAG_ATTRIB_VAR0 + v))) {
#if 0
         printf("Frag Var %d: %f %f %f\n", col,
                span->array->varying[col][v][0],
                span->array->varying[col][v][1],
                span->array->varying[col][v][2]);
#endif
         COPY_4V(machine->Inputs[FRAG_ATTRIB_VAR0 + v],
                 span->array->varying[col][v]);
      }
   }

   /* init condition codes */
   machine->CondCodes[0] = COND_EQ;
   machine->CondCodes[1] = COND_EQ;
   machine->CondCodes[2] = COND_EQ;
   machine->CondCodes[3] = COND_EQ;

   /* init call stack */
   machine->StackDepth = 0;
}


/**
 * Run fragment program on the pixels in span from 'start' to 'end' - 1.
 */
static void
run_program(GLcontext *ctx, SWspan *span, GLuint start, GLuint end)
{
   const struct gl_fragment_program *program = ctx->FragmentProgram._Current;
   struct fp_machine machine;
   GLuint i;

   CurrentMachine = &machine;

   for (i = start; i < end; i++) {
      if (span->array->mask[i]) {
         init_machine(ctx, &machine, program, span, i);

         if (execute_program(ctx, program, ~0, &machine, span, i)) {
            /* Store result color */
            COPY_4V(span->array->color.sz4.rgba[i],
                    machine.Outputs[FRAG_RESULT_COLR]);

            /* Store result depth/z */
            if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) {
               const GLfloat depth = machine.Outputs[FRAG_RESULT_DEPR][2];
               if (depth <= 0.0)
                  span->array->z[i] = 0;
               else if (depth >= 1.0)
                  span->array->z[i] = ctx->DrawBuffer->_DepthMax;
               else
                  span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF);
            }
         }
         else {
            /* killed fragment */
            span->array->mask[i] = GL_FALSE;
            span->writeAll = GL_FALSE;
         }
      }
   }

   CurrentMachine = NULL;
}


/**
 * Execute the current fragment program for all the fragments
 * in the given span.
 */
void
_swrast_exec_fragment_program( GLcontext *ctx, SWspan *span )
{
   const struct gl_fragment_program *program = ctx->FragmentProgram._Current;

   /* incoming colors should be floats */
   ASSERT(span->array->ChanType == GL_FLOAT);

   ctx->_CurrentProgram = GL_FRAGMENT_PROGRAM_ARB; /* or NV, doesn't matter */

   run_program(ctx, span, 0, span->end);

   if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) {
      span->interpMask &= ~SPAN_Z;
      span->arrayMask |= SPAN_Z;
   }

   ctx->_CurrentProgram = 0;
}