summaryrefslogtreecommitdiff
path: root/src/mesa/x86/mmx_blend.S
blob: f80cbf6c45e739b456fc7d70f71a296f4eefc085 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/*
 * Written by José Fonseca <j_r_fonseca@yahoo.co.uk>
 */

#include "matypes.h"


/* integer multiplication - alpha plus one
 *
 * makes the following approximation to the division (Sree)
 *
 *   rgb*a/255 ~= (rgb*(a+1)) >> 256
 *
 * which is the fastest method that satisfies the following OpenGL criteria
 *
 *   0*0 = 0 and 255*255 = 255
 *
 * note that MX1 is a register with 0xffffffffffffffff constant which can be easily obtained making
 *
 *   PCMPEQW    ( MX1, MX1 )
 */
#define GMB_MULT_AP1( MP1, MA1, MP2, MA2, MX1 ) \
    PSUBW      ( MX1, MA1 )			/*   a1 + 1  |   a1 + 1  |   a1 + 1  |   a1 + 1  */	;\
TWO(PSUBW      ( MX1, MA2 ))			/*   a2 + 1  |   a2 + 1  |   a2 + 1  |   a2 + 1  */	;\
													;\
    PMULLW     ( MP1, MA1 )			/*                  t1 = p1*a1                   */	;\
TWO(PMULLW     ( MP2, MA2 ))			/*                  t2 = p2*a2                   */	;\
													;\
    PSRLW      ( CONST(8), MA1 )		/*               t1 >> 8 ~= t1/255               */	;\
TWO(PSRLW      ( CONST(8), MA2 ))		/*               t2 >> 8 ~= t2/255               */	


/* integer multiplication - geometric series
 *
 * takes the geometric series approximation to the division
 *
 *   t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
 *
 * in this case just the first two terms to fit in 16bit arithmetic
 *
 *   t/255 ~= (t + (t >> 8)) >> 8
 *
 * note that just by itself it doesn't satisfies the OpenGL criteria, as 255*255 = 254, 
 * so the special case a = 255 must be accounted or roundoff must be used
 */
#define GMB_MULT_GS( MP1, MA1, MP2, MA2 ) \
    PMULLW     ( MP1, MA1 )			/*                  t1 = p1*a1                   */	;\
TWO(PMULLW     ( MP2, MA2 ))			/*                  t2 = p2*a2                   */	;\
													;\
    MOVQ       ( MA1, MP1 )										;\
TWO(MOVQ       ( MA2, MP2 ))										;\
													;\
    PSRLW      ( CONST(8), MP1 )		/*                    t1 >> 8                    */	;\
TWO(PSRLW      ( CONST(8), MP2 ))		/*                    t2 >> 8                    */	;\
													;\
    PADDW      ( MP1, MA1 )			/*        t1 + (t1 >> 8) ~= (t1/255) << 8        */	;\
TWO(PADDW      ( MP2, MA2 ))			/*        t2 + (t2 >> 8) ~= (t2/255) << 8        */	;\
													;\
    PSRLW      ( CONST(8), MA1 )		/*    sa1    |    sb1    |    sg1    |    sr1    */	;\
TWO(PSRLW      ( CONST(8), MA2 ))		/*    sa2    |    sb2    |    sg2    |    sr2    */


/* integer multiplication - geometric series plus rounding
 *
 * when using a geometric series division instead of truncating the result 
 * use roundoff in the approximation (Jim Blinn)
 *
 *   t = rgb*a + 0x80
 *
 * achieving the exact results
 *
 * note that M80 is register with the 0x0080008000800080 constant
 */
#define GMB_MULT_GSR( MP1, MA1, MP2, MA2, M80 ) \
    PMULLW     ( MP1, MA1 )			/*                  t1 = p1*a1                   */	;\
TWO(PMULLW     ( MP2, MA2 ))			/*                  t2 = p2*a2                   */	;\
													;\
    PADDW      ( M80, MA1 )			/*                 t1 += 0x80                    */	;\
TWO(PADDW      ( M80, MA2 ))			/*                 t2 += 0x80                    */	;\
													;\
    MOVQ       ( MA1, MP1 )										;\
TWO(MOVQ       ( MA2, MP2 ))										;\
													;\
    PSRLW      ( CONST(8), MP1 )		/*                    t1 >> 8                    */	;\
TWO(PSRLW      ( CONST(8), MP2 ))		/*                    t2 >> 8                    */	;\
													;\
    PADDW      ( MP1, MA1 )			/*        t1 + (t1 >> 8) ~= (t1/255) << 8        */	;\
TWO(PADDW      ( MP2, MA2 ))			/*        t2 + (t2 >> 8) ~= (t2/255) << 8        */	;\
													;\
    PSRLW      ( CONST(8), MA1 )		/*    sa1    |    sb1    |    sg1    |    sr1    */	;\
TWO(PSRLW      ( CONST(8), MA2 ))		/*    sa2    |    sb2    |    sg2    |    sr2    */


/* linear interpolation - geometric series 
 */
#define GMB_LERP_GS( MP1, MQ1, MA1, MP2, MQ2, MA2) \
    PSUBW      ( MQ1, MP1 )                     /* pa1 - qa1 | pb1 - qb1 | pg1 - qg1 | pr1 - qr1 */	;\
TWO(PSUBW      ( MQ2, MP2 ))                    /* pa2 - qa2 | pb2 - qb2 | pg2 - qg2 | pr2 - qr2 */	;\
													;\
    PSLLW      ( CONST(8), MQ1 )		/*                    q1 << 8                    */	;\
TWO(PSLLW      ( CONST(8), MQ2 ))		/*                    q2 << 8                    */	;\
													;\
    PMULLW     ( MP1, MA1 )			/*              t1 = (q1 - p1)*pa1               */	;\
TWO(PMULLW     ( MP2, MA2 ))			/*              t2 = (q2 - p2)*pa2               */	;\
													;\
    MOVQ       ( MA1, MP1 )										;\
TWO(MOVQ       ( MA2, MP2 ))										;\
													;\
    PSRLW      ( CONST(8), MP1 )		/*                    t1 >> 8                    */	;\
TWO(PSRLW      ( CONST(8), MP2 ))		/*                    t2 >> 8                    */	;\
													;\
    PADDW      ( MP1, MA1 )			/*        t1 + (t1 >> 8) ~= (t1/255) << 8        */	;\
TWO(PADDW      ( MP2, MA2 ))			/*        t2 + (t2 >> 8) ~= (t2/255) << 8        */	;\
													;\
    PADDW      ( MQ1, MA1 )			/*              (t1/255 + q1) << 8               */	;\
TWO(PADDW      ( MQ2, MA2 ))			/*              (t2/255 + q2) << 8               */	;\
													;\
    PSRLW      ( CONST(8), MA1 )		/*    sa1    |    sb1    |    sg1    |    sr1    */	;\
TWO(PSRLW      ( CONST(8), MA2 ))		/*    sa2    |    sb2    |    sg2    |    sr2    */


/* linear interpolation - geometric series with roundoff
 *
 * this is a generalization of Blinn's formula to signed arithmetic
 *
 * note that M80 is a register with the 0x0080008000800080 constant
 */
#define GMB_LERP_GSR( MP1, MQ1, MA1, MP2, MQ2, MA2, M80) \
    PSUBW      ( MQ1, MP1 )                     /* pa1 - qa1 | pb1 - qb1 | pg1 - qg1 | pr1 - qr1 */	;\
TWO(PSUBW      ( MQ2, MP2 ))                    /* pa2 - qa2 | pb2 - qb2 | pg2 - qg2 | pr2 - qr2 */	;\
													;\
    PSLLW      ( CONST(8), MQ1 )		/*                    q1 << 8                    */	;\
TWO(PSLLW      ( CONST(8), MQ2 ))		/*                    q2 << 8                    */	;\
													;\
    PMULLW     ( MP1, MA1 )			/*              t1 = (q1 - p1)*pa1               */	;\
TWO(PMULLW     ( MP2, MA2 ))			/*              t2 = (q2 - p2)*pa2               */	;\
													;\
    PSRLW      ( CONST(15), MP1 )		/*                 q1 > p1 ? 1 : 0               */	;\
TWO(PSRLW      ( CONST(15), MP2 ))		/*                 q2 > q2 ? 1 : 0               */	;\
													;\
    PSLLW      ( CONST(8), MP1 )		/*             q1 > p1 ? 0x100 : 0               */	;\
TWO(PSLLW      ( CONST(8), MP2 ))		/*             q2 > q2 ? 0x100 : 0               */	;\
													;\
    PSUBW      ( MP1, MA1 )			/*                  t1 -=? 0x100                 */	;\
TWO(PSUBW      ( MP2, MA2 ))			/*                  t2 -=? 0x100                 */	;\
 													;\
    PADDW      ( M80, MA1 )			/*                 t1 += 0x80                    */	;\
TWO(PADDW      ( M80, MA2 ))			/*                 t2 += 0x80                    */	;\
													;\
    MOVQ       ( MA1, MP1 )										;\
TWO(MOVQ       ( MA2, MP2 ))										;\
													;\
    PSRLW      ( CONST(8), MP1 )		/*                    t1 >> 8                    */	;\
TWO(PSRLW      ( CONST(8), MP2 ))		/*                    t2 >> 8                    */	;\
													;\
    PADDW      ( MP1, MA1 )			/*        t1 + (t1 >> 8) ~= (t1/255) << 8        */	;\
TWO(PADDW      ( MP2, MA2 ))			/*        t2 + (t2 >> 8) ~= (t2/255) << 8        */	;\
													;\
    PADDW      ( MQ1, MA1 )			/*              (t1/255 + q1) << 8               */	;\
TWO(PADDW      ( MQ2, MA2 ))			/*              (t2/255 + q2) << 8               */	;\
													;\
    PSRLW      ( CONST(8), MA1 )		/*    sa1    |    sb1    |    sg1    |    sr1    */	;\
TWO(PSRLW      ( CONST(8), MA2 ))		/*    sa2    |    sb2    |    sg2    |    sr2    */


/* linear interpolation - geometric series with correction
 *
 * instead of the roundoff this adds a small correction to satisfy the OpenGL criteria
 *
 *   t/255 ~= (t + (t >> 8) + (t >> 15)) >> 8
 *
 * note that although is faster than rounding off it doesn't give always the exact results
 */
#define GMB_LERP_GSC( MP1, MQ1, MA1, MP2, MQ2, MA2) \
    PSUBW      ( MQ1, MP1 )                     /* pa1 - qa1 | pb1 - qb1 | pg1 - qg1 | pr1 - qr1 */	;\
TWO(PSUBW      ( MQ2, MP2 ))                    /* pa2 - qa2 | pb2 - qb2 | pg2 - qg2 | pr2 - qr2 */	;\
													;\
    PSLLW      ( CONST(8), MQ1 )		/*                    q1 << 8                    */	;\
TWO(PSLLW      ( CONST(8), MQ2 ))		/*                    q2 << 8                    */	;\
													;\
    PMULLW     ( MP1, MA1 )			/*              t1 = (q1 - p1)*pa1               */	;\
TWO(PMULLW     ( MP2, MA2 ))			/*              t2 = (q2 - p2)*pa2               */	;\
													;\
    MOVQ       ( MA1, MP1 )										;\
TWO(MOVQ       ( MA2, MP2 ))										;\
													;\
    PSRLW      ( CONST(8), MP1 )		/*                    t1 >> 8                    */	;\
TWO(PSRLW      ( CONST(8), MP2 ))		/*                    t2 >> 8                    */	;\
													;\
    PADDW      ( MP1, MA1 )			/*        t1 + (t1 >> 8) ~= (t1/255) << 8        */	;\
TWO(PADDW      ( MP2, MA2 ))			/*        t2 + (t2 >> 8) ~= (t2/255) << 8        */	;\
													;\
    PSRLW      ( CONST(7), MP1 )		/*                    t1 >> 15                   */	;\
TWO(PSRLW      ( CONST(7), MP2 ))		/*                    t2 >> 15                   */	;\
													;\
    PADDW      ( MP1, MA1 )			/*  t1 + (t1 >> 8) + (t1 >>15) ~= (t1/255) << 8  */	;\
TWO(PADDW      ( MP2, MA2 ))			/*  t2 + (t2 >> 8) + (t2 >>15) ~= (t2/255) << 8  */	;\
													;\
    PADDW      ( MQ1, MA1 )			/*              (t1/255 + q1) << 8               */	;\
TWO(PADDW      ( MQ2, MA2 ))			/*              (t2/255 + q2) << 8               */	;\
													;\
    PSRLW      ( CONST(8), MA1 )		/*    sa1    |    sb1    |    sg1    |    sr1    */	;\
TWO(PSRLW      ( CONST(8), MA2 ))		/*    sa2    |    sb2    |    sg2    |    sr2    */


/* common blending initialization code
 */
#if 0	/* rounding not used */
    SEG_DATA

ALIGNDATA8
const_80:
	D_LONG 0x00800080, 0x00800080

#define GMB_INIT( M00, M80 ) \
    PXOR       ( M00, M00 )			/*   0x0000  |   0x0000  |   0x0000  |   0x0000  */
    MOVQ       ( CONTENT(const_80), M80 )	/*   0xffff  |   0xffff  |   0xffff  |   0xffff  */

#else

#define GMB_INIT( M00 ) \
    PXOR       ( M00, M00 )			/*   0x0000  |   0x0000  |   0x0000  |   0x0000  */

#endif

/* common blending loading code
 *
 * note that M00 is a register with 0x0000000000000000 constant which can be easily obtained making
 *
 *   PXOR      ( M00, M00 )
 */
#define GMB_LOAD(rgba, dest, MP1, MQ1, MA1, MP2, MQ2, MA2, M00) \
ONE(MOVD       ( REGIND(rgba), MP1 ))		/*     |     |     |     | qa1 | qb1 | qg1 | qr1 */	;\
ONE(MOVD       ( REGIND(dest), MQ1 ))		/*     |     |     |     | pa1 | pb1 | pg1 | pr1 */	;\
													;\
TWO(MOVQ       ( REGIND(rgba), MP1 ))		/* qa2 | qb2 | qg2 | qr2 | qa1 | qb1 | qg1 | qr1 */	;\
TWO(MOVQ       ( REGIND(dest), MQ1 ))		/* pa2 | pb2 | pg2 | pr2 | pa1 | pb1 | pg1 | pr1 */	;\
													;\
TWO(MOVQ       ( MP1, MP2 ))										;\
TWO(MOVQ       ( MQ1, MQ2 ))										;\
													;\
    PUNPCKLBW  ( M00, MQ1 )			/*    qa1    |    qb1    |    qg1    |    qr1    */	;\
TWO(PUNPCKHBW  ( M00, MQ2 ))                    /*    qa2    |    qb2    |    qg2    |    qr2    */	;\
    PUNPCKLBW  ( M00, MP1 )			/*    pa1    |    pb1    |    pg1    |    pr1    */	;\
TWO(PUNPCKHBW  ( M00, MP2 ))                    /*    pa2    |    pb2    |    pg2    |    pr2    */	;\
													;\
    MOVQ       ( MP1, MA1 )										;\
TWO(MOVQ       ( MP2, MA2 ))										;\
													;\
    PUNPCKHWD  ( MA1, MA1 )			/*    pa1    |    pa1    |           |           */	;\
TWO(PUNPCKHWD  ( MA2, MA2 ))			/*    pa2    |    pa2    |           |           */	;\
    PUNPCKHDQ  ( MA1, MA1 )                     /*    pa1    |    pa1    |    pa1    |    pa1    */	;\
TWO(PUNPCKHDQ  ( MA2, MA2 ))                    /*    pa2    |    pa2    |    pa2    |    pa2    */

 
/* common blending storing code
 */
#define GMB_STORE(rgba, MA1, MA2) \
    PACKUSWB   ( MA2, MA1 )			/* sa2 | sb2 | sg2 | sr2 | sa1 | sb1 | sg1 | sr1 */	;\
													;\
ONE(MOVD       ( MA1, REGIND(rgba) ))									;\
TWO(MOVQ       ( MA1, REGIND(rgba) ))


   SEG_TEXT


/* common transparency blending mode
 */

#define TAG(x) x##_transparency

#define INIT \
	GMB_INIT( MM0 )

#define MAIN \
	GMB_LOAD( EDI, ESI, MM1, MM2, MM3, MM4, MM5, MM6, MM0)						;\
	GMB_LERP_GSC( MM1, MM2, MM3, MM4, MM5, MM6 )							;\
	GMB_STORE( EDI, MM3, MM6 )

#include "mmx_blendtmp.h"