diff options
author | Ulf Samuelsson <ulf.samuelsson@atmel.com> | 2008-03-30 07:09:07 +0000 |
---|---|---|
committer | Ulf Samuelsson <ulf.samuelsson@atmel.com> | 2008-03-30 07:09:07 +0000 |
commit | 288035707126309283826c59d63d8cb9253022f7 (patch) | |
tree | 2fe94b21a73ab57373f72bf4104e6748852461dc /toolchain/gdb/6.7.1/700-nios2-6.6.patch | |
parent | a778e32b8e97c68559afef15ab30a6c14b25e490 (diff) |
Add build support for latest gdb
Diffstat (limited to 'toolchain/gdb/6.7.1/700-nios2-6.6.patch')
-rw-r--r-- | toolchain/gdb/6.7.1/700-nios2-6.6.patch | 7978 |
1 files changed, 7978 insertions, 0 deletions
diff --git a/toolchain/gdb/6.7.1/700-nios2-6.6.patch b/toolchain/gdb/6.7.1/700-nios2-6.6.patch new file mode 100644 index 000000000..509bcbd81 --- /dev/null +++ b/toolchain/gdb/6.7.1/700-nios2-6.6.patch @@ -0,0 +1,7978 @@ +diff --git a/bfd/Makefile.am b/bfd/Makefile.am +index 435b30b..488c4ab 100644 +--- a/bfd/Makefile.am ++++ b/bfd/Makefile.am +@@ -92,6 +92,7 @@ ALL_MACHINES = \ + cpu-maxq.lo \ + cpu-mcore.lo \ + cpu-mips.lo \ ++ cpu-nios2.lo \ + cpu-mmix.lo \ + cpu-mt.lo \ + cpu-msp430.lo \ +@@ -156,6 +157,7 @@ ALL_MACHINES_CFILES = \ + cpu-maxq.c \ + cpu-mcore.c \ + cpu-mips.c \ ++ cpu-nios2.c \ + cpu-mmix.c \ + cpu-mt.c \ + cpu-msp430.c \ +@@ -270,6 +272,7 @@ BFD32_BACKENDS = \ + elf32-mips.lo \ + elf32-mt.lo \ + elf32-msp430.lo \ ++ elf32-nios2.lo \ + elf32-openrisc.lo \ + elf32-or32.lo \ + elf32-pj.lo \ +@@ -446,6 +449,7 @@ BFD32_BACKENDS_CFILES = \ + elf32-mips.c \ + elf32-mt.c \ + elf32-msp430.c \ ++ elf32-nios2.c \ + elf32-openrisc.c \ + elf32-or32.c \ + elf32-pj.c \ +@@ -1065,6 +1069,7 @@ cpu-m10300.lo: cpu-m10300.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-maxq.lo: cpu-maxq.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mcore.lo: cpu-mcore.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mips.lo: cpu-mips.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h ++cpu-nios2.lo: cpu-nios2.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mmix.lo: cpu-mmix.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mt.lo: cpu-mt.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-msp430.lo: cpu-msp430.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h +@@ -1428,6 +1433,10 @@ elf32-msp430.lo: elf32-msp430.c $(INCDIR)/filenames.h \ + $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h \ + $(INCDIR)/bfdlink.h $(INCDIR)/elf/msp430.h $(INCDIR)/elf/reloc-macros.h \ + elf32-target.h ++elf32-nios2.lo: elf32-nios2.c $(INCDIR)/filenames.h $(INCDIR)/bfdlink.h \ ++ genlink.h elf-bfd.h $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h \ ++ $(INCDIR)/elf/external.h $(INCDIR)/elf/nios2.h \ ++ $(INCDIR)/elf/reloc-macros.h elf32-target.h + elf32-openrisc.lo: elf32-openrisc.c $(INCDIR)/filenames.h \ + $(INCDIR)/hashtab.h elf-bfd.h $(INCDIR)/elf/common.h \ + $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \ +diff --git a/bfd/Makefile.in b/bfd/Makefile.in +index 5bde689..5e57321 100644 +--- a/bfd/Makefile.in ++++ b/bfd/Makefile.in +@@ -327,6 +327,7 @@ ALL_MACHINES = \ + cpu-mt.lo \ + cpu-msp430.lo \ + cpu-or32.lo \ ++ cpu-nios2.lo \ + cpu-ns32k.lo \ + cpu-openrisc.lo \ + cpu-pdp11.lo \ +@@ -391,6 +392,7 @@ ALL_MACHINES_CFILES = \ + cpu-mt.c \ + cpu-msp430.c \ + cpu-or32.c \ ++ cpu-nios2.c \ + cpu-ns32k.c \ + cpu-openrisc.c \ + cpu-pdp11.c \ +@@ -502,6 +504,7 @@ BFD32_BACKENDS = \ + elf32-mips.lo \ + elf32-mt.lo \ + elf32-msp430.lo \ ++ elf32-nios2.lo \ + elf32-openrisc.lo \ + elf32-or32.lo \ + elf32-pj.lo \ +@@ -678,6 +681,7 @@ BFD32_BACKENDS_CFILES = \ + elf32-mips.c \ + elf32-mt.c \ + elf32-msp430.c \ ++ elf32-nios2.c \ + elf32-openrisc.c \ + elf32-or32.c \ + elf32-pj.c \ +@@ -1626,6 +1630,7 @@ cpu-m10300.lo: cpu-m10300.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-maxq.lo: cpu-maxq.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mcore.lo: cpu-mcore.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mips.lo: cpu-mips.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h ++cpu-nios2.lo: cpu-nios2.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mmix.lo: cpu-mmix.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-mt.lo: cpu-mt.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h + cpu-msp430.lo: cpu-msp430.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h +@@ -1989,6 +1994,10 @@ elf32-msp430.lo: elf32-msp430.c $(INCDIR)/filenames.h \ + $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h \ + $(INCDIR)/bfdlink.h $(INCDIR)/elf/msp430.h $(INCDIR)/elf/reloc-macros.h \ + elf32-target.h ++elf32-nios2.lo: elf32-nios2.c $(INCDIR)/filenames.h $(INCDIR)/bfdlink.h \ ++ genlink.h elf-bfd.h $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h \ ++ $(INCDIR)/elf/external.h $(INCDIR)/elf/nios2.h \ ++ $(INCDIR)/elf/reloc-macros.h elf32-target.h + elf32-openrisc.lo: elf32-openrisc.c $(INCDIR)/filenames.h \ + $(INCDIR)/hashtab.h elf-bfd.h $(INCDIR)/elf/common.h \ + $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \ +diff --git a/bfd/archures.c b/bfd/archures.c +index 5029cb0..ece60b4 100644 +--- a/bfd/archures.c ++++ b/bfd/archures.c +@@ -381,6 +381,8 @@ DESCRIPTION + . bfd_arch_maxq, {* Dallas MAXQ 10/20 *} + .#define bfd_mach_maxq10 10 + .#define bfd_mach_maxq20 20 ++. bfd_arch_nios2, ++.#define bfd_mach_nios2 1 + . bfd_arch_z80, + .#define bfd_mach_z80strict 1 {* No undocumented opcodes. *} + .#define bfd_mach_z80 3 {* With ixl, ixh, iyl, and iyh. *} +@@ -462,6 +464,7 @@ extern const bfd_arch_info_type bfd_mn10300_arch; + extern const bfd_arch_info_type bfd_msp430_arch; + extern const bfd_arch_info_type bfd_mt_arch; + extern const bfd_arch_info_type bfd_ns32k_arch; ++extern const bfd_arch_info_type bfd_nios2_arch; + extern const bfd_arch_info_type bfd_openrisc_arch; + extern const bfd_arch_info_type bfd_or32_arch; + extern const bfd_arch_info_type bfd_pdp11_arch; +@@ -530,6 +533,7 @@ static const bfd_arch_info_type * const bfd_archures_list[] = + &bfd_mn10300_arch, + &bfd_mt_arch, + &bfd_msp430_arch, ++ &bfd_nios2_arch, + &bfd_ns32k_arch, + &bfd_openrisc_arch, + &bfd_or32_arch, +diff --git a/bfd/bfd-in2.h b/bfd/bfd-in2.h +index 8f2af8b..f5c51d6 100644 +--- a/bfd/bfd-in2.h ++++ b/bfd/bfd-in2.h +@@ -2010,6 +2010,8 @@ enum bfd_architecture + bfd_arch_maxq, /* Dallas MAXQ 10/20 */ + #define bfd_mach_maxq10 10 + #define bfd_mach_maxq20 20 ++ bfd_arch_nios2, ++#define bfd_mach_nios2 1 + bfd_arch_z80, + #define bfd_mach_z80strict 1 /* No undocumented opcodes. */ + #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */ +@@ -4271,6 +4273,23 @@ internally by the linker after analysis of a + BFD_RELOC_XTENSA_ASM_EXPAND. */ + BFD_RELOC_XTENSA_ASM_SIMPLIFY, + ++/* Relocations used by the Altera New Jersey core */ ++ BFD_RELOC_NIOS2_S16, ++ BFD_RELOC_NIOS2_U16, ++ BFD_RELOC_NIOS2_CALL26, ++ BFD_RELOC_NIOS2_IMM5, ++ BFD_RELOC_NIOS2_CACHE_OPX, ++ BFD_RELOC_NIOS2_IMM6, ++ BFD_RELOC_NIOS2_IMM8, ++ BFD_RELOC_NIOS2_HI16, ++ BFD_RELOC_NIOS2_LO16, ++ BFD_RELOC_NIOS2_HIADJ16, ++ BFD_RELOC_NIOS2_GPREL, ++ BFD_RELOC_NIOS2_UJMP, ++ BFD_RELOC_NIOS2_CJMP, ++ BFD_RELOC_NIOS2_CALLR, ++ BFD_RELOC_NIOS2_ALIGN, ++ + /* 8 bit signed offset in (ix+d) or (iy+d). */ + BFD_RELOC_Z80_DISP8, + +diff --git a/bfd/config.bfd b/bfd/config.bfd +old mode 100755 +new mode 100644 +index 9b81db7..fa86103 +--- a/bfd/config.bfd ++++ b/bfd/config.bfd +@@ -88,6 +88,7 @@ m68*) targ_archs=bfd_m68k_arch ;; + m88*) targ_archs=bfd_m88k_arch ;; + maxq*) targ_archs=bfd_maxq_arch ;; + mips*) targ_archs=bfd_mips_arch ;; ++nios2*) targ_archs=bfd_nios2_arch ;; + or32*) targ_archs=bfd_or32_arch ;; + pdp11*) targ_archs=bfd_pdp11_arch ;; + pj*) targ_archs="bfd_pj_arch bfd_i386_arch";; +@@ -985,6 +986,21 @@ case "${targ}" in + targ_underscore=yes + ;; + ++ nios2eb-*-*) ++ targ_defvec=bfd_elf32_bignios2_vec ++ targ_selvecs=bfd_elf32_littlenios2_vec ++ ;; ++ ++ nios2el-*-*) ++ targ_defvec=bfd_elf32_littlenios2_vec ++ targ_selvecs=bfd_elf32_bignios2_vec ++ ;; ++ ++ nios2-*-*) ++ targ_defvec=bfd_elf32_littlenios2_vec ++ targ_selvecs=bfd_elf32_bignios2_vec ++ ;; ++ + openrisc-*-elf) + targ_defvec=bfd_elf32_openrisc_vec + ;; +diff --git a/bfd/configure b/bfd/configure +index bc138ff..a64fef5 100755 +--- a/bfd/configure ++++ b/bfd/configure +@@ -10846,6 +10846,8 @@ do + bfd_elf32_littlemips_vec) tb="$tb elf32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo" ;; + bfd_elf32_littlemips_vxworks_vec) + tb="$tb elf32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo" ;; ++ bfd_elf32_littlenios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;; ++ bfd_elf32_bignios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;; + bfd_elf32_m32c_vec) tb="$tb elf32-m32c.lo elf32.lo $elf" ;; + bfd_elf32_m32r_vec) tb="$tb elf32-m32r.lo elf32.lo $elf" ;; + bfd_elf32_m32rle_vec) tb="$tb elf32-m32r.lo elf32.lo $elf" ;; +diff --git a/bfd/configure.in b/bfd/configure.in +index fa0d50f..eb1e5f6 100644 +--- a/bfd/configure.in ++++ b/bfd/configure.in +@@ -655,6 +655,8 @@ do + bfd_elf32_nlittlemips_vec) tb="$tb elfn32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo"; target_size=64 ;; + bfd_elf32_ntradbigmips_vec) tb="$tb elfn32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo"; target_size=64 ;; + bfd_elf32_ntradlittlemips_vec) tb="$tb elfn32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo"; target_size=64 ;; ++ bfd_elf32_littlenios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;; ++ bfd_elf32_bignios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;; + bfd_elf32_openrisc_vec) tb="$tb elf32-openrisc.lo elf32.lo $elf" ;; + bfd_elf32_or32_big_vec) tb="$tb elf32-or32.lo elf32.lo $elf" ;; + bfd_elf32_pj_vec) tb="$tb elf32-pj.lo elf32.lo $elf";; +diff --git a/bfd/cpu-nios2.c b/bfd/cpu-nios2.c +new file mode 100644 +index 0000000..c8f39c9 +--- /dev/null ++++ b/bfd/cpu-nios2.c +@@ -0,0 +1,70 @@ ++/* bfd back-end for Altera Nios II support ++ ++ Copyright (C) 2003 ++ by Nigel Gray (ngray@altera.com). ++ ++This file is part of BFD, the Binary File Descriptor library. ++ ++This program is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 2 of the License, or ++(at your option) any later version. ++ ++This program is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this program; if not, write to the Free Software ++Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#include "bfd.h" ++#include "sysdep.h" ++#include "libbfd.h" ++ ++static const bfd_arch_info_type *nios2_compatible ++ (const bfd_arch_info_type *, const bfd_arch_info_type *); ++ ++/* The default routine tests bits_per_word, which is wrong on mips as ++ mips word size doesn't correlate with reloc size. */ ++ ++static const bfd_arch_info_type * ++nios2_compatible (const bfd_arch_info_type *a, const bfd_arch_info_type *b) ++{ ++ if (a->arch != b->arch) ++ return NULL; ++ ++ /* Machine compatibility is checked in ++ _bfd_mips_elf_merge_private_bfd_data. */ ++ ++ return a; ++} ++ ++#define N(BITS_WORD, BITS_ADDR, NUMBER, PRINT, DEFAULT, NEXT) \ ++ { \ ++ BITS_WORD, /* bits in a word */ \ ++ BITS_ADDR, /* bits in an address */ \ ++ 8, /* 8 bits in a byte */ \ ++ bfd_arch_nios2, \ ++ NUMBER, \ ++ "nios2", \ ++ PRINT, \ ++ 3, \ ++ DEFAULT, \ ++ nios2_compatible, \ ++ bfd_default_scan, \ ++ NEXT, \ ++ } ++ ++#define NN(index) (&arch_info_struct[(index) + 1]) ++ ++static const bfd_arch_info_type arch_info_struct[] = ++{ ++ N (32, 32, bfd_mach_nios2, "nios2", FALSE, 0), ++}; ++ ++/* There is only one architecture - but we give the default a machine number of 0 ++ so the linker can distinguish it */ ++const bfd_arch_info_type bfd_nios2_arch = ++N (32, 32, 0, "nios2", TRUE, &arch_info_struct[0]); +diff --git a/bfd/elf32-nios2.c b/bfd/elf32-nios2.c +new file mode 100644 +index 0000000..f9ba1a0 +--- /dev/null ++++ b/bfd/elf32-nios2.c +@@ -0,0 +1,2193 @@ ++/* New Jersey-specific support for 32-bit ELF ++ ++ Copyright (C) 2003 ++ by Nigel Gray (ngray@altera.com). ++ ++ ++This file is part of BFD, the Binary File Descriptor library. ++ ++This program is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 2 of the License, or ++(at your option) any later version. ++ ++This program is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this program; if not, write to the Free Software ++Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++/* This file handles Altera New Jersey ELF targets */ ++ ++#include "bfd.h" ++#include "sysdep.h" ++#include "libbfd.h" ++#include "bfdlink.h" ++#include "genlink.h" ++#include "elf-bfd.h" ++#include "elf/nios2.h" ++#include "opcode/nios2.h" ++ ++/* use RELA relocations*/ ++#ifndef USE_RELA ++#define USE_RELA ++#endif ++ ++#ifdef USE_REL ++#undef USE_REL ++#endif ++ ++/* Function prototypes */ ++ ++static reloc_howto_type *nios2_elf32_bfd_reloc_type_lookup ++ (bfd *, bfd_reloc_code_real_type); ++ ++static bfd_boolean nios2_elf32_relax_section ++ (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); ++ ++static bfd_boolean nios2_elf32_relax_delete_bytes ++ (bfd *, asection *, bfd_vma, int); ++ ++static reloc_howto_type *nios2_elf32_rtype_to_howto ++ (unsigned int r_type, bfd_boolean rela_p); ++ ++static void nios2_elf32_info_to_howto ++ (bfd * abfd, arelent * cache_ptr, Elf_Internal_Rela * dst); ++ ++static bfd_boolean nios2_elf32_relocate_section ++ (bfd * output_bfd, struct bfd_link_info * info, bfd * input_bfd, ++ asection * input_section, bfd_byte * contents, ++ Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, ++ asection ** local_sections); ++ ++static reloc_howto_type *lookup_howto (unsigned int rtype); ++ ++static bfd_reloc_status_type nios2_elf_final_gp ++ (bfd *, asymbol *, bfd_boolean, char **, bfd_vma *, ++ struct bfd_link_info *); ++ ++static bfd_boolean nios2_elf_assign_gp ++ (bfd *, bfd_vma *, struct bfd_link_info *); ++ ++static bfd_reloc_status_type nios2_elf32_ignore_reloc ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_hi16_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_lo16_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_hiadj16_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_pcrel16_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_call26_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_gprel_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_ujmp_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_cjmp_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_callr_relocate ++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); ++ ++static bfd_reloc_status_type nios2_elf32_do_hi16_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_lo16_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_hiadj16_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_pcrel16_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_call26_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_gprel_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_ujmp_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_cjmp_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++static bfd_reloc_status_type nios2_elf32_do_callr_relocate ++ (bfd *, reloc_howto_type *, asection *, ++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma); ++ ++ ++static void nios2_elf32_post_process_headers ++ (bfd *, struct bfd_link_info *); ++ ++static bfd_boolean nios2_elf32_section_from_shdr ++ (bfd *, Elf_Internal_Shdr *, const char *name, int shindex); ++ ++static bfd_boolean nios2_elf32_section_flags ++ (flagword *, const Elf_Internal_Shdr *); ++ ++static bfd_boolean nios2_elf32_fake_sections ++ (bfd *, Elf_Internal_Shdr *, asection *); ++ ++ ++ ++static bfd_boolean nios2_elf32_check_relocs ++ (bfd *, struct bfd_link_info *, asection *, ++ const Elf_Internal_Rela *); ++ ++static asection *nios2_elf32_gc_mark_hook (asection * sec, ++ struct bfd_link_info * ++ info, ++ Elf_Internal_Rela * rel, ++ struct elf_link_hash_entry ++ * h, ++ Elf_Internal_Sym * sym); ++ ++ ++/* target vector */ ++extern const bfd_target bfd_elf32_littlenios2_vec; ++extern const bfd_target bfd_elf32_bignios2_vec; ++ ++/* The relocation table used for SHT_REL sections. */ ++ ++static reloc_howto_type elf_nios2_howto_table_rel[] = { ++ /* No relocation. */ ++ HOWTO (R_NIOS2_NONE, /* type */ ++ 0, /* rightshift */ ++ 0, /* size (0 = byte, 1 = short, 2 = long) */ ++ 0, /* bitsize */ ++ FALSE, /* pc_relative */ ++ 0, /* bitpos */ ++ complain_overflow_dont, /* complain_on_overflow */ ++ bfd_elf_generic_reloc, /* special_function */ ++ "R_NIOS2_NONE", /* name */ ++ FALSE, /* partial_inplace */ ++ 0, /* src_mask */ ++ 0, /* dst_mask */ ++ FALSE), /* pcrel_offset */ ++ ++ /* 16-bit signed immediate relocation */ ++ HOWTO (R_NIOS2_S16, /* type */ ++ 0, /* rightshift */ ++ 2, /* size (0 = byte, 1 = short, 2 = long) */ ++ 16, /* bitsize */ ++ FALSE, /* pc_relative */ ++ 6, /* bitpos */ ++ complain_overflow_signed, /* complain on overflow */ ++ bfd_elf_generic_reloc, /* special function */ ++ "R_NIOS2_S16", /* name */ ++ FALSE, /* partial_inplace */ ++ 0x003fffc0, /* src_mask */ ++ 0x003fffc0, /* dest_mask */ ++ FALSE), /* pcrel_offset */ ++ ++ /* 16-bit unsigned immediate relocation */ ++ HOWTO (R_NIOS2_U16, /* type */ ++ 0, /* rightshift */ ++ 2, /* size (0 = byte, 1 = short, 2 = long) */ ++ 16, /* bitsize */ ++ FALSE, /* pc_relative */ ++ 6, /* bitpos */ ++ complain_overflow_unsigned, /* complain on overflow */ ++ bfd_elf_generic_reloc, /* special function */ ++ "R_NIOS2_U16", /* name */ ++ FALSE, /* partial_inplace */ ++ 0x003fffc0, /* src_mask */ ++ 0x003fffc0, /* dest_mask */ ++ FALSE), /* pcrel_offset */ ++ ++ HOWTO (R_NIOS2_PCREL16, /* type */ ++ 0, /* rightshift */ ++ 2, /* size (0 = byte, 1 = short, 2 = long) */ ++ 16, /* bitsize */ ++ TRUE, /* pc_relative */ ++ 6, /* bitpos */ ++ complain_overflow_signed, /* complain on overflow */ ++ nios2_elf32_pcrel16_relocate, /* special function */ ++ "R_NIOS2_PCREL16", /* name */ ++ FALSE, /* partial_inplace */ ++ 0x003fffc0, /* src_mask */ ++ 0x003fffc0, /* dest_mask */ ++ TRUE), /* pcrel_offset */ ++ ++ HOWTO (R_NIOS2_CALL26, /* type */ ++ 2, /* rightshift */ ++ 2, /* size (0 = byte, 1 = short, 2 = long) */ ++ 26, /* bitsize */ ++ FALSE, /* pc_relative */ ++ 6, /* bitpos */ ++ complain_overflow_dont, /* complain on overflow */ ++ nios2_elf32_call26_relocate, /* special function */ ++ "R_NIOS2_CALL26", /* name */ ++ FALSE, /* partial_inplace */ ++ 0xffffffc0, /* src_mask */ ++ 0xffffffc0, /* dst_mask */ ++ FALSE), /* pcrel_offset */ ++ ++ HOWTO (R_NIOS2_IMM5, ++ 0, ++ 2, ++ 5, ++ FALSE, ++ 6, ++ complain_overflow_bitfield, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_IMM5", ++ FALSE, ++ 0x000007c0, ++ 0x000007c0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_CACHE_OPX, ++ 0, ++ 2, ++ 5, ++ FALSE, ++ 22, ++ complain_overflow_bitfield, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_CACHE_OPX", ++ FALSE, ++ 0x07c00000, ++ 0x07c00000, ++ FALSE), ++ ++ HOWTO (R_NIOS2_IMM6, ++ 0, ++ 2, ++ 6, ++ FALSE, ++ 6, ++ complain_overflow_bitfield, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_IMM6", ++ FALSE, ++ 0x00000fc0, ++ 0x00000fc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_IMM8, ++ 0, ++ 2, ++ 8, ++ FALSE, ++ 6, ++ complain_overflow_bitfield, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_IMM8", ++ FALSE, ++ 0x00003fc0, ++ 0x00003fc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_HI16, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_hi16_relocate, ++ "R_NIOS2_HI16", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_LO16, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_lo16_relocate, ++ "R_NIOS2_LO16", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_HIADJ16, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_hiadj16_relocate, ++ "R_NIOS2_HIADJ16", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_BFD_RELOC_32, ++ 0, ++ 2, /* long */ ++ 32, ++ FALSE, ++ 0, ++ complain_overflow_dont, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_BFD_RELOC32", ++ FALSE, ++ 0xffffffff, ++ 0xffffffff, ++ FALSE), ++ ++ HOWTO (R_NIOS2_BFD_RELOC_16, ++ 0, ++ 1, /* short */ ++ 16, ++ FALSE, ++ 0, ++ complain_overflow_bitfield, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_BFD_RELOC16", ++ FALSE, ++ 0x0000ffff, ++ 0x0000ffff, ++ FALSE), ++ ++ HOWTO (R_NIOS2_BFD_RELOC_8, ++ 0, ++ 0, /* byte */ ++ 8, ++ FALSE, ++ 0, ++ complain_overflow_bitfield, ++ bfd_elf_generic_reloc, ++ "R_NIOS2_BFD_RELOC8", ++ FALSE, ++ 0x000000ff, ++ 0x000000ff, ++ FALSE), ++ ++ HOWTO (R_NIOS2_GPREL, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_gprel_relocate, ++ "R_NIOS2_GPREL", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_GNU_VTINHERIT, ++ 0, ++ 2, /* short */ ++ 0, ++ FALSE, ++ 0, ++ complain_overflow_dont, ++ NULL, ++ "R_NIOS2_GNU_VTINHERIT", ++ FALSE, ++ 0, ++ 0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_GNU_VTENTRY, ++ 0, ++ 2, /* byte */ ++ 0, ++ FALSE, ++ 0, ++ complain_overflow_dont, ++ _bfd_elf_rel_vtable_reloc_fn, ++ "R_NIOS2_GNU_VTENTRY", ++ FALSE, ++ 0, ++ 0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_UJMP, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_ujmp_relocate, ++ "R_NIOS2_UJMP", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_CJMP, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_cjmp_relocate, ++ "R_NIOS2_CJMP", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_CALLR, ++ 0, ++ 2, ++ 32, ++ FALSE, ++ 6, ++ complain_overflow_dont, ++ nios2_elf32_callr_relocate, ++ "R_NIOS2_CALLR", ++ FALSE, ++ 0x003fffc0, ++ 0x003fffc0, ++ FALSE), ++ ++ HOWTO (R_NIOS2_ALIGN, ++ 0, ++ 2, ++ 0, ++ FALSE, ++ 0, ++ complain_overflow_dont, ++ nios2_elf32_ignore_reloc, ++ "R_NIOS2_ALIGN", ++ FALSE, ++ 0, ++ 0, ++ TRUE), ++ ++/* add other relocations here */ ++}; ++ ++static unsigned char elf_code_to_howto_index[R_NIOS2_ILLEGAL + 1]; ++ ++static reloc_howto_type * ++lookup_howto (unsigned int rtype) ++{ ++ static int initialized = 0; ++ int i; ++ int howto_tbl_size = (int) (sizeof (elf_nios2_howto_table_rel) ++ / sizeof (elf_nios2_howto_table_rel[0])); ++ ++ if (!initialized) ++ { ++ initialized = 1; ++ memset (elf_code_to_howto_index, 0xff, ++ sizeof (elf_code_to_howto_index)); ++ for (i = 0; i < howto_tbl_size; i++) ++ elf_code_to_howto_index[elf_nios2_howto_table_rel[i].type] = i; ++ } ++ ++ BFD_ASSERT (rtype <= R_NIOS2_ILLEGAL); ++ i = elf_code_to_howto_index[rtype]; ++ if (i >= howto_tbl_size) ++ return 0; ++ return elf_nios2_howto_table_rel + i; ++} ++ ++/* ++ map for converting BFD reloc types to New Jersey ++ reloc types ++ */ ++struct elf_reloc_map ++{ ++ bfd_reloc_code_real_type bfd_val; ++ enum elf_nios2_reloc_type elf_val; ++}; ++ ++static const struct elf_reloc_map nios2_reloc_map[] = { ++ {BFD_RELOC_NIOS2_S16, R_NIOS2_S16}, ++ {BFD_RELOC_NIOS2_U16, R_NIOS2_U16}, ++ {BFD_RELOC_16_PCREL, R_NIOS2_PCREL16}, ++ {BFD_RELOC_NIOS2_CALL26, R_NIOS2_CALL26}, ++ {BFD_RELOC_NIOS2_IMM5, R_NIOS2_IMM5}, ++ {BFD_RELOC_NIOS2_CACHE_OPX, R_NIOS2_CACHE_OPX}, ++ {BFD_RELOC_NIOS2_IMM6, R_NIOS2_IMM6}, ++ {BFD_RELOC_NIOS2_IMM8, R_NIOS2_IMM8}, ++ {BFD_RELOC_NIOS2_HI16, R_NIOS2_HI16}, ++ {BFD_RELOC_NIOS2_LO16, R_NIOS2_LO16}, ++ {BFD_RELOC_NIOS2_HIADJ16, R_NIOS2_HIADJ16}, ++ {BFD_RELOC_32, R_NIOS2_BFD_RELOC_32}, ++ {BFD_RELOC_16, R_NIOS2_BFD_RELOC_16}, ++ {BFD_RELOC_8, R_NIOS2_BFD_RELOC_8}, ++ {BFD_RELOC_NIOS2_GPREL, R_NIOS2_GPREL}, ++ {BFD_RELOC_VTABLE_INHERIT, R_NIOS2_GNU_VTINHERIT}, ++ {BFD_RELOC_VTABLE_ENTRY, R_NIOS2_GNU_VTENTRY}, ++ {BFD_RELOC_NIOS2_UJMP, R_NIOS2_UJMP}, ++ {BFD_RELOC_NIOS2_CJMP, R_NIOS2_CJMP}, ++ {BFD_RELOC_NIOS2_CALLR, R_NIOS2_CALLR}, ++ {BFD_RELOC_NIOS2_ALIGN, R_NIOS2_ALIGN}, ++}; ++ ++/* Given a BFD reloc type, return a howto structure. */ ++ ++static reloc_howto_type * ++nios2_elf32_bfd_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, ++ bfd_reloc_code_real_type code) ++{ ++ int i; ++ for (i = 0; ++ i < (int) (sizeof (nios2_reloc_map) / sizeof (struct elf_reloc_map)); ++ ++i) ++ { ++ if (nios2_reloc_map[i].bfd_val == code) ++ return &elf_nios2_howto_table_rel[(int) nios2_reloc_map[i].elf_val]; ++ } ++ ++ return NULL; ++} ++ ++/* Helper function for nios2_elf32_info_to_howto */ ++ ++static reloc_howto_type * ++nios2_elf32_rtype_to_howto (unsigned int r_type, ++ bfd_boolean rela_p ATTRIBUTE_UNUSED) ++{ ++ BFD_ASSERT (r_type < R_NIOS2_ILLEGAL); ++ return &elf_nios2_howto_table_rel[r_type]; ++} ++ ++/* Given a ELF32 relocation, fill in a arelent structure */ ++ ++static void ++nios2_elf32_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * cache_ptr, ++ Elf_Internal_Rela * dst) ++{ ++ unsigned int r_type; ++ ++ r_type = ELF32_R_TYPE (dst->r_info); ++ cache_ptr->howto = nios2_elf32_rtype_to_howto (r_type, FALSE); ++ ++ // FIXME - do we need to do anything else here??? ++} ++ ++/* The assembler has output long jmp/call sequences for all calls ++ * and pc-relative branches that it cannot guarantee are within ++ * range, so the linker must attempt to "relax" these sequences to ++ * short branches and calls if it can. Since we only relax in one ++ * direction - long to short - we don't need to see whether each ++ * relaxation invalidates any others ++ * ++ * ++ **/ ++static bfd_boolean ++nios2_elf32_relax_section (bfd * abfd, ++ asection * sec, ++ struct bfd_link_info *link_info, bfd_boolean * again) ++{ ++ Elf_Internal_Shdr *symtab_hdr; ++ Elf_Internal_Rela *internal_relocs; ++ Elf_Internal_Rela *irel, *irelend; ++ bfd_byte *contents = NULL; ++ Elf_Internal_Sym *isymbuf = NULL; ++ ++ /* Assume nothing changes. */ ++ *again = FALSE; ++ ++ /* We don't have to do anything for a relocatable link, if ++ this section does not have relocs, or if this is not a ++ code section. */ ++ if (link_info->relocatable ++ || (sec->flags & SEC_RELOC) == 0 ++ || sec->reloc_count == 0 || (sec->flags & SEC_CODE) == 0) ++ return TRUE; ++ ++ /* If this is the first time we have been called for this section, ++ initialize the cooked size. */ ++ if (sec->size == 0) ++ sec->size = sec->rawsize; ++ ++ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; ++ ++ /* Get a copy of the native relocations. */ ++ internal_relocs = (_bfd_elf_link_read_relocs ++ (abfd, sec, (void *) NULL, (Elf_Internal_Rela *) NULL, ++ link_info->keep_memory)); ++ if (internal_relocs == NULL) ++ goto error_return; ++ ++ /* Walk through them looking for relaxing opportunities. */ ++ irelend = internal_relocs + sec->reloc_count; ++ for (irel = internal_relocs; irel < irelend; irel++) ++ { ++ bfd_vma symval; ++ ++ /* If this isn't something that can be relaxed, then ignore ++ this reloc. */ ++ if (ELF32_R_TYPE (irel->r_info) != (int) R_NIOS2_UJMP ++ && ELF32_R_TYPE (irel->r_info) != (int) R_NIOS2_CJMP ++ && ELF32_R_TYPE (irel->r_info) != (int) R_NIOS2_CALLR) ++ { ++ continue; ++ } ++ ++ /* Get the section contents if we haven't done so already. */ ++ if (contents == NULL) ++ { ++ /* Get cached copy if it exists. */ ++ if (elf_section_data (sec)->this_hdr.contents != NULL) ++ contents = elf_section_data (sec)->this_hdr.contents; ++ else ++ { ++ /* Go get them off disk. */ ++ contents = (bfd_byte *) bfd_malloc (sec->rawsize); ++ if (contents == NULL) ++ goto error_return; ++ ++ if (!bfd_get_section_contents (abfd, sec, contents, ++ (file_ptr) 0, sec->rawsize)) ++ goto error_return; ++ } ++ } ++ ++ /* Read this BFD's local symbols if we haven't done so already. */ ++ if (isymbuf == NULL && symtab_hdr->sh_info != 0) ++ { ++ isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; ++ if (isymbuf == NULL) ++ isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, ++ symtab_hdr->sh_info, 0, ++ NULL, NULL, NULL); ++ if (isymbuf == NULL) ++ goto error_return; ++ } ++ ++ /* Get the value of the symbol referred to by the reloc. */ ++ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) ++ { ++ /* A local symbol. */ ++ Elf_Internal_Sym *isym; ++ asection *sym_sec; ++ ++ isym = isymbuf + ELF32_R_SYM (irel->r_info); ++ if (isym->st_shndx == SHN_UNDEF) ++ sym_sec = bfd_und_section_ptr; ++ else if (isym->st_shndx == SHN_ABS) ++ sym_sec = bfd_abs_section_ptr; ++ else if (isym->st_shndx == SHN_COMMON) ++ sym_sec = bfd_com_section_ptr; ++ else ++ sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); ++ symval = (isym->st_value ++ + sym_sec->output_section->vma + sym_sec->output_offset); ++ } ++ else ++ { ++ unsigned long indx; ++ struct elf_link_hash_entry *h; ++ ++ /* An external symbol. */ ++ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; ++ h = elf_sym_hashes (abfd)[indx]; ++ BFD_ASSERT (h != NULL); ++ if (h->root.type != bfd_link_hash_defined ++ && h->root.type != bfd_link_hash_defweak) ++ { ++ /* This appears to be a reference to an undefined ++ symbol. Just ignore it--it will be caught by the ++ regular reloc processing. */ ++ continue; ++ } ++ ++ symval = (h->root.u.def.value ++ + h->root.u.def.section->output_section->vma ++ + h->root.u.def.section->output_offset); ++ } ++ ++ /* For simplicity of coding, we are going to modify the section ++ contents, the section relocs, and the BFD symbol table. We ++ must tell the rest of the code not to free up this ++ information. It would be possible to instead create a table ++ of changes which have to be made, as is done in coff-mips.c; ++ that would be more work, but would require less memory when ++ the linker is run. */ ++ ++ /* try to turn : ++ * movhi at, %hi(symbol) ++ * movui at, %lo(symbol) ++ * callr at ++ * into: ++ * call symbol ++ */ ++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_CALLR) ++ { ++ bfd_vma targ_addr = symval + irel->r_addend; ++ bfd_vma curr_addr = (sec->output_section->vma + sec->output_offset); ++ bfd_vma targ_page, curr_page; ++ targ_page = targ_addr & 0xf0000000; ++ curr_page = curr_addr & 0xf0000000; ++ ++ if (targ_page == curr_page) ++ { ++ /* change the opcode to a call */ ++ bfd_put_32 (abfd, OP_MATCH_CALL, contents + irel->r_offset); ++ /* Note that we've changed the relocs, section contents, etc. */ ++ elf_section_data (sec)->relocs = internal_relocs; ++ elf_section_data (sec)->this_hdr.contents = contents; ++ symtab_hdr->contents = (unsigned char *) isymbuf; ++ ++ /* Fix the relocation's type. */ ++ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), ++ R_NIOS2_CALL26); ++ ++ /* delete the next two instructions */ ++ if (!nios2_elf32_relax_delete_bytes (abfd, sec, ++ irel->r_offset + 4, 8)) ++ goto error_return; ++ ++ /* NG FIXME - I'm putting this in for now, but I don't think we need it */ ++ *again = TRUE; ++ } ++ } ++ ++ /* try to turn : ++ * movhi at, %hi(symbol) ++ * movui at, %lo(symbol) ++ * jmp at ++ * into: ++ * br symbol ++ */ ++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_UJMP) ++ { ++ bfd_vma pcrel_offset; ++ Elf_Internal_Rela *irelalign = NULL; ++ Elf_Internal_Rela *irela = elf_section_data (sec)->relocs; ++ Elf_Internal_Rela *irelend = irel + sec->reloc_count; ++ ++ for (; irela < irelend; irela++) ++ { ++ if (ELF32_R_TYPE (irela->r_info) == (int) R_NIOS2_ALIGN ++ && irela->r_offset > irel->r_offset + 4 ++ && 8 < (1 << irela->r_addend)) ++ { ++ irelalign = irela; ++ break; ++ } ++ } ++ ++ /* calculate the pcrelative offset from current location */ ++ pcrel_offset = symval; ++ pcrel_offset -= (sec->output_section->vma + sec->output_offset); ++ pcrel_offset += irel->r_addend; ++ ++ /* we need to compute the pcrel_offset from the next instruction */ ++ pcrel_offset -= (irel->r_offset + 4); ++ ++ /* does this value fit in 16 bits */ ++ if ((irelalign == NULL && (long) pcrel_offset <= 0x8004 ++ && (long) pcrel_offset >= -0x8000) || (irelalign != NULL ++ && (long) pcrel_offset ++ <= 0x7ffc ++ && (long) pcrel_offset ++ >= -0x8000)) ++ { ++ /* change the opcode to an unconditional branch */ ++ bfd_put_32 (abfd, OP_MATCH_BR, contents + irel->r_offset); ++ /* Note that we've changed the relocs, section contents, etc. */ ++ elf_section_data (sec)->relocs = internal_relocs; ++ elf_section_data (sec)->this_hdr.contents = contents; ++ symtab_hdr->contents = (unsigned char *) isymbuf; ++ ++ /* Fix the relocation's type. */ ++ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), ++ R_NIOS2_PCREL16); ++ ++ /* delete the next two instructions */ ++ if (!nios2_elf32_relax_delete_bytes (abfd, sec, ++ irel->r_offset + 4, 8)) ++ goto error_return; ++ ++ /* NG FIXME - I'm putting this in for now, but I don't think we need it */ ++ *again = TRUE; ++ } ++ } ++ ++ /* try to turn : ++ * b{cond} a, b skip ++ * movhi at, %hi(symbol) ++ * movui at, %lo(symbol) ++ * jmp at ++ * skip: ++ * ... ++ * into: ++ * br{opp_cond} a, b, symbol ++ */ ++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_CJMP) ++ { ++ bfd_vma pcrel_offset; ++ Elf_Internal_Rela *irelalign = NULL; ++ Elf_Internal_Rela *irela = elf_section_data (sec)->relocs; ++ Elf_Internal_Rela *irelend = irel + sec->reloc_count; ++ ++ for (; irela < irelend; irela++) ++ { ++ if (ELF32_R_TYPE (irela->r_info) == (int) R_NIOS2_ALIGN ++ && irela->r_offset > irel->r_offset + 4 ++ && 8 < (1 << irela->r_addend)) ++ { ++ irelalign = irela; ++ break; ++ } ++ } ++ ++ /* calculate the pcrelative offset from current location */ ++ pcrel_offset = symval; ++ pcrel_offset -= (sec->output_section->vma + sec->output_offset); ++ pcrel_offset += irel->r_addend; ++ ++ /* we need to compute the pcrel_offset from this instruction ++ * ie the movhi */ ++ pcrel_offset -= (irel->r_offset); ++ ++ /* does this value fit in 16 bits */ ++ if ((irelalign == NULL && (long) pcrel_offset <= 0x8008 ++ && (long) pcrel_offset >= -0x8000) || (irelalign != NULL ++ && (long) pcrel_offset ++ <= 0x7ffc ++ && (long) pcrel_offset ++ >= -0x8000)) ++ { ++ unsigned long opcode, op_a, op_b; ++ /* get the conditional branch opcode */ ++ opcode = bfd_get_32 (abfd, contents + irel->r_offset - 4); ++ /* reverse the condition */ ++ switch (opcode & OP_MASK_OP) ++ { ++ case OP_MATCH_BEQ: ++ opcode = (opcode & ~OP_MASK_OP) | OP_MATCH_BNE; ++ break; ++ case OP_MATCH_BNE: ++ opcode = (opcode & ~OP_MASK_OP) | OP_MATCH_BEQ; ++ break; ++ case OP_MATCH_BGE: ++ case OP_MATCH_BGEU: ++ case OP_MATCH_BLT: ++ case OP_MATCH_BLTU: ++ /* swap the operands */ ++ op_a = (opcode & OP_MASK_RRT) << 5; ++ op_b = (opcode & OP_MASK_RRS) >> 5; ++ opcode = ++ (opcode & ~(OP_MASK_RRS | OP_MASK_RRT)) | op_a | op_b; ++ break; ++ default: ++ fprintf (stderr, ++ "relaxation error - expecting conditional branch, aborting\n"); ++ abort (); ++ break; ++ } ++ ++ /* we must set the branch target to zero so that the skip over the jmp doesn't get ++ * added to the jmp */ ++ opcode = opcode & (~OP_MASK_IMM16); ++ ++ /* change the opcode to the reversed conditional branch */ ++ bfd_put_32 (abfd, opcode, contents + irel->r_offset - 4); ++ /* Note that we've changed the relocs, section contents, etc. */ ++ elf_section_data (sec)->relocs = internal_relocs; ++ elf_section_data (sec)->this_hdr.contents = contents; ++ symtab_hdr->contents = (unsigned char *) isymbuf; ++ ++ /* Fix the relocation's type. */ ++ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), ++ R_NIOS2_PCREL16); ++ ++ /* this relocation's offset has also been reduced by 4 bytes */ ++ irel->r_offset -= 4; ++ ++ /* delete the next three instructions */ ++ if (!nios2_elf32_relax_delete_bytes (abfd, sec, ++ irel->r_offset + 4, 12)) ++ goto error_return; ++ ++ /* NG FIXME - I'm putting this in for now, but I don't think we need it */ ++ *again = TRUE; ++ } ++ } ++ ++ /* otherwise, leave alone */ ++ } ++ ++ if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) ++ { ++ if (!link_info->keep_memory) ++ free (isymbuf); ++ else ++ { ++ /* Cache the symbols for elf_link_input_bfd. */ ++ symtab_hdr->contents = (unsigned char *) isymbuf; ++ } ++ } ++ ++ if (contents != NULL ++ && elf_section_data (sec)->this_hdr.contents != contents) ++ { ++ if (!link_info->keep_memory) ++ free (contents); ++ else ++ { ++ /* Cache the section contents for elf_link_input_bfd. */ ++ elf_section_data (sec)->this_hdr.contents = contents; ++ } ++ } ++ ++ if (internal_relocs != NULL ++ && elf_section_data (sec)->relocs != internal_relocs) ++ free (internal_relocs); ++ ++ ++ return TRUE; ++ ++error_return: ++ if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) ++ free (isymbuf); ++ if (contents != NULL ++ && elf_section_data (sec)->this_hdr.contents != contents) ++ free (contents); ++ if (internal_relocs != NULL ++ && elf_section_data (sec)->relocs != internal_relocs) ++ free (internal_relocs); ++ ++ return FALSE; ++} ++ ++/* Delete some bytes from a section while relaxing. ++ * Copied from mn10200 port */ ++ ++static bfd_boolean ++nios2_elf32_relax_delete_bytes (bfd * abfd, ++ asection * sec, bfd_vma addr, int count) ++{ ++ Elf_Internal_Shdr *symtab_hdr; ++ unsigned int sec_shndx; ++ bfd_byte *contents; ++ Elf_Internal_Rela *irel, *irelend; ++ Elf_Internal_Rela *irelalign; ++ bfd_vma toaddr; ++ Elf_Internal_Sym *isym; ++ Elf_Internal_Sym *isymend; ++ struct elf_link_hash_entry **sym_hashes; ++ struct elf_link_hash_entry **end_hashes; ++ unsigned int symcount; ++ asection *asec; ++ ++ sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); ++ ++ contents = elf_section_data (sec)->this_hdr.contents; ++ ++ /* The deletion must stop at the next ALIGN reloc for an aligment ++ power larger than the number of bytes we are deleting. */ ++ ++ irelalign = NULL; ++ /* +1 because we need to readjust symbols at end of section */ ++ toaddr = sec->size + 1; ++ ++ irel = elf_section_data (sec)->relocs; ++ irelend = irel + sec->reloc_count; ++ ++ for (; irel < irelend; irel++) ++ { ++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_ALIGN ++ && irel->r_offset > addr && count < (1 << irel->r_addend)) ++ { ++ irelalign = irel; ++ /* +1 because we need to readjust symbols at end of section */ ++ toaddr = irel->r_offset + 1; ++ break; ++ } ++ } ++ ++ ++ /* Actually delete the bytes. */ ++ memmove (contents + addr, contents + addr + count, ++ (size_t) ((toaddr - 1) - addr - count)); ++ ++ if (irelalign == NULL) ++ sec->size -= count; ++ else ++ { ++ int i; ++ ++#define NOP_OPCODE (0x0001883a) ++ ++ BFD_ASSERT ((count & 3) == 0); ++ for (i = 0; i < count; i += 4) ++ bfd_put_32 (abfd, (bfd_vma) NOP_OPCODE, ++ contents + (toaddr - 1) - count + i); ++ } ++ ++ /* get the symbol table */ ++ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; ++ isym = (Elf_Internal_Sym *) symtab_hdr->contents; ++ ++ /* Adjust all the reloc offsets in this section. */ ++ for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) ++ { ++ /* Get the new reloc address. */ ++ if ((irel->r_offset > addr && irel->r_offset < toaddr)) ++ irel->r_offset -= count; ++ } ++ ++ /* Adjust relocations against targets in this section whose positions ++ * have moved as a result of the relaxation */ ++ ++ for (asec = abfd->sections; asec; asec = asec->next) ++ { ++ irelend = elf_section_data (asec)->relocs + asec->reloc_count; ++ for (irel = elf_section_data (asec)->relocs; irel < irelend; irel++) ++ { ++ Elf_Internal_Sym *sym; ++ /* if the symbol which this reloc is against doesn't change ++ * we need to change the reloc addend */ ++ ++ sym = isym + ELF32_R_SYM (irel->r_info); ++ if (sym->st_shndx == sec_shndx ++ && !(sym->st_value > addr && sym->st_value < toaddr) ++ && sym->st_value + irel->r_addend > addr ++ && sym->st_value + irel->r_addend < toaddr) ++ { ++ irel->r_addend -= count; ++ } ++ ++ } ++ } ++ ++ /* Adjust the local symbols defined in this section. */ ++ for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) ++ { ++ if (isym->st_shndx == sec_shndx ++ && isym->st_value > addr && isym->st_value < toaddr) ++ isym->st_value -= count; ++ ++ ++ } ++ ++ /* Now adjust the global symbols defined in this section. */ ++ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) ++ - symtab_hdr->sh_info); ++ sym_hashes = elf_sym_hashes (abfd); ++ end_hashes = sym_hashes + symcount; ++ for (; sym_hashes < end_hashes; sym_hashes++) ++ { ++ struct elf_link_hash_entry *sym_hash = *sym_hashes; ++ if ((sym_hash->root.type == bfd_link_hash_defined ++ || sym_hash->root.type == bfd_link_hash_defweak) ++ && sym_hash->root.u.def.section == sec ++ && sym_hash->root.u.def.value > addr ++ && sym_hash->root.u.def.value < toaddr) ++ { ++ sym_hash->root.u.def.value -= count; ++ } ++ } ++ ++ return TRUE; ++} ++ ++struct bfd_link_info *nios2_link_info = NULL; ++ ++/* ++void ++_bfd_set_link_info (info) ++ struct bfd_link_info *info; ++{ ++ nios2_link_info = info; ++} ++*/ ++ ++bfd_boolean linker_force_make_executable = FALSE; ++ ++/* ++void ++_bfd_set_force_make_executable (force) ++ bfd_boolean force; ++{ ++ linker_force_make_executable = force; ++} ++*/ ++ ++/* Set the GP value for OUTPUT_BFD. Returns FALSE if this is a ++ dangerous relocation. */ ++ ++static bfd_boolean ++nios2_elf_assign_gp (bfd *output_bfd, bfd_vma *pgp, struct bfd_link_info *info) ++{ ++ ++ bfd_boolean gp_found; ++ struct bfd_hash_entry *h; ++ struct bfd_link_hash_entry *lh; ++ ++ /* If we've already figured out what GP will be, just return it. */ ++ *pgp = _bfd_get_gp_value (output_bfd); ++ if (*pgp) ++ return TRUE; ++ ++ h = bfd_hash_lookup (&info->hash->table, "_gp", FALSE, FALSE); ++ lh = (struct bfd_link_hash_entry *) h; ++lookup: ++ if (lh) ++ { ++ switch (lh->type) ++ { ++ case bfd_link_hash_undefined: ++ case bfd_link_hash_undefweak: ++ case bfd_link_hash_common: ++ gp_found = FALSE; ++ break; ++ case bfd_link_hash_defined: ++ case bfd_link_hash_defweak: ++ gp_found = TRUE; ++ *pgp = lh->u.def.value; ++ break; ++ case bfd_link_hash_indirect: ++ case bfd_link_hash_warning: ++ lh = lh->u.i.link; ++ /* @@FIXME ignoring warning for now */ ++ goto lookup; ++ case bfd_link_hash_new: ++ default: ++ abort (); ++ } ++ } ++ else ++ gp_found = FALSE; ++ ++ if (!gp_found) ++ { ++ /* Only get the error once. */ ++ *pgp = 4; ++ _bfd_set_gp_value (output_bfd, *pgp); ++ return FALSE; ++ } ++ ++ _bfd_set_gp_value (output_bfd, *pgp); ++ ++ return TRUE; ++} ++ ++/* We have to figure out the gp value, so that we can adjust the ++ symbol value correctly. We look up the symbol _gp in the output ++ BFD. If we can't find it, we're stuck. We cache it in the ELF ++ target data. We don't need to adjust the symbol value for an ++ external symbol if we are producing relocatable output. */ ++ ++static bfd_reloc_status_type ++nios2_elf_final_gp (bfd *output_bfd, asymbol *symbol, bfd_boolean relocatable, ++ char **error_message, bfd_vma *pgp, struct bfd_link_info *info) ++{ ++ if (bfd_is_und_section (symbol->section) && !relocatable) ++ { ++ *pgp = 0; ++ return bfd_reloc_undefined; ++ } ++ ++ *pgp = _bfd_get_gp_value (output_bfd); ++ if (*pgp == 0 && (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)) ++ { ++ /* if this is called without link_info, then ++ we cannot be doing a final link */ ++ if (info == NULL) ++ relocatable = TRUE; ++ ++ if (relocatable) ++ { ++ /* Make up a value. */ ++ *pgp = symbol->section->output_section->vma + 0x4000; ++ _bfd_set_gp_value (output_bfd, *pgp); ++ } ++ else if (!nios2_elf_assign_gp (output_bfd, pgp, info)) ++ { ++ *error_message = ++ (char *) ++ _("global pointer relative relocation when _gp not defined"); ++ return bfd_reloc_dangerous; ++ } ++ } ++ ++ return bfd_reloc_ok; ++} ++ ++ ++/* Relocations that require special handling */ ++ ++/* This is for relocations used only when relaxing to ensure ++ * changes in size of section don't screw up .align */ ++static bfd_reloc_status_type ++nios2_elf32_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, ++ asymbol *symbol ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED, ++ asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) ++{ ++ if (output_bfd != NULL) ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_hi16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, ++ asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) ++{ ++ /* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_hi16_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + symbol->section->output_section->vma ++ + symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) ++{ ++/* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_lo16_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + symbol->section->output_section->vma ++ + symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, ++ char **error_message ATTRIBUTE_UNUSED) ++{ ++/* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_hiadj16_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + ++ symbol->section->output_section-> ++ vma + ++ symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_pcrel16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, ++ char **error_message ATTRIBUTE_UNUSED) ++{ ++/* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_pcrel16_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + ++ symbol->section->output_section-> ++ vma + ++ symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_call26_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) ++{ ++/* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_call26_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + ++ symbol->section->output_section-> ++ vma + ++ symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_gprel_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, char **msg) ++{ ++ bfd_vma relocation; ++ bfd_vma gp; ++ bfd_reloc_status_type r; ++ ++ ++/* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ relocation = symbol->value ++ + symbol->section->output_section->vma + symbol->section->output_offset; ++ ++ if ((r = ++ nios2_elf_final_gp (abfd, symbol, FALSE, msg, &gp, ++ nios2_link_info)) == bfd_reloc_ok) ++ { ++ relocation = relocation + reloc_entry->addend - gp; ++ reloc_entry->addend = 0; ++ if ((signed) relocation < -32768 || (signed) relocation > 32767) ++ { ++ *msg = _("global pointer relative address out of range"); ++ r = bfd_reloc_outofrange; ++ } ++ else ++ { ++ r = nios2_elf32_do_gprel_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ relocation, reloc_entry->addend); ++ } ++ } ++ ++ return r; ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_ujmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED) ++{ ++ /* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_ujmp_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + symbol->section->output_section->vma ++ + symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_cjmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED) ++{ ++ /* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ return nios2_elf32_do_cjmp_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + symbol->section->output_section->vma ++ + symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_callr_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, ++ void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED) ++{ ++ /* This part is from bfd_elf_generic_reloc. */ ++ if (output_bfd != (bfd *) NULL ++ && (symbol->flags & BSF_SECTION_SYM) == 0 ++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) ++ { ++ reloc_entry->address += input_section->output_offset; ++ return bfd_reloc_ok; ++ } ++ ++ if (output_bfd != NULL) ++ /* FIXME: See bfd_perform_relocation. Is this right? */ ++ return bfd_reloc_ok; ++ ++ ++ return nios2_elf32_do_callr_relocate (abfd, reloc_entry->howto, ++ input_section, ++ data, reloc_entry->address, ++ (symbol->value ++ + ++ symbol->section->output_section-> ++ vma + ++ symbol->section->output_offset), ++ reloc_entry->addend); ++} ++ ++/* Do the relocations which require special handling */ ++ ++static bfd_reloc_status_type ++nios2_elf32_do_hi16_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ symbol_value = symbol_value + addend; ++ addend = 0; ++ symbol_value = (symbol_value >> 16) & 0xffff; ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_value, addend); ++} ++ ++ ++static bfd_reloc_status_type ++nios2_elf32_do_lo16_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ symbol_value = symbol_value + addend; ++ addend = 0; ++ symbol_value = symbol_value & 0xffff; ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_value, addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_do_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, ++ bfd_vma symbol_value, bfd_vma addend) ++{ ++ symbol_value = symbol_value + addend; ++ addend = 0; ++ symbol_value = ++ ((symbol_value >> 16) & 0xffff) + ((symbol_value >> 15) & 0x01); ++ return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, ++ symbol_value, addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_do_pcrel16_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ // NIOS2 pc relative relocations are relative to the next 32-bit instruction so we need ++ // to subtract 4 before doing a final_link_relocate ++ symbol_value = symbol_value + addend - 4; ++ addend = 0; ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_value, addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_do_call26_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ /* check that the relocation is in the same page as the current address */ ++ if (((symbol_value + addend) & 0xf0000000) ++ != ((input_section->output_section->vma + offset) & 0xf0000000)) ++ return bfd_reloc_overflow; ++ ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_value, addend); ++} ++ ++ ++static bfd_reloc_status_type ++nios2_elf32_do_gprel_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ // because we need the output_bfd, the special handling is done ++ // in nios2_elf32_relocate_section or in nios2_elf32_gprel_relocate ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_value, addend); ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_do_ujmp_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ bfd_vma symbol_lo16, symbol_hi16; ++ bfd_reloc_status_type r; ++ symbol_value = symbol_value + addend; ++ addend = 0; ++ symbol_hi16 = (symbol_value >> 16) & 0xffff; ++ symbol_lo16 = symbol_value & 0xffff; ++ ++ r = _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_hi16, addend); ++ ++ if (r == bfd_reloc_ok) ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset + 4, symbol_lo16, addend); ++ ++ return r; ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_do_cjmp_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ bfd_vma symbol_lo16, symbol_hi16; ++ bfd_reloc_status_type r; ++ symbol_value = symbol_value + addend; ++ addend = 0; ++ symbol_hi16 = (symbol_value >> 16) & 0xffff; ++ symbol_lo16 = symbol_value & 0xffff; ++ ++ r = _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_hi16, addend); ++ ++ if (r == bfd_reloc_ok) ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset + 4, symbol_lo16, addend); ++ ++ return r; ++} ++ ++static bfd_reloc_status_type ++nios2_elf32_do_callr_relocate (bfd *abfd, reloc_howto_type *howto, ++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, ++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) ++{ ++ bfd_vma symbol_lo16, symbol_hi16; ++ bfd_reloc_status_type r; ++ symbol_value = symbol_value + addend; ++ addend = 0; ++ symbol_hi16 = (symbol_value >> 16) & 0xffff; ++ symbol_lo16 = symbol_value & 0xffff; ++ ++ r = _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset, symbol_hi16, addend); ++ ++ if (r == bfd_reloc_ok) ++ return _bfd_final_link_relocate (howto, abfd, input_section, ++ data, offset + 4, symbol_lo16, addend); ++ ++ return r; ++} ++ ++/* ++ The function nios2_elf32_relocate_section is used by the linker ++ to perform relocations ++*/ ++static bfd_boolean ++nios2_elf32_relocate_section (bfd * output_bfd, ++ struct bfd_link_info *info, ++ bfd * input_bfd, ++ asection * input_section, ++ bfd_byte * contents, ++ Elf_Internal_Rela * relocs, ++ Elf_Internal_Sym * local_syms, ++ asection ** local_sections) ++{ ++ Elf_Internal_Shdr *symtab_hdr; ++ struct elf_link_hash_entry **sym_hashes; ++ Elf_Internal_Rela *rel; ++ Elf_Internal_Rela *relend; ++ ++ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; ++ sym_hashes = elf_sym_hashes (input_bfd); ++ relend = relocs + input_section->reloc_count; ++ ++// size_t psymalloc = 0; ++// _bfd_generic_link_output_symbols(output_bfd, input_bfd, info, &psymalloc); ++ for (rel = relocs; rel < relend; rel++) ++ { ++ reloc_howto_type *howto; ++ unsigned long r_symndx; ++ Elf_Internal_Sym *sym; ++ asection *sec; ++ struct elf_link_hash_entry *h; ++ bfd_vma relocation; ++ bfd_vma gp; ++ bfd_reloc_status_type r = bfd_reloc_ok; ++ const char *name = NULL; ++ int r_type; ++ const char *msg; ++ ++ msg = (const char *) NULL; ++ ++ r_type = ELF32_R_TYPE (rel->r_info); ++ ++ r_symndx = ELF32_R_SYM (rel->r_info); ++ ++ if (info->relocatable) ++ { ++ /* This is a relocatable link. We don't have to change ++ anything, unless the reloc is against a section symbol, ++ in which case we have to adjust according to where the ++ section symbol winds up in the output section. */ ++ if (r_symndx < symtab_hdr->sh_info) ++ { ++ sym = local_syms + r_symndx; ++ ++ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) ++ { ++ sec = local_sections[r_symndx]; ++ rel->r_addend += sec->output_offset + sym->st_value; ++ } ++ } ++ continue; ++ } ++ ++ /* This is a final link. */ ++ howto = lookup_howto ((unsigned) ELF32_R_TYPE (rel->r_info)); ++ h = NULL; ++ sym = NULL; ++ sec = NULL; ++ ++ if (r_symndx < symtab_hdr->sh_info) ++ { ++ sym = local_syms + r_symndx; ++ sec = local_sections[r_symndx]; ++ ++ relocation = (sec->output_section->vma ++ + sec->output_offset + sym->st_value); ++ ++ // this ensures that relocations against duplicated symbols ++ // in merged sections that have been removed are fixed up against ++ // the remaining symbol and not the one that has been removed ++ if ((sec->flags & SEC_MERGE) ++ && ELF_ST_TYPE (sym->st_info) == STT_SECTION) ++ { ++ rel->r_addend = ++ _bfd_elf_rel_local_sym (output_bfd, sym, &sec, rel->r_addend); ++ rel->r_addend -= relocation; ++ rel->r_addend += sec->output_section->vma + sec->output_offset; ++ } ++ ++ name = bfd_elf_string_from_elf_section ++ (input_bfd, symtab_hdr->sh_link, sym->st_name); ++ ++ name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name; ++ } ++ else ++ { ++ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; ++ ++ while (h->root.type == bfd_link_hash_indirect ++ || h->root.type == bfd_link_hash_warning) ++ h = (struct elf_link_hash_entry *) h->root.u.i.link; ++ ++ name = h->root.root.string; ++ ++ if (h->root.type == bfd_link_hash_defined ++ || h->root.type == bfd_link_hash_defweak) ++ { ++ sec = h->root.u.def.section; ++ ++ relocation = (h->root.u.def.value ++ + sec->output_section->vma + sec->output_offset); ++ } ++ else if (h->root.type == bfd_link_hash_undefweak) ++ { ++ relocation = 0; ++ } ++ else ++ { ++ if (!((*info->callbacks->undefined_symbol) ++ (info, h->root.root.string, input_bfd, ++ input_section, rel->r_offset, TRUE))) ++ return FALSE; ++ relocation = 0; ++ } ++ } ++ ++ if (howto != NULL) ++ { ++ switch (howto->type) ++ { ++ case R_NIOS2_HI16: ++ r = ++ nios2_elf32_do_hi16_relocate (input_bfd, howto, input_section, ++ contents, rel->r_offset, ++ relocation, rel->r_addend); ++ break; ++ case R_NIOS2_LO16: ++ r = ++ nios2_elf32_do_lo16_relocate (input_bfd, howto, input_section, ++ contents, rel->r_offset, ++ relocation, rel->r_addend); ++ break; ++ case R_NIOS2_HIADJ16: ++ r = ++ nios2_elf32_do_hiadj16_relocate (input_bfd, howto, ++ input_section, contents, ++ rel->r_offset, relocation, ++ rel->r_addend); ++ break; ++ case R_NIOS2_PCREL16: ++ r = ++ nios2_elf32_do_pcrel16_relocate (input_bfd, howto, ++ input_section, contents, ++ rel->r_offset, relocation, ++ rel->r_addend); ++ break; ++ case R_NIOS2_GPREL: ++ // turns an absolute address into a gp-relative address ++ if (!nios2_elf_assign_gp (output_bfd, &gp, info)) ++ { ++ msg = ++ _ ++ ("global pointer relative relocation when _gp not defined"); ++ r = bfd_reloc_dangerous; ++ } ++ else ++ { ++ relocation = relocation + rel->r_addend - gp; ++ rel->r_addend = 0; ++ if ((signed) relocation < -32768 ++ || (signed) relocation > 32767) ++ { ++ msg = _("global pointer relative address out of range"); ++ r = bfd_reloc_outofrange; ++ } ++ else ++ { ++ r = ++ _bfd_final_link_relocate (howto, input_bfd, ++ input_section, contents, ++ rel->r_offset, relocation, ++ rel->r_addend); ++ } ++ } ++ ++ break; ++ case R_NIOS2_UJMP: ++ r = ++ nios2_elf32_do_ujmp_relocate (input_bfd, howto, input_section, ++ contents, rel->r_offset, ++ relocation, rel->r_addend); ++ break; ++ case R_NIOS2_CJMP: ++ r = ++ nios2_elf32_do_cjmp_relocate (input_bfd, howto, input_section, ++ contents, rel->r_offset, ++ relocation, rel->r_addend); ++ break; ++ case R_NIOS2_CALLR: ++ r = ++ nios2_elf32_do_callr_relocate (input_bfd, howto, ++ input_section, contents, ++ rel->r_offset, relocation, ++ rel->r_addend); ++ break; ++ case R_NIOS2_CALL26: ++ r = ++ nios2_elf32_do_call26_relocate (input_bfd, howto, ++ input_section, contents, ++ rel->r_offset, relocation, ++ rel->r_addend); ++ break; ++ case R_NIOS2_ALIGN: ++ r = bfd_reloc_ok; ++ /* comment - for symmetry this would be ++ r = nios2_elf32_do_ignore_reloc (input_bfd, howto, input_section, ++ contents, rel->r_offset, ++ relocation, rel->r_addend); ++ but do_ignore_reloc would do no more than return bfd_reloc_ok */ ++ break; ++ default: ++ r = _bfd_final_link_relocate (howto, input_bfd, input_section, ++ contents, rel->r_offset, ++ relocation, rel->r_addend); ++ break; ++ } ++ } ++ else ++ { ++ r = bfd_reloc_notsupported; ++ } ++ ++ if (r != bfd_reloc_ok) ++ { ++ if (h != NULL) ++ name = h->root.root.string; ++ else ++ { ++ name = (bfd_elf_string_from_elf_section ++ (input_bfd, symtab_hdr->sh_link, sym->st_name)); ++ if (name == NULL || *name == '\0') ++ name = bfd_section_name (input_bfd, sec); ++ } ++ ++ switch (r) ++ { ++ case bfd_reloc_overflow: ++ r = info->callbacks->reloc_overflow ++ (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, ++ input_bfd, input_section, rel->r_offset); ++ break; ++ ++ case bfd_reloc_undefined: ++ r = info->callbacks->undefined_symbol ++ (info, name, input_bfd, input_section, rel->r_offset, TRUE); ++ break; ++ ++ case bfd_reloc_outofrange: ++ if (msg == NULL) ++ msg = _("relocation out of range"); ++ break; ++ ++ case bfd_reloc_notsupported: ++ if (msg == NULL) ++ msg = _("unsupported relocation"); ++ break; ++ ++ case bfd_reloc_dangerous: ++ if (msg == NULL) ++ msg = _("dangerous relocation"); ++ break; ++ ++ default: ++ if (msg == NULL) ++ msg = _("unknown error"); ++ break; ++ } ++ ++ if (msg) ++ { ++ r = info->callbacks->warning ++ (info, msg, name, input_bfd, input_section, rel->r_offset); ++ return linker_force_make_executable; ++ } ++ } ++ } ++ return TRUE; ++} ++ ++ ++ ++/* Handle an NIOS2 specific section when reading an object file. This ++ is called when elfcode.h finds a section with an unknown type. ++ FIXME: We need to handle the SHF_NIOS2_GPREL flag */ ++ ++static bfd_boolean ++nios2_elf32_section_from_shdr (bfd *abfd, ++ Elf_Internal_Shdr *hdr, const char *name, int shindex) ++{ ++ asection *newsect; ++ ++ /* NG - I'm keeping this code commented out at the moment ++ in case we add a .mdebug section */ ++ ++ /* ++ switch (hdr->sh_type) ++ { ++ case SHT_NIOS2_DEBUG: ++ if (strcmp (name, ".mdebug") != 0) ++ return FALSE; ++ break; ++ default: ++ return FALSE; ++ } ++ */ ++ ++ if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) ++ return FALSE; ++ ++ newsect = hdr->bfd_section; ++ ++ /* ditto */ ++ /* ++ if (hdr->sh_type == SHT_NIOS2_DEBUG) ++ { ++ if (! bfd_set_section_flags (abfd, newsect, ++ (bfd_get_section_flags (abfd, newsect) ++ | SEC_DEBUGGING))) ++ return FALSE; ++ } ++ */ ++ return TRUE; ++} ++ ++/* Convert NIOS2 specific section flags to bfd internal section flags. */ ++ ++static bfd_boolean ++nios2_elf32_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr) ++{ ++ if (hdr->sh_flags & SHF_NIOS2_GPREL) ++ *flags |= SEC_SMALL_DATA; ++ ++ return TRUE; ++} ++ ++/* Set the correct type for an NIOS2 ELF section. We do this by the ++ section name, which is a hack, but ought to work. */ ++ ++static bfd_boolean ++nios2_elf32_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, ++ Elf_Internal_Shdr *hdr, asection *sec) ++{ ++ register const char *name; ++ ++ name = bfd_get_section_name (abfd, sec); ++ ++ if (strcmp (name, ".mdebug") == 0) ++ { ++ /* we don't yet have an .mdebug section, but I'm leaving this here ++ in case we ever do ++ hdr->sh_type = SHT_NIOS2_DEBUG; ++ ++ if ((abfd->flags & DYNAMIC) != 0 ) ++ hdr->sh_entsize = 0; ++ else ++ hdr->sh_entsize = 1; ++ */ ++ } ++ else if ((sec->flags & SEC_SMALL_DATA) ++ || strcmp (name, ".sdata") == 0 ++ || strcmp (name, ".sbss") == 0 ++ || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0) ++ hdr->sh_flags |= SHF_NIOS2_GPREL; ++ ++ return TRUE; ++} ++ ++/* Look through the relocs for a section during the first phase. ++ Since we don't do .gots or .plts, we just need to consider the ++ virtual table relocs for gc. */ ++ ++static bfd_boolean ++nios2_elf32_check_relocs (bfd *abfd, struct bfd_link_info *info, ++ asection *sec, const Elf_Internal_Rela *relocs) ++{ ++ Elf_Internal_Shdr *symtab_hdr; ++ struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; ++ const Elf_Internal_Rela *rel; ++ const Elf_Internal_Rela *rel_end; ++ ++ if (info->relocatable) ++ return TRUE; ++ ++ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; ++ sym_hashes = elf_sym_hashes (abfd); ++ sym_hashes_end = ++ sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym); ++ if (!elf_bad_symtab (abfd)) ++ sym_hashes_end -= symtab_hdr->sh_info; ++ ++ rel_end = relocs + sec->reloc_count; ++ for (rel = relocs; rel < rel_end; rel++) ++ { ++ struct elf_link_hash_entry *h; ++ unsigned long r_symndx; ++ ++ r_symndx = ELF32_R_SYM (rel->r_info); ++ if (r_symndx < symtab_hdr->sh_info) ++ h = NULL; ++ else ++ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; ++ ++ switch (ELF32_R_TYPE (rel->r_info)) ++ { ++ /* This relocation describes the C++ object vtable hierarchy. ++ Reconstruct it for later use during GC. */ ++ case R_NIOS2_GNU_VTINHERIT: ++ if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) ++ return FALSE; ++ break; ++ ++ /* This relocation describes which C++ vtable entries are actually ++ used. Record for later use during GC. */ ++ case R_NIOS2_GNU_VTENTRY: ++ if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) ++ return FALSE; ++ break; ++ } ++ } ++ ++ return TRUE; ++} ++ ++ ++/* Return the section that should be marked against GC for a given ++ relocation. */ ++ ++asection * ++nios2_elf32_gc_mark_hook (asection *sec, ++ struct bfd_link_info *info ATTRIBUTE_UNUSED, ++ Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, ++ Elf_Internal_Sym *sym) ++{ ++ if (h != NULL) ++ { ++ switch (ELF32_R_TYPE (rel->r_info)) ++ { ++ case R_NIOS2_GNU_VTINHERIT: ++ case R_NIOS2_GNU_VTENTRY: ++ break; ++ ++ default: ++ switch (h->root.type) ++ { ++ case bfd_link_hash_defined: ++ case bfd_link_hash_defweak: ++ return h->root.u.def.section; ++ ++ case bfd_link_hash_common: ++ return h->root.u.c.p->section; ++ ++ default: ++ break; ++ } ++ } ++ } ++ else ++ return bfd_section_from_elf_index (sec->owner, sym->st_shndx); ++ ++ return NULL; ++} ++ ++/* ++ NG ??? I'm marking the sections as standalone ie. I'm linking for ++ standalone embedded applications, not for UNIX System V or any other ++ OS/ABI - this may need to change when we deal with embedded PIC or ++ dynamic linking ++*/ ++ ++static void ++nios2_elf32_post_process_headers (bfd *abfd, ++ struct bfd_link_info *link_info ATTRIBUTE_UNUSED) ++{ ++ Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ ++ ++ i_ehdrp = elf_elfheader (abfd); ++ i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_STANDALONE; ++} ++ ++#define ELF_ARCH bfd_arch_nios2 ++#define ELF_MACHINE_CODE EM_ALTERA_NIOS2 ++ ++/* for now we just make this 1, as we have no MMU in New Jersey */ ++ ++#define ELF_MAXPAGESIZE 1 ++ ++/* relocation table lookup macros */ ++ ++#define bfd_elf32_bfd_reloc_type_lookup nios2_elf32_bfd_reloc_type_lookup ++ ++/* JUMP_TABLE_LINK macros */ ++ ++#define bfd_elf32_bfd_relax_section nios2_elf32_relax_section ++ ++/* elf_info_to_howto (using RELA relocations) */ ++ ++#define elf_info_to_howto nios2_elf32_info_to_howto ++ ++/* elf backend functions */ ++ ++#define elf_backend_can_gc_sections 1 ++ ++#define elf_backend_relocate_section nios2_elf32_relocate_section ++#define elf_backend_section_from_shdr nios2_elf32_section_from_shdr ++#define elf_backend_section_flags nios2_elf32_section_flags ++#define elf_backend_fake_sections nios2_elf32_fake_sections ++#define elf_backend_post_process_headers nios2_elf32_post_process_headers ++#define elf_backend_check_relocs nios2_elf32_check_relocs ++ ++#define elf_backend_gc_mark_hook nios2_elf32_gc_mark_hook ++ ++ ++ ++/* Support for SGI-ish mips targets. */ ++#define TARGET_LITTLE_SYM bfd_elf32_littlenios2_vec ++#define TARGET_LITTLE_NAME "elf32-littlenios2" ++#define TARGET_BIG_SYM bfd_elf32_bignios2_vec ++#define TARGET_BIG_NAME "elf32-bignios2" ++ ++#include "elf32-target.h" +diff --git a/bfd/reloc.c b/bfd/reloc.c +index 1b8c8d7..c66a23d 100644 +--- a/bfd/reloc.c ++++ b/bfd/reloc.c +@@ -4733,6 +4733,39 @@ ENUMDOC + msp430 specific relocation codes + + ENUM ++ BFD_RELOC_NIOS2_S16 ++ENUMX ++ BFD_RELOC_NIOS2_U16 ++ENUMX ++ BFD_RELOC_NIOS2_CALL26 ++ENUMX ++ BFD_RELOC_NIOS2_IMM5 ++ENUMX ++ BFD_RELOC_NIOS2_CACHE_OPX ++ENUMX ++ BFD_RELOC_NIOS2_IMM6 ++ENUMX ++ BFD_RELOC_NIOS2_IMM8 ++ENUMX ++ BFD_RELOC_NIOS2_HI16 ++ENUMX ++ BFD_RELOC_NIOS2_LO16 ++ENUMX ++ BFD_RELOC_NIOS2_HIADJ16 ++ENUMX ++ BFD_RELOC_NIOS2_GPREL ++ENUMX ++ BFD_RELOC_NIOS2_UJMP ++ENUMX ++ BFD_RELOC_NIOS2_CJMP ++ENUMX ++ BFD_RELOC_NIOS2_CALLR ++ENUMX ++ BFD_RELOC_NIOS2_ALIGN ++ENUMDOC ++ Relocations used by the Altera Nios II core ++ ++ENUM + BFD_RELOC_IQ2000_OFFSET_16 + ENUMX + BFD_RELOC_IQ2000_OFFSET_21 +diff --git a/bfd/targets.c b/bfd/targets.c +index 71e3337..d5f6d60 100644 +--- a/bfd/targets.c ++++ b/bfd/targets.c +@@ -619,6 +619,8 @@ extern const bfd_target bfd_elf32_ntradbigmips_vec; + extern const bfd_target bfd_elf32_ntradlittlemips_vec; + extern const bfd_target bfd_elf32_openrisc_vec; + extern const bfd_target bfd_elf32_or32_big_vec; ++extern const bfd_target bfd_elf32_littlenios2_vec; ++extern const bfd_target bfd_elf32_bignios2_vec; + extern const bfd_target bfd_elf32_pj_vec; + extern const bfd_target bfd_elf32_pjl_vec; + extern const bfd_target bfd_elf32_powerpc_vec; +@@ -819,6 +821,8 @@ extern const bfd_target sco5_core_vec; + extern const bfd_target trad_core_vec; + + extern const bfd_target bfd_elf32_am33lin_vec; ++extern const bfd_target bfd_elf32_littlenios2_vec; ++extern const bfd_target bfd_elf32_bignios2_vec; + static const bfd_target * const _bfd_target_vector[] = + { + #ifdef SELECT_VECS +@@ -923,6 +927,8 @@ static const bfd_target * const _bfd_target_vector[] = + &bfd_elf32_littlearm_vxworks_vec, + &bfd_elf32_littlemips_vec, + &bfd_elf32_littlemips_vxworks_vec, ++ &bfd_elf32_littlenios2_vec, ++ &bfd_elf32_bignios2_vec, + &bfd_elf32_m32c_vec, + &bfd_elf32_m32r_vec, + &bfd_elf32_m32rle_vec, +diff --git a/config.sub b/config.sub +index fab0aa3..462e7c6 100755 +--- a/config.sub ++++ b/config.sub +@@ -270,7 +270,7 @@ case $basic_machine in + | mn10200 | mn10300 \ + | mt \ + | msp430 \ +- | nios | nios2 \ ++ | nios2 | nios2eb | nios2el \ + | ns16k | ns32k \ + | or32 \ + | pdp10 | pdp11 | pj | pjl \ +diff --git a/configure.in b/configure.in +index a4befda..f2e34c7 100644 +--- a/configure.in ++++ b/configure.in +@@ -740,6 +740,9 @@ case "${target}" in + mips*-*-*) + noconfigdirs="$noconfigdirs gprof ${libgcj}" + ;; ++ nios2*-*-*) ++ noconfigdirs="$noconfigdirs ld" ++ ;; + romp-*-*) + noconfigdirs="$noconfigdirs bfd binutils ld gas opcodes target-libgloss ${libgcj}" + ;; +diff --git a/gdb/Makefile.in b/gdb/Makefile.in +index 14fd58b..eac9489 100644 +--- a/gdb/Makefile.in ++++ b/gdb/Makefile.in +@@ -593,6 +593,7 @@ libiberty_h = $(INCLUDE_DIR)/libiberty.h + libbfd_h = $(BFD_SRC)/libbfd.h + remote_sim_h = $(INCLUDE_DIR)/gdb/remote-sim.h + demangle_h = $(INCLUDE_DIR)/demangle.h ++nios2_h = $(INCLUDE_DIR)/opcode/nios2.h + obstack_h = $(INCLUDE_DIR)/obstack.h + opcode_m68hc11_h = $(INCLUDE_DIR)/opcode/m68hc11.h + readline_h = $(READLINE_SRC)/readline.h +@@ -2399,6 +2400,7 @@ ms1-tdep.o: ms1-tdep.c $(defs_h) $(frame_h) $(frame_unwind_h) $(frame_base_h) \ + $(trad_frame_h) $(inferior_h) $(dwarf2_frame_h) $(infcall_h) \ + $(gdb_assert_h) + nbsd-tdep.o: nbsd-tdep.c $(defs_h) $(gdb_string_h) $(solib_svr4_h) ++nios2-tdep.o: nios2-tdep.c $(defs_h) $(symtab_h) $(frame_h) $(nios2_h) + nlmread.o: nlmread.c $(defs_h) $(bfd_h) $(symtab_h) $(symfile_h) \ + $(objfiles_h) $(buildsym_h) $(stabsread_h) $(block_h) + nto-procfs.o: nto-procfs.c $(defs_h) $(gdb_dirent_h) $(exceptions_h) \ +diff --git a/gdb/config/nios2/nios2.mt b/gdb/config/nios2/nios2.mt +new file mode 100644 +index 0000000..63413b4 +--- /dev/null ++++ b/gdb/config/nios2/nios2.mt +@@ -0,0 +1,4 @@ ++# Target: Altera New Jersey Processor machine (NIOS2) ++TDEPFILES= nios2-tdep.o ++ ++ +diff --git a/gdb/config/nios2/tm-nios2.h b/gdb/config/nios2/tm-nios2.h +new file mode 100644 +index 0000000..2962b6b +--- /dev/null ++++ b/gdb/config/nios2/tm-nios2.h +@@ -0,0 +1,28 @@ ++/* Definitions to target GDB to New Jersey targets. ++ Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, ++ 1995, 1996, 1997, 1998, 1999, 2000, 2003 ++ by Peter Brookes (pbrookes@altera.com) ++ ++ This file is part of GDB. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, ++ Boston, MA 02111-1307, USA. */ ++ ++#ifndef TM_NIOS2_H ++#define TM_NIOS2_H ++ ++#define GDB_MULTI_ARCH 1 ++ ++#endif /* TM_NIOS2_H */ +diff --git a/gdb/configure.tgt b/gdb/configure.tgt +index dd2e719..7222f59 100644 +--- a/gdb/configure.tgt ++++ b/gdb/configure.tgt +@@ -20,6 +20,7 @@ m68hc11*|m6811*) gdb_target_cpu=m68hc11 ;; + m68*) gdb_target_cpu=m68k ;; + m88*) gdb_target_cpu=m88k ;; + mips*) gdb_target_cpu=mips ;; ++nios2*) gdb_target_cpu=nios2 ;; + powerpc*) gdb_target_cpu=powerpc ;; + sparc*) gdb_target_cpu=sparc ;; + thumb*) gdb_target_cpu=arm ;; +@@ -155,6 +156,8 @@ mn10300-*-*) gdb_target=mn10300 ;; + + mt-*-*) gdb_target=mt ;; + ++nios2*-*-*) gdb_target=nios2 ;; ++ + powerpc-*-netbsd* | powerpc-*-knetbsd*-gnu) + gdb_target=nbsd ;; + powerpc-*-openbsd*) gdb_target=obsd ;; +diff --git a/gdb/gdbserver/Makefile.in b/gdb/gdbserver/Makefile.in +index 9748c95..b3fb5f8 100644 +--- a/gdb/gdbserver/Makefile.in ++++ b/gdb/gdbserver/Makefile.in +@@ -280,6 +280,7 @@ linux-ia64-low.o: linux-ia64-low.c $(linux_low_h) $(server_h) + linux-m32r-low.o: linux-m32r-low.c $(linux_low_h) $(server_h) + linux-mips-low.o: linux-mips-low.c $(linux_low_h) $(server_h) \ + $(gdb_proc_service_h) ++linux-nios2-low.o: linux-nios2-low.c $(linux_low_h) $(server_h) + linux-ppc-low.o: linux-ppc-low.c $(linux_low_h) $(server_h) + linux-ppc64-low.o: linux-ppc64-low.c $(linux_low_h) $(server_h) + linux-s390-low.o: linux-s390-low.c $(linux_low_h) $(server_h) +@@ -318,6 +319,9 @@ reg-m68k.c : $(srcdir)/../regformats/reg-m68k.dat $(regdat_sh) + reg-mips.o : reg-mips.c $(regdef_h) + reg-mips.c : $(srcdir)/../regformats/reg-mips.dat $(regdat_sh) + sh $(regdat_sh) $(srcdir)/../regformats/reg-mips.dat reg-mips.c ++reg-nios2.o : reg-nios2.c $(regdef_h) ++reg-nios2.c : $(srcdir)/../regformats/reg-nios2.dat $(regdat_sh) ++ sh $(regdat_sh) $(srcdir)/../regformats/reg-nios2.dat reg-nios2.c + reg-ppc.o : reg-ppc.c $(regdef_h) + reg-ppc.c : $(srcdir)/../regformats/reg-ppc.dat $(regdat_sh) + sh $(regdat_sh) $(srcdir)/../regformats/reg-ppc.dat reg-ppc.c +diff --git a/gdb/gdbserver/configure.srv b/gdb/gdbserver/configure.srv +index 5a4792c..fdc847c 100644 +--- a/gdb/gdbserver/configure.srv ++++ b/gdb/gdbserver/configure.srv +@@ -72,6 +72,10 @@ case "${target}" in + srv_linux_usrregs=yes + srv_linux_thread_db=yes + ;; ++ nios2-*-linux*) srv_regobj=reg-nios2.o ++ srv_tgtobj="linux-low.o linux-nios2-low.o" ++ srv_linux_usrregs=yes ++ ;; + powerpc64-*-linux*) srv_regobj=reg-ppc64.o + srv_tgtobj="linux-low.o linux-ppc64-low.o" + srv_linux_usrregs=yes +diff --git a/gdb/gdbserver/linux-nios2-low.c b/gdb/gdbserver/linux-nios2-low.c +new file mode 100644 +index 0000000..1fab749 +--- /dev/null ++++ b/gdb/gdbserver/linux-nios2-low.c +@@ -0,0 +1,89 @@ ++/* GNU/Linux/Nios2 specific low level interface for the remote server for GDB */ ++ ++#include "server.h" ++#include "linux-low.h" ++ ++#ifdef HAVE_SYS_REG_H ++#include <sys/reg.h> ++#endif ++ ++#include <asm/ptrace.h> ++ ++static int nios2_regmap[] = ++{ ++ -1, PTR_R1 * 4, PTR_R2 * 4, PTR_R3 * 4, ++ PTR_R4 * 4, PTR_R5 * 4, PTR_R6 * 4, PTR_R7 * 4, ++ PTR_R8 * 4, PTR_R9 * 4, PTR_R10 * 4, PTR_R11 * 4, ++ PTR_R12 * 4, PTR_R13 * 4, PTR_R14 * 4, PTR_R15 * 4, /* reg 15 */ ++ PTR_R16 * 4, PTR_R17 * 4, PTR_R18 * 4, PTR_R19 * 4, ++ PTR_R20 * 4, PTR_R21 * 4, PTR_R22 * 4, PTR_R23 * 4, ++ -1, -1, PTR_GP * 4, PTR_SP * 4, ++ PTR_FP * 4, -1, -1, PTR_RA * 4, /* reg 31 */ ++ PTR_PC * 4, -1, -1, -1, ++ -1, -1, -1, -1, ++ -1, -1, -1, -1 ++}; ++ ++#define nios2_num_regs (sizeof(nios2_regmap) / sizeof(nios2_regmap[0])) ++ ++static int ++nios2_cannot_store_register (int regno) ++{ ++ return (regno >= 33); ++} ++ ++static int ++nios2_cannot_fetch_register (int regno) ++{ ++ return (regno >= 33); ++} ++ ++static CORE_ADDR ++nios2_get_pc () ++{ ++ unsigned long pc; ++ collect_register_by_name ("pc", &pc); ++ return pc; ++} ++ ++static void ++nios2_set_pc (CORE_ADDR pc) ++{ ++ unsigned long newpc = pc; ++ supply_register_by_name ("pc", &newpc); ++} ++ ++#if 0 ++static const unsigned long nios2_breakpoint = 0x003da03a; ++#else ++static const unsigned long nios2_breakpoint = 0x003b687a; /* Trap instr. w/imm=0x01 */ ++#endif ++#define nios2_breakpoint_len 4 ++ ++static int ++nios2_breakpoint_at (CORE_ADDR where) ++{ ++ unsigned long insn; ++ ++ (*the_target->read_memory) (where, (char *) &insn, nios2_breakpoint_len); ++ if (insn == nios2_breakpoint) ++ return 1; ++ ++ /* If necessary, recognize more trap instructions here. GDB only uses the ++ one. */ ++ return 0; ++} ++ ++struct linux_target_ops the_low_target = { ++ nios2_num_regs, ++ nios2_regmap, ++ nios2_cannot_fetch_register, ++ nios2_cannot_store_register, ++ nios2_get_pc, ++ nios2_set_pc, ++ (const char *) &nios2_breakpoint, ++ nios2_breakpoint_len, ++ NULL, ++ 0, ++ nios2_breakpoint_at, ++}; +diff --git a/gdb/nios2-tdep.c b/gdb/nios2-tdep.c +new file mode 100644 +index 0000000..e0712dd +--- /dev/null ++++ b/gdb/nios2-tdep.c +@@ -0,0 +1,1610 @@ ++/* Target-machine dependent code for Nios2, for GDB. ++ Copyright (C) 2003-2005 ++ by Peter Brookes (pbrookes@altera.com) ++ and Andrew Draper (adraper@altera.com) ++ ++ This file is part of GDB. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, ++ Boston, MA 02111-1307, USA. */ ++ ++#include "defs.h" ++#include "frame.h" ++#include "frame-unwind.h" ++#include "frame-base.h" ++#include "trad-frame.h" ++#include "dwarf2-frame.h" ++#include "symtab.h" ++#include "inferior.h" ++#include "gdbtypes.h" ++#include "gdbcore.h" ++#include "gdbcmd.h" ++#include "target.h" ++#include "dis-asm.h" ++#include "regcache.h" ++#include "value.h" ++#include "symfile.h" ++#include "arch-utils.h" ++#include "floatformat.h" ++#include "gdb_assert.h" ++ ++/* To get entry_point_address. */ ++#include "objfiles.h" ++ ++/* Nios II ISA specific encodings and macros */ ++#include "opcode/nios2.h" ++ ++/* Macros */ ++ ++#define Z_REGNUM 0 /* Zero */ ++#define R2_REGNUM 2 /* used for return value */ ++#define R3_REGNUM 3 /* used for return value */ ++/* used for hidden zero argument to store ptr to struct return value */ ++#define R4_REGNUM 4 ++#define R7_REGNUM 7 ++#define GP_REGNUM 26 /* Global Pointer */ ++#undef SP_REGNUM ++#define SP_REGNUM 27 /* Stack Pointer */ ++#undef FP_REGNUM ++#define FP_REGNUM 28 /* Frame Pointer */ ++#define EA_REGNUM 29 /* Exception address */ ++#define BA_REGNUM 30 /* Breakpoint return address */ ++#define RA_REGNUM 31 /* Return address */ ++#undef PC_REGNUM ++#define PC_REGNUM 32 ++#define STATUS_REGNUM 33 /* Ctrl registers */ ++#define ESTATUS_REGNUM 34 ++#define BSTATUS_REGNUM 35 ++#define IENABLE_REGNUM 36 ++#define IPENDING_REGNUM 37 ++#define CPUID_REGNUM 38 ++#define PTEADDR_REGNUM 41 ++#define TLBACC_REGNUM 42 ++#define TLBMISC_REGNUM 43 ++#define FIRST_ARGREG R4_REGNUM ++#define LAST_ARGREG R7_REGNUM ++/* Number of all registers */ ++#define NIOS2_NUM_REGS (44) ++/* The maximum register number displayed to the user, */ ++/* as a result of typing "info reg" at the gdb prompt */ ++#define NIOS2_MAX_REG_DISPLAYED_REGNUM (38) ++ ++#define NIOS2_OPCODE_SIZE 4 ++ ++/* Structures */ ++struct register_info ++{ ++ int size; ++ char *name; ++ struct type **type; ++}; ++ ++/* The current value in the register is the value in r[base] at the start of ++ * the function + offset ; unless base < 0 in which case it's unknown. ++ */ ++typedef struct ++{ ++ int reg; ++ unsigned int offset; ++ ++} REG_VALUE; ++ ++ ++typedef struct ++{ ++ int basereg; ++ CORE_ADDR addr; ++ ++} REG_SAVED; ++ ++struct nios2_unwind_cache ++{ ++ /* The frame's base, optionally used by the high-level debug info. */ ++ CORE_ADDR base; ++ ++ /* The previous frame's inner most stack address. Used as this ++ frame ID's stack_addr. */ ++ CORE_ADDR cfa; ++ ++ /* The address of the first instruction in this function */ ++ CORE_ADDR pc; ++ ++ /* Which register holds the return address for the frame. */ ++ int return_regnum; ++ ++ /* Table indicating what changes have been made to each register */ ++ REG_VALUE reg_value[NIOS2_NUM_REGS]; ++ ++ /* Table indicating where each register has been saved. */ ++ REG_SAVED reg_saved[NIOS2_NUM_REGS]; ++}; ++ ++ ++/* Function prototypes */ ++CORE_ADDR nios2_saved_pc_after_call (struct frame_info *fi); ++ ++/* nios2_register_info_table[i] is the number of bytes of storage in ++ GDB's register array occupied by register i. */ ++static struct register_info nios2_register_info_table[] = { ++ /* 0 */ {4, "zero", &builtin_type_uint32}, ++ /* 1 */ {4, "at", &builtin_type_uint32}, ++ /* 2 */ {4, "r2", &builtin_type_uint32}, ++ /* 3 */ {4, "r3", &builtin_type_uint32}, ++ /* 4 */ {4, "r4", &builtin_type_uint32}, ++ /* 5 */ {4, "r5", &builtin_type_uint32}, ++ /* 6 */ {4, "r6", &builtin_type_uint32}, ++ /* 7 */ {4, "r7", &builtin_type_uint32}, ++ /* 8 */ {4, "r8", &builtin_type_uint32}, ++ /* 9 */ {4, "r9", &builtin_type_uint32}, ++ /* 10 */ {4, "r10", &builtin_type_uint32}, ++ /* 11 */ {4, "r11", &builtin_type_uint32}, ++ /* 12 */ {4, "r12", &builtin_type_uint32}, ++ /* 13 */ {4, "r13", &builtin_type_uint32}, ++ /* 14 */ {4, "r14", &builtin_type_uint32}, ++ /* 15 */ {4, "r15", &builtin_type_uint32}, ++ /* 16 */ {4, "r16", &builtin_type_uint32}, ++ /* 17 */ {4, "r17", &builtin_type_uint32}, ++ /* 18 */ {4, "r18", &builtin_type_uint32}, ++ /* 19 */ {4, "r19", &builtin_type_uint32}, ++ /* 20 */ {4, "r20", &builtin_type_uint32}, ++ /* 21 */ {4, "r21", &builtin_type_uint32}, ++ /* 22 */ {4, "r22", &builtin_type_uint32}, ++ /* 23 */ {4, "r23", &builtin_type_uint32}, ++ /* 24 */ {4, "et", &builtin_type_uint32}, ++ /* 25 */ {4, "bt", &builtin_type_uint32}, ++ /* 26 */ {4, "gp", &builtin_type_uint32}, ++ /* 27 */ {4, "sp", &builtin_type_uint32}, ++ /* 28 */ {4, "fp", &builtin_type_uint32}, ++ /* 29 */ {4, "ea", &builtin_type_uint32}, ++ /* 30 */ {4, "ba", &builtin_type_uint32}, ++ /* 31 */ {4, "ra", &builtin_type_uint32}, ++ /* 32 */ {4, "pc", &builtin_type_uint32}, ++ /* 33 */ {4, "status", &builtin_type_uint32}, ++ /* 34 */ {4, "estatus", &builtin_type_uint32}, ++ /* 35 */ {4, "bstatus", &builtin_type_uint32}, ++ /* 36 */ {4, "ienable", &builtin_type_uint32}, ++ /* 37 */ {4, "ipending", &builtin_type_uint32}, ++ /* 38 */ {4, "cpuid", &builtin_type_uint32}, ++ /* 39 */ {4, "ctl6", &builtin_type_uint32}, ++ /* 40 */ {4, "ctl7", &builtin_type_uint32}, ++ /* 41 */ {4, "pteaddr", &builtin_type_uint32}, ++ /* 42 */ {4, "tlbacc", &builtin_type_uint32}, ++ /* 43 */ {4, "tlbmisc", &builtin_type_uint32} ++}; ++ ++/* This array is a mapping from Dwarf-2 register ++ numbering to GDB's */ ++static int nios2_dwarf2gdb_regno_map[] = { ++ 0, 1, 2, 3, ++ 4, 5, 6, 7, ++ 8, 9, 10, 11, ++ 12, 13, 14, 15, ++ 16, 17, 18, 19, ++ 20, 21, 22, 23, ++ 24, 25, ++ GP_REGNUM, /* 26 */ ++ SP_REGNUM, /* 27 */ ++ FP_REGNUM, /* 28 */ ++ EA_REGNUM, /* 29 */ ++ BA_REGNUM, /* 30 */ ++ RA_REGNUM, /* 31 */ ++ PC_REGNUM, /* 32 */ ++ STATUS_REGNUM, /* 33 */ ++ ESTATUS_REGNUM, /* 34 */ ++ BSTATUS_REGNUM, /* 35 */ ++ IENABLE_REGNUM, /* 36 */ ++ IPENDING_REGNUM, /* 37 */ ++ 38, 39, 40, 41, 42, 43 ++}; ++ ++/* Dwarf-2 <-> GDB register numbers mapping. */ ++int ++nios2_dwarf_reg_to_regnum (int dw_reg) ++{ ++ if (dw_reg < 0 || dw_reg > NIOS2_NUM_REGS) ++ { ++ warning ("Dwarf-2 uses unmapped register #%d\n", dw_reg); ++ return dw_reg; ++ } ++ ++ return nios2_dwarf2gdb_regno_map[dw_reg]; ++} ++ ++/* Same as read_memory_u6signed_integer, but don't report an error if ++ can't read. */ ++int ++nios2_read_memory_unsigned_integer (CORE_ADDR memaddr, int len, ULONGEST *ret) ++{ ++ char buf[sizeof (ULONGEST)]; ++ int error; ++ ++ error = target_read_memory (memaddr, buf, len); ++ if (error != 0) ++ return 0; ++ else ++ { ++ *ret = extract_unsigned_integer (buf, len); ++ return 1; ++ } ++} ++ ++/* Find the name for the specified NIOS2 regno */ ++static const char * ++nios2_register_name (int regno) ++{ ++ /* Don't display any registers after NIOS2_MAX_REG_DISPLAYED_REGNUM */ ++ if (regno < 0) ++ return NULL; ++ else if (regno > NIOS2_MAX_REG_DISPLAYED_REGNUM) ++ return NULL; ++ return nios2_register_info_table[regno].name; ++} ++ ++/* Returns the default type for register N. */ ++static struct type * ++nios2_register_type (struct gdbarch *gdbarch, int regno) ++{ ++/* FIXME Do we need some checks on regno ? */ ++ return *nios2_register_info_table[regno].type; ++} ++ ++/* nios2_register_byte_table[i] is the offset into the register file of the ++ start of register number i. We initialize this from ++ nios2_register_info_table. */ ++int nios2_register_byte_table[NIOS2_NUM_REGS]; ++ ++/* Index within `registers' of the first byte of the space for register REGNO. */ ++int ++nios2_register_byte (int regno) ++{ ++ return nios2_register_byte_table[regno]; ++} ++ ++/* Number of bytes of storage in the actual machine representation for ++ register 'regno'. */ ++static int ++nios2_register_raw_size (int regno) ++{ ++ return nios2_register_info_table[regno].size; ++} ++ ++/* Number of bytes of storage in the program's representation for ++ register 'regno'. */ ++static int ++nios2_register_virtual_size (int regno) ++{ ++ return nios2_register_info_table[regno].size; ++} ++ ++/* Return the GDB type object for the "standard" data type ++ of data in register 'regno'. */ ++static struct type * ++nios2_register_virtual_type (int regno) ++{ ++ return *nios2_register_info_table[regno].type; ++} ++ ++/* Does this register need conversion betwen raw and virtual formats */ ++int ++nios2_register_convertible (int regno) ++{ ++ if (nios2_register_raw_size (regno) == nios2_register_virtual_size (regno)) ++ return 0; ++ else ++ return 1; ++} ++ ++ ++ ++/* Given a return value in `regcache' with a type `valtype', ++ extract and copy its value into `valbuf'. */ ++/* FIXME: check this function*/ ++void ++nios2_extract_return_value (struct type *valtype, struct regcache *regcache, void *valbuf) ++{ ++#ifdef PORTINGTO61 ++ int len = TYPE_LENGTH (valtype); ++ ++ /* pointer types are returned in register r2, ++ up to 16-bit types in r2 ++ up to 32-bit types in r2,r3 */ ++ if (len <= nios2_register_raw_size (R2_REGNUM)) ++ memcpy (valbuf, regbuf + REGISTER_BYTE (R2_REGNUM), len); ++ else if (len <= (nios2_register_raw_size (R2_REGNUM) ++ + nios2_register_raw_size (R3_REGNUM))) ++ memcpy (valbuf, regbuf + REGISTER_BYTE (R2_REGNUM), len); ++ else ++ { ++ /* Can I get the returned value here ? */ ++ memset(valbuf, 0, len); ++ } ++#endif ++} ++ ++/* Write into appropriate registers a function return value ++ of type TYPE, given in virtual format. */ ++/* FIXME: check if required */ ++void ++nios2_store_return_value (struct type *valtype, void *valbuf) ++{ ++#ifdef PORTINGTO61 ++ int len = TYPE_LENGTH (valtype); ++ ++ /* return values of up to 8 bytes are returned in $r2 $r3 */ ++ ++ if (len <= nios2_register_raw_size (R2_REGNUM)) ++ write_register_bytes (REGISTER_BYTE (R2_REGNUM), ++ valbuf, ++ len); ++ else if (len <= (nios2_register_raw_size (R2_REGNUM) ++ + nios2_register_raw_size (R3_REGNUM))) ++ write_register_bytes (REGISTER_BYTE (R2_REGNUM), ++ valbuf, ++ len); ++#endif ++} ++ ++#ifdef PORTINGTO61 ++ ++/* Setup the function arguments for calling a function in the inferior. */ ++static CORE_ADDR ++nios2_push_arguments (int nargs, struct value **args, CORE_ADDR sp, ++ int struct_return, CORE_ADDR struct_addr) ++{ ++ int argreg; ++ int argnum; ++ struct stack_arg ++ { ++ int len; ++ char *val; ++ } *stack_args; ++ int nstack_args = 0; ++ ++ stack_args = (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg)); ++ ++ /* The lowest register number containing arguments */ ++ argreg = FIRST_ARGREG; ++ ++ /* Align the stack. It will be needed ++ if we call a function which has argument overflow. */ ++ sp &= ~3; ++ ++ /* If this function returns a struct which does not fit in the ++ return registers, we must pass a buffer to the function ++ which it can use to save the return value. */ ++ if (struct_return) ++ write_register (R2_REGNUM, struct_addr); ++ ++ /* FIXME: what about unions? */ ++ for (argnum = 0; argnum < nargs; argnum++) ++ { ++ char *val = (char *) VALUE_CONTENTS (args[argnum]); ++ int len = TYPE_LENGTH (VALUE_TYPE (args[argnum])); ++ struct type *type = VALUE_TYPE (args[argnum]); ++ int olen; ++ ++ if ((argreg <= LAST_ARGREG && len <= (LAST_ARGREG - argreg + 1) * DEPRECATED_REGISTER_SIZE) ++ || (TYPE_CODE (type) == TYPE_CODE_STRUCT)) ++ { ++ /* Something that will fit entirely into registers or go on the stack. */ ++ while (len > 0 && argreg <= LAST_ARGREG) ++ { write_register (argreg, extract_unsigned_integer (val, DEPRECATED_REGISTER_SIZE)); ++ ++ argreg++; ++ val += DEPRECATED_REGISTER_SIZE; ++ len -= DEPRECATED_REGISTER_SIZE; ++ } ++ ++ /* Any remainder for the stack is noted below... */ ++ } ++ else if (TYPE_CODE (VALUE_TYPE (args[argnum])) != TYPE_CODE_STRUCT ++ && len > DEPRECATED_REGISTER_SIZE) ++ { ++ /* All subsequent args go onto the stack. */ ++ argnum = LAST_ARGREG + 1; ++ } ++ ++ if (len > 0) ++ { ++ /* Note that this must be saved onto the stack */ ++ stack_args[nstack_args].val = val; ++ stack_args[nstack_args].len = len; ++ nstack_args++; ++ } ++ } ++ ++ /* We're done with registers and stack allocation. Now do the actual ++ stack pushes. */ ++ while (nstack_args--) ++ { ++ sp -= stack_args[nstack_args].len; ++ write_memory (sp, stack_args[nstack_args].val, stack_args[nstack_args].len); ++ } ++ ++ /* Return adjusted stack pointer. */ ++ return sp; ++} ++ ++/* Function: push_return_address (pc) ++ Set up the return address for the inferior function call.*/ ++/* FIXME: Check if required */ ++static CORE_ADDR ++nios2_push_return_address (CORE_ADDR pc, CORE_ADDR sp) ++{ ++ write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ()); ++ return sp; ++} ++ ++/* Extract from an array regcache containing the (raw) register state ++ the address in which a function should return its structure value, ++ as a CORE_ADDR (or an expression that can be used as one). */ ++/* FIXME: Check if required */ ++ ++static CORE_ADDR ++nios2_extract_struct_value_address (char *regbuf) ++{ ++ return (extract_address ((regbuf) + REGISTER_BYTE (R4_REGNUM), ++ REGISTER_RAW_SIZE (R4_REGNUM))); ++} ++ ++/* Store the address of the place in which to copy the structure the ++ subroutine will return. This is called from call_function. */ ++ ++/* FIXME: Check if required */ ++static void ++nios2_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) ++{ ++ write_register (R4_REGNUM, (addr)); ++} ++#endif ++ ++ ++/* This function analyzes the function prologue and tries to work ++ out where registers are saved and how long the prologue is. ++ The prologue will consist of the following parts: ++ 1) Optional profiling instrumentation. The old version uses six ++ instructions. We step over this if there is an exact match. ++ nextpc r8 ++ mov r9, ra ++ movhi r10, %hiadj(.LP2) ++ addi r10, r10, %lo(.LP2) ++ call mcount ++ mov ra, r9 ++ The new version uses two or three instructions (the last of ++ these might get merged in with the STW which saves RA to the ++ stack). We interpret these. ++ mov r8, ra ++ call mcount ++ mov ra, r8 ++ ++ 2) Optional interrupt entry decision. Again, we step over ++ this if there is an exact match. ++ rdctl et,estatus ++ andi et,et,1 ++ beq et,zero, <software_exception> ++ rdctl et,ipending ++ beq et,zero, <software_exception> ++ ++ 3) A stack adjustment or stack which, which will be one of: ++ addi sp, sp, -constant ++ or: ++ movi r8, constant ++ sub sp, sp, r8 ++ or ++ movhi r8, constant ++ addi r8, r8, constant ++ sub sp, sp, r8 ++ or ++ movhi rx, %hiadj(newstack) ++ addhi rx, rx, %lo(newstack) ++ stw sp, constant(rx) ++ mov sp, rx ++ ++ 4) An optional stack check, which can take either of these forms: ++ bgeu sp, rx, +8 ++ break 3 ++ or ++ bltu sp, rx, .Lstack_overflow ++ ... ++ .Lstack_overflow: ++ break 3 ++ ++ 5) Saving any registers which need to be saved. These will ++ normally just be stored onto the stack: ++ stw rx, constant(sp) ++ but in the large frame case will use r8 as an offset back ++ to the cfa: ++ add r8, r8, sp ++ stw rx, -constant(r8) ++ ++ Saving control registers looks slightly different: ++ rdctl rx, ctlN ++ stw rx, constant(sp) ++ ++ 6) An optional FP setup, either if the user has requested a ++ frame pointer or if the function calls alloca. ++ This is always: ++ mov fp, sp ++ ++ The prologue instructions may be interleaved, and the register ++ saves and FP setup can occur in either order. ++ ++ To cope with all this variability we decode all the instructions ++ from the start of the prologue until we hit a branch, call or ++ return. For each of the instructions mentioned in 3, 4 and 5 we ++ handle the limited cases of stores to the stack and operations ++ on constant values. ++ */ ++ ++typedef struct ++{ ++ unsigned int insn; ++ unsigned int mask; ++} wild_insn; ++ ++static const wild_insn profiler_insn[] = ++{ ++ { 0x0010e03a, 0x00000000 }, // nextpc r8 ++ { 0xf813883a, 0x00000000 }, // mov r9,ra ++ { 0x02800034, 0x003FFFC0 }, // movhi r10,257 ++ { 0x52800004, 0x003FFFC0 }, // addi r10,r10,-31992 ++ { 0x00000000, 0xFFFFFFC0 }, // call <mcount> ++ { 0x483f883a, 0x00000000 } // mov ra,r9 ++}; ++ ++static const wild_insn irqentry_insn[] = ++{ ++ { 0x0031307a, 0x00000000 }, // rdctl et,estatus ++ { 0xc600004c, 0x00000000 }, // andi et,et,1 ++ { 0xc0000026, 0x003FFFC0 }, // beq et,zero, <software_exception> ++ { 0x0031313a, 0x00000000 }, // rdctl et,ipending ++ { 0xc0000026, 0x003FFFC0 } // beq et,zero, <software_exception> ++}; ++ ++static void ++nios2_setup_default(struct nios2_unwind_cache *cache) ++{ ++ int i; ++ ++ for (i = 0; i < NIOS2_NUM_REGS; i++) ++ { ++ /* All registers start off holding their previous values */ ++ cache->reg_value[i].reg = i; ++ cache->reg_value[i].offset = 0; ++ ++ /* All registers start off not saved */ ++ cache->reg_saved[i].basereg = -1; ++ cache->reg_saved[i].addr = 0; ++ } ++} ++ ++static int ++nios2_match_sequence(CORE_ADDR start_pc, const wild_insn * sequence, int count) ++{ ++ CORE_ADDR pc = start_pc; ++ int i; ++ unsigned int insn; ++ ++ for (i = 0 ; i < count ; i++) ++ { ++ insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE); ++ if ((insn & ~sequence[i].mask) != sequence[i].insn) ++ return 0; ++ ++ pc += NIOS2_OPCODE_SIZE; ++ } ++ ++ return 1; ++} ++ ++ ++CORE_ADDR ++nios2_analyze_prologue (const CORE_ADDR start_pc, const CORE_ADDR current_pc, ++ struct nios2_unwind_cache *cache, struct frame_info *next_frame) ++{ ++ /* Maximum lines of prologue to check */ ++ /* Note that this number should not be too large, else we can potentially */ ++ /* end up iterating through unmapped memory */ ++ CORE_ADDR limit_pc = start_pc + 200; ++ int regno; ++ ++ /* Does the frame set up the FP register? */ ++ int base_reg = 0; ++ ++ REG_VALUE * value = cache->reg_value; ++ REG_VALUE temp_value[NIOS2_NUM_REGS]; ++ ++ int i; ++ ++ /* Save the starting PC so we can correct the pc after running */ ++ /* through the prolog, using symbol info */ ++ CORE_ADDR pc = start_pc; ++ ++ /* Is this an exception handler? */ ++ int exception_handler = 0; ++ ++ /* What was the original value of SP (or fake original value for ++ * functions which switch stacks? ++ */ ++ CORE_ADDR frame_high; ++ ++ /* Is this the end of the prologue? */ ++ int within_prologue = 1; ++ ++ CORE_ADDR prologue_end; ++ ++ /* Is this the innermost function? */ ++ int innermost = (frame_relative_level(next_frame) < 0); ++ ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, ++ "{ nios2_analyze_prologue start=0x%s, current=0x%s ", ++ paddr_nz (start_pc), paddr_nz (current_pc)); ++#endif ++ ++ /* Set up the default values of the registers. */ ++ nios2_setup_default(cache); ++ ++ /* If the first few instructions are the profile entry then skip over them. */ ++ /* Newer versions of the compiler use more efficient profiling code. */ ++ if (nios2_match_sequence(pc, profiler_insn, sizeof(profiler_insn)/sizeof(profiler_insn[0]))) ++ pc += sizeof(profiler_insn)/sizeof(profiler_insn[0]) * NIOS2_OPCODE_SIZE; ++ ++ /* If the first few are an interrupt entry then skip over them too */ ++ if (nios2_match_sequence(pc, irqentry_insn, sizeof(irqentry_insn)/sizeof(irqentry_insn[0]))) ++ { ++ pc += sizeof(irqentry_insn)/sizeof(irqentry_insn[0]) * NIOS2_OPCODE_SIZE; ++ exception_handler = 1; ++ } ++ ++ prologue_end = start_pc; ++ ++ /* Find the prologue instructions. */ ++ /* Fortunately we're in 32bit paradise */ ++ while (pc < limit_pc && within_prologue) ++ { ++ /* Present instruction. */ ++ unsigned int insn; ++ ++ int prologue_insn = 0; ++ ++ if (pc == current_pc) ++ { ++ /* ++ * When we reach the current PC we must save the current register ++ * state (for the backtrace) but keep analysing because there might ++ * be more to find out (eg. is this an exception handler). ++ */ ++ memcpy(temp_value, value, sizeof(temp_value)); ++ value = temp_value; ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, "*"); ++#endif ++ } ++ ++ insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE); ++ pc += NIOS2_OPCODE_SIZE; ++ ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, "[%08X]", insn); ++#endif ++ ++ /* The following instructions can appear in the prologue */ ++ ++ if ((insn & 0x0001FFFF) == 0x0001883A) ++ { ++ /* ADD rc, ra, rb (also used for MOV) */ ++ ++ int ra = GET_IW_A(insn); ++ int rb = GET_IW_B(insn); ++ int rc = GET_IW_C(insn); ++ ++ if (rc == SP_REGNUM && rb == 0 && value[ra].reg == cache->reg_saved[SP_REGNUM].basereg) ++ { ++ /* If the previous value of SP is available somewhere near the new ++ * stack pointer value then this is a stack switch. ++ */ ++ ++ /* If any registers were saved on the stack before then we can't backtrace ++ * into them now. ++ */ ++ for (i = 0 ; i < NIOS2_NUM_REGS ; i++) ++ { ++ if (cache->reg_saved[i].basereg == SP_REGNUM) ++ cache->reg_saved[i].basereg = -1; ++ if (value[i].reg == SP_REGNUM) ++ value[i].reg = -1; ++ } ++ ++ /* Create a fake "high water mark" 4 bytes above where SP was stored ++ * and fake up the registers to be consistent with that. ++ */ ++ value[SP_REGNUM].reg = SP_REGNUM; ++ value[SP_REGNUM].offset = value[ra].offset - cache->reg_saved[SP_REGNUM].addr - 4; ++ ++ cache->reg_saved[SP_REGNUM].basereg = SP_REGNUM; ++ cache->reg_saved[SP_REGNUM].addr = -4; ++ } ++ ++ else if (rc != 0) ++ { ++ if (value[rb].reg == 0) ++ value[rc].reg = value[ra].reg; ++ else if (value[ra].reg == 0) ++ value[rc].reg = value[rb].reg; ++ else ++ value[rc].reg = -1; ++ ++ value[rc].offset = value[ra].offset + value[rb].offset; ++ } ++ prologue_insn = 1; ++ } ++ ++ else if ((insn & 0x0001FFFF) == 0x0001983A) ++ { ++ /* SUB rc, ra, rb */ ++ ++ int ra = GET_IW_A(insn); ++ int rb = GET_IW_B(insn); ++ int rc = GET_IW_C(insn); ++ ++ if (rc != 0) ++ { ++ if (value[rb].reg == 0) ++ value[rc].reg = value[ra].reg; ++ else ++ value[rc].reg = -1; ++ ++ value[rc].offset = value[ra].offset - value[rb].offset; ++ } ++ } ++ ++ else if ((insn & 0x0000003F) == 0x00000004) ++ { ++ /* ADDI rb, ra, immed (also used for MOVI) */ ++ short immed = GET_IW_IMM16(insn); ++ int ra = GET_IW_A(insn); ++ int rb = GET_IW_B(insn); ++ ++ if (rb == SP_REGNUM) ++ { ++ /* The first stack adjustment is part of the prologue. Any subsequent ++ stack adjustments are either down to alloca or the epilogue so stop ++ analysing when we hit them. */ ++ if (value[rb].offset != 0 || value[ra].reg != SP_REGNUM) ++ break; ++ } ++ ++ if (rb != 0) ++ { ++ value[rb].reg = value[ra].reg; ++ value[rb].offset = value[ra].offset + immed; ++ } ++ ++ prologue_insn = 1; ++ } ++ ++ else if ((insn & 0x0000003F) == 0x00000034) ++ { ++ /* ORHI rb, ra, immed (also used for MOVHI) */ ++ unsigned int immed = GET_IW_IMM16(insn); ++ int ra = GET_IW_A(insn); ++ int rb = GET_IW_B(insn); ++ ++ if (rb != 0) ++ { ++ value[rb].reg = (value[ra].reg == 0) ? 0 : -1; ++ value[rb].offset = value[ra].offset | (immed << 16); ++ } ++ } ++ ++ else if (((insn & IW_OP_MASK) == OP_STW || (insn & IW_OP_MASK) == OP_STWIO)) ++ { ++ /* STW rb, immediate(ra) */ ++ ++ short immed16 = GET_IW_IMM16(insn); ++ int ra = GET_IW_A(insn); ++ int rb = GET_IW_B(insn); ++ ++ /* Are we storing the original value of a register? For exception handlers ++ * the value of EA-4 (return address from interrupts etc) is sometimes stored. ++ */ ++ int orig = value[rb].reg; ++ if (orig > 0 && (value[rb].offset == 0 || (orig == EA_REGNUM && value[rb].offset == -4))) ++ { ++ /* We are most interested in stores to the stack, but will also take note ++ * of stores to other places as they might be useful later. ++ */ ++ if ((value[ra].reg == SP_REGNUM && cache->reg_saved[orig].basereg != SP_REGNUM) || ++ cache->reg_saved[orig].basereg == -1) ++ { ++ if (pc < current_pc) ++ { ++ /* Save off callee saved registers */ ++ cache->reg_saved[orig].basereg = value[ra].reg; ++ cache->reg_saved[orig].addr = value[ra].offset + GET_IW_IMM16(insn); ++ } ++ ++ prologue_insn = 1; ++ ++ if (orig == EA_REGNUM || orig == ESTATUS_REGNUM) ++ exception_handler = 1; ++ } ++ } ++ } ++ ++ else if ((insn & 0xFFC1F83F) == 0x0001303A) ++ { ++ /* RDCTL rC, ctlN */ ++ int rc = GET_IW_C(insn); ++ int n = GET_IW_CONTROL_REGNUM(insn); ++ ++ if (rc != 0) ++ { ++ value[rc].reg = STATUS_REGNUM + n; ++ value[rc].offset = 0; ++ } ++ ++ prologue_insn = 1; ++ } ++ ++ else if ((insn & 0x0000003F) == 0 && ++ value[8].reg == RA_REGNUM && value[8].offset == 0 && ++ value[SP_REGNUM].reg == SP_REGNUM && value[SP_REGNUM].offset == 0) ++ { ++ /* A CALL instruction. This is treated as a call to mcount if ra ++ * has been stored into r8 beforehand and if it's before the stack adjust. ++ * mcount corrupts r2-r3, r9-r15 & ra ++ */ ++ for (i = 2 ; i <= 3 ; i++) ++ value[i].reg = -1; ++ for (i = 9 ; i <= 15 ; i++) ++ value[i].reg = -1; ++ value[RA_REGNUM].reg = -1; ++ ++ prologue_insn = 1; ++ } ++ ++ else if ((insn & 0xF83FFFFF) == 0xD800012E) ++ { ++ /* BGEU sp, rx, +8 ++ * BREAK 3 ++ * This instruction sequence is used in stack checking - we can ignore it ++ */ ++ unsigned int next_insn = read_memory_unsigned_integer(pc, NIOS2_OPCODE_SIZE); ++ ++ if (next_insn != 0x003DA0FA) ++ within_prologue = 0; ++ else ++ pc += NIOS2_OPCODE_SIZE; ++ } ++ ++ else if ((insn & 0xF800003F) == 0xD8000036) ++ { ++ /* BLTU sp, rx, .Lstackoverflow ++ * If the location branched to holds a BREAK 3 instruction then this is ++ * also stack overflow detection. We can ignore it. ++ */ ++ CORE_ADDR target_pc = pc + ((insn & 0x3FFFC0) >> 6); ++ unsigned int target_insn = read_memory_unsigned_integer(target_pc, NIOS2_OPCODE_SIZE); ++ ++ if (target_insn != 0x003DA0FA) ++ within_prologue = 0; ++ } ++ ++ /* Any other instructions are allowed to be moved up into the prologue. If we ++ reach a branch, call or return then the prologue is considered over */ ++ /* We also consider a second stack adjustment as terminating the prologue (see ++ above) */ ++ ++ else ++ { ++ switch (GET_IW_OP(insn)) ++ { ++ case OP_BEQ: ++ case OP_BGE: ++ case OP_BGEU: ++ case OP_BLT: ++ case OP_BLTU: ++ case OP_BNE: ++ case OP_BR: ++ case OP_CALL: ++ within_prologue = 0; ++ break; ++ case OP_OPX: ++ if (GET_IW_OPX(insn) == OPX_RET || ++ GET_IW_OPX(insn) == OPX_ERET || ++ GET_IW_OPX(insn) == OPX_BRET || ++ GET_IW_OPX(insn) == OPX_CALLR || ++ GET_IW_OPX(insn) == OPX_JMP) ++ { ++ within_prologue = 0; ++ } ++ default: ++ break; ++ } ++ } ++ ++ if (prologue_insn) ++ prologue_end = pc; ++ } ++ ++ /* Are we within the function epilogue? If so then we should go back to the ++ original register values */ ++ if (innermost && current_pc > start_pc) ++ { ++ /* First check whether the previous instruction was a stack ++ adjustment. */ ++ unsigned int insn = read_memory_unsigned_integer (current_pc - NIOS2_OPCODE_SIZE, NIOS2_OPCODE_SIZE); ++ ++ if ((insn & 0xFFC0003C) == 0xDEC00004 || /* ADDI sp, sp, */ ++ (insn & 0xFFC1FFFF) == 0xDEC1883A || /* ADD sp, sp, */ ++ (insn & 0xFFC0003F) == 0xDEC00017) /* LDW sp, constant(sp) */ ++ { ++ /* Then check if it's followed by a return or a tail call */ ++ insn = read_memory_unsigned_integer (current_pc, NIOS2_OPCODE_SIZE); ++ ++ if (insn == 0xF800283A || /* RET */ ++ insn == 0xE800083A || /* ERET */ ++ (insn & 0x07FFFFFF) == 0x0000683A || /* JMP */ ++ (insn & 0xFFC0003F) == 6) /* BR */ ++ { ++ /* Go back to default value of the registers */ ++ nios2_setup_default(cache); ++ } ++ } ++ } ++ ++ /* Exception handlers use a different return address register. */ ++ if (exception_handler) ++ cache->return_regnum = EA_REGNUM; ++ ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum); ++#endif ++ ++ if (cache->reg_value[FP_REGNUM].reg == SP_REGNUM) ++ { ++ /* If the FP now holds an offset from the CFA then this is a normal ++ frame which uses the frame pointer. */ ++ base_reg = FP_REGNUM; ++ } ++ else if (cache->reg_value[SP_REGNUM].reg == SP_REGNUM) ++ { ++ /* FP doesn't hold an offset from the CFA. If SP still holds an ++ offset from the CFA then we might be in a function which omits ++ the frame pointer, or we might be partway through the prologue. ++ In both cases we can find the CFA using SP. */ ++ base_reg = SP_REGNUM; ++ } ++ else ++ { ++ /* Somehow the stack pointer has been corrupted. We can't return. */ ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n"); ++#endif ++ return 0; ++ } ++ ++ if (cache->reg_value[base_reg].offset == 0 || ++ cache->reg_saved[RA_REGNUM].basereg != SP_REGNUM || ++ cache->reg_saved[cache->return_regnum].basereg != SP_REGNUM) ++ { ++ /* ++ * If the frame didn't adjust the stack, didn't save RA or didn't save ++ * EA in an exception handler then it must either be a leaf function ++ * (doesn't call any other functions) or it can't return. If it has ++ * called another function then it can't be a leaf, so set base == 0 ++ * to indicate that we can't backtrace past it. ++ */ ++ ++ if (!innermost) ++ { ++ /* If it isn't the innermost function then it can't be a leaf, unless ++ * it was interrupted. Check whether RA for this frame is the same ++ * as PC. If so then it probably wan't interrupted. ++ */ ++ char buf[8]; ++ CORE_ADDR ra; ++ ++ frame_unwind_register (next_frame, RA_REGNUM, buf); ++ ra = extract_typed_address (buf, builtin_type_void_func_ptr); ++ ++ if (ra == current_pc) ++ { ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, "<noreturn ADJUST 0x%s, r31@r%d+?>, r%d@r%d+?> }\n", ++ paddr_nz(cache->reg_value[base_reg].offset), ++ cache->reg_saved[RA_REGNUM].basereg, ++ cache->return_regnum, cache->reg_saved[cache->return_regnum].basereg); ++#endif ++ return 0; ++ } ++ } ++ } ++ ++ /* Get the value of whichever register we are using for the base. */ ++ cache->base = frame_unwind_register_unsigned (next_frame, base_reg); ++ ++ /* What was the value of SP at the start of this function (or just ++ * after the stack switch). ++ */ ++ frame_high = cache->base - cache->reg_value[base_reg].offset; ++ ++ /* Adjust all the saved registers such that they contain addresses ++ instead of offsets. */ ++ for (i = 0; i < NIOS2_NUM_REGS; i++) ++ if (cache->reg_saved[i].basereg == SP_REGNUM) ++ { ++ cache->reg_saved[i].basereg = Z_REGNUM; ++ cache->reg_saved[i].addr += frame_high; ++ } ++ ++ for (i = 0; i < NIOS2_NUM_REGS; i++) ++ if (cache->reg_saved[i].basereg == GP_REGNUM) ++ { ++ CORE_ADDR gp = frame_unwind_register_unsigned (next_frame, GP_REGNUM); ++ ++ for ( ; i < NIOS2_NUM_REGS; i++) ++ if (cache->reg_saved[i].basereg == GP_REGNUM) ++ { ++ cache->reg_saved[i].basereg = Z_REGNUM; ++ cache->reg_saved[i].addr += gp; ++ } ++ } ++ ++ /* Work out what the value of SP was on the first instruction of this ++ * function. If we didn't switch stacks then this can be trivially ++ * computed from the base address. ++ */ ++ if (cache->reg_saved[SP_REGNUM].basereg == Z_REGNUM) ++ { ++ cache->cfa = read_memory_unsigned_integer(cache->reg_saved[SP_REGNUM].addr, 4); ++ } ++ else ++ cache->cfa = frame_high; ++ ++ /* Exception handlers restore ESTATUS into STATUS. */ ++ if (exception_handler) ++ { ++ cache->reg_saved[STATUS_REGNUM] = cache->reg_saved[ESTATUS_REGNUM]; ++ cache->reg_saved[ESTATUS_REGNUM].basereg = -1; ++ } ++ ++#ifdef DEBUG_PRINT ++ fprintf_unfiltered (gdb_stdlog, "cfa=0x%s }\n", paddr_nz(cache->cfa)); ++#endif ++ ++ return prologue_end; ++} ++ ++struct frame_info * ++setup_arbitrary_frame (int argc, CORE_ADDR *argv) ++{ ++ if (argc != 2) ++ error ("Nios II frame specifications require two arguments: sp and pc"); ++ ++ return create_new_frame (argv[0], argv[1]); ++} ++ ++#ifdef PORTINGTO61 ++/* Should be handled by unwind informations. */ ++/* However, doing this manually until we can find */ ++/* use the CFA information to examine the stack */ ++void ++nios2_frame_init_saved_regs (struct frame_info *fi) ++{ ++ CORE_ADDR ip; ++ ++ /* Examine the entire prologue. */ ++ register int frameless_p = 0; ++ ++ /* Has this frame's registers already been initialized? */ ++ if (fi->saved_regs) ++ return; ++ ++ frame_saved_regs_zalloc (fi); ++ ++ ip = get_pc_function_start (fi->pc); ++ nios2_examine (ip, fi, frameless_p); ++} ++#endif ++ ++ ++/* Given a PC value corresponding to the start of a function, return the PC ++ of the first instruction after the function prologue. */ ++ ++CORE_ADDR ++nios2_skip_prologue (CORE_ADDR start_pc) ++{ ++ CORE_ADDR func_addr, func_end; ++ struct symtab_and_line sal; ++ CORE_ADDR pc_after_prologue; ++ ++ /* If we have line debugging information, then the end of the prologue ++ should the first assembly instruction of the first source line. */ ++ if (find_pc_partial_function (start_pc, NULL, &func_addr, &func_end)) ++ { ++ sal = find_pc_line (func_addr, 0); ++ if (sal.end > 0 && sal.end < func_end) ++ return sal.end; ++ } ++ ++ return start_pc; ++} ++ ++/* nios2_software_single_step() is called just before we want to resume ++ the inferior, if we want to single-step it but there is no hardware ++ or kernel single-step support (NIOS2 on GNU/Linux for example). We find ++ the target of the coming instruction and breakpoint it. ++ ++ single_step is also called just after the inferior stops. If we had ++ set up a simulated single-step, we undo our damage. */ ++ ++void ++nios2_software_single_step (enum target_signal sig, int insert_breakpoints_p) ++{ ++ int ii; ++ unsigned int insn; ++ CORE_ADDR pc; ++ CORE_ADDR breaks[2]; ++ int imme; ++ ++ if (insert_breakpoints_p) ++ { ++ pc = read_pc (); ++ breaks[0] = pc + 4; ++ breaks[1] = -1; ++ insn = read_memory_unsigned_integer (pc, 4); ++ ++ /* Calculate the destination of a branch/jump */ ++ switch (GET_IW_OP(insn)) ++ { ++ /* I-type branch */ ++ case OP_BEQ: ++ case OP_BGE: ++ case OP_BGEU: ++ case OP_BLT: ++ case OP_BLTU: ++ case OP_BNE: ++ imme = (short) GET_IW_IMM16(insn); ++ breaks[1] = pc + 4 + imme; ++ break; ++ case OP_BR: ++ imme = (short) GET_IW_IMM16(insn); ++ breaks[0] = pc + 4 + imme; ++ break; ++ /* J-type branch */ ++ case OP_CALL: ++ case OP_JMPI: ++ imme = GET_IW_IMM26(insn); ++ breaks[0] = (pc & 0xf0000000) | (imme * 4); ++ break; ++ /* R-type branch */ ++ case OP_OPX: ++ switch (GET_IW_OPX(insn)) ++ { ++ case OPX_CALLR: ++ case OPX_JMP: ++ case OPX_RET: ++ imme = read_register (GET_IW_A(insn)); ++ breaks[0] = imme; ++ break; ++ } ++ break; ++ } ++ ++ /* Don't put two breakpoints on the same address. */ ++ if (breaks[1] == breaks[0]) ++ breaks[1] = -1; ++ ++ for (ii = 0; ii < 2; ++ii) ++ { ++ /* ignore invalid breakpoint. */ ++ if (breaks[ii] == -1) ++ continue; ++ insert_single_step_breakpoint (breaks[ii]); ++ } ++ } ++ else ++ remove_single_step_breakpoints (); ++ ++} ++ ++const unsigned char* ++nios2_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) ++{ ++ /* break encoding: 31->27 26->22 21->17 16->11 10->6 5->0 */ ++ /* 00000 00000 0x1e 0x34 00000 0x3a */ ++ /* 00000 00000 11110 110100 00000 111010 */ ++ /* In bytes: 00000000 00111101 10100000 00111010 */ ++ /* 0x0 0x3d 0xa0 0x3a */ ++#if 0 ++ static unsigned char breakpoint[] = {0x3a, 0xa0, 0x3d, 0x0}; ++#else ++ static unsigned char breakpoint[] = {0x7a, 0x68, 0x3b, 0x0}; /* Trap instr. w/imm=0x01 */ ++#endif ++ *bp_size = 4; ++ return breakpoint; ++} ++ ++ ++int ++gdb_print_insn_nios2 (bfd_vma memaddr, disassemble_info *info) ++{ ++ if (info->endian == BFD_ENDIAN_BIG) ++ { ++ return print_insn_big_nios2 (memaddr, info); ++ } ++ else ++ { ++ return print_insn_little_nios2 (memaddr, info); ++ } ++} ++ ++ ++ ++/* Adjust the address downward (direction of stack growth) so that it ++ is correctly aligned for a new stack frame. */ ++ ++/* ??? Big endian issues here? */ ++ ++static CORE_ADDR ++nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) ++{ ++ return align_down (addr, 4); ++} ++ ++ ++ ++/* We don't convert anything at the moment */ ++static int ++nios2_convert_register_p (int regnum, struct type *type) ++{ ++ return 0; ++} ++ ++static void ++nios2_register_to_value (struct frame_info *frame, int regnum, ++ struct type *type, void *to) ++{ ++ get_frame_register (frame, regnum + 0, (char *) to + 0); ++ get_frame_register (frame, regnum + 0, (char *) to + 0); ++} ++ ++static void ++nios2_value_to_register (struct frame_info *frame, int regnum, ++ struct type *type, const void *from) ++{ ++ put_frame_register (frame, regnum + 0, (const char *) from + 0); ++ put_frame_register (frame, regnum + 0, (const char *) from + 0); ++} ++ ++/* Determine, for architecture GDBARCH, how a return value of TYPE ++ should be returned. If it is supposed to be returned in registers, ++ and READBUF is non-zero, read the appropriate value from REGCACHE, ++ and copy it into READBUF. If WRITEBUF is non-zero, write the value ++ from WRITEBUF into REGCACHE. */ ++ ++static enum return_value_convention ++nios2_return_value (struct gdbarch *gdbarch, struct type *type, ++ struct regcache *regcache, void *readbuf, ++ const void *writebuf) ++{ ++ enum type_code code = TYPE_CODE (type); ++ ++ /* FIXME PBrookes add struct return function */ ++ if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) ++ /*&& !nios2_reg_struct_return_p (gdbarch, type)*/) ++ return RETURN_VALUE_STRUCT_CONVENTION; ++ ++ ++ if (readbuf) ++ nios2_extract_return_value (type, regcache, readbuf); ++ if (writebuf) ++ nios2_store_return_value (type, regcache); ++ ++ return RETURN_VALUE_REGISTER_CONVENTION; ++} ++ ++/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that ++ dummy frame. The frame ID's base needs to match the TOS value ++ saved by save_dummy_frame_tos() and returned from ++ nios2_push_dummy_call, and the PC needs to match the dummy frame's ++ breakpoint. */ ++ ++static struct frame_id ++nios2_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) ++{ ++ return frame_id_build (frame_unwind_register_unsigned (next_frame, SP_REGNUM), ++ frame_pc_unwind (next_frame)); ++} ++ ++static CORE_ADDR ++nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) ++{ ++ char buf[8]; ++ ++ frame_unwind_register (next_frame, PC_REGNUM, buf); ++ return extract_typed_address (buf, builtin_type_void_func_ptr); ++} ++ ++ ++/* Frame base handling. */ ++ ++struct nios2_unwind_cache * ++nios2_frame_unwind_cache (struct frame_info *next_frame, ++ void **this_prologue_cache) ++{ ++ CORE_ADDR current_pc; ++ struct nios2_unwind_cache *cache; ++ int i; ++ ++ if (*this_prologue_cache) ++ return *this_prologue_cache; ++ ++ cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache); ++ (*this_prologue_cache) = cache; ++ ++ /* Zero all fields. */ ++ cache->base = 0; ++ cache->cfa = 0; ++ cache->pc = 0; ++ ++ cache->return_regnum = RA_REGNUM; ++ ++ nios2_setup_default(cache); ++ ++ cache->pc = frame_func_unwind (next_frame); ++ current_pc = frame_pc_unwind (next_frame); ++ ++ /* Prologue analysis does the rest... */ ++ if (cache->pc != 0) ++ nios2_analyze_prologue (cache->pc, current_pc, cache, next_frame); ++ ++ return cache; ++} ++ ++static void ++nios2_frame_this_id (struct frame_info *next_frame, void **this_cache, ++ struct frame_id *this_id) ++{ ++ struct nios2_unwind_cache *cache = ++ nios2_frame_unwind_cache (next_frame, this_cache); ++ ++ /* This marks the outermost frame. */ ++ if (cache->base == 0) ++ return; ++ ++ (*this_id) = frame_id_build (cache->cfa, cache->pc); ++} ++ ++static void ++nios2_frame_prev_register (struct frame_info *next_frame, void **this_cache, ++ int regnum, int *optimizedp, ++ enum lval_type *lvalp, CORE_ADDR *addrp, ++ int *realnump, void *valuep) ++{ ++ struct nios2_unwind_cache *cache = ++ nios2_frame_unwind_cache (next_frame, this_cache); ++ ++ gdb_assert (regnum >= 0); ++ ++ /* The PC of the previous frame is stored in the RA register of ++ the current frame. Frob regnum so that we pull the value from ++ the correct place. */ ++ if (regnum == PC_REGNUM) ++ regnum = cache->return_regnum; ++ ++ /* If we've worked out where a register is stored then load it from there. ++ */ ++ if (regnum < NIOS2_NUM_REGS && cache->reg_saved[regnum].basereg == Z_REGNUM) ++ { ++ *optimizedp = 0; ++ *lvalp = lval_memory; ++ *addrp = cache->reg_saved[regnum].addr; ++ *realnump = -1; ++ if (valuep) ++ { ++ /* Read the value in from memory. */ ++ read_memory (*addrp, valuep, ++ register_size (current_gdbarch, regnum)); ++ } ++ return; ++ } ++ ++ if (regnum == SP_REGNUM && cache->cfa) ++ { ++ *optimizedp = 0; ++ *lvalp = not_lval; ++ *addrp = 0; ++ *realnump = -1; ++ if (valuep) ++ { ++ /* Store the value. */ ++ store_unsigned_integer (valuep, 8, cache->cfa); ++ } ++ return; ++ } ++ ++ frame_register_unwind (next_frame, regnum, ++ optimizedp, lvalp, addrp, realnump, valuep); ++} ++ ++ ++ ++static const struct frame_unwind nios2_frame_unwind = ++{ ++ NORMAL_FRAME, ++ nios2_frame_this_id, ++ nios2_frame_prev_register ++}; ++ ++static CORE_ADDR ++nios2_frame_base_address (struct frame_info *next_frame, void **this_cache) ++{ ++ struct nios2_unwind_cache *info ++ = nios2_frame_unwind_cache (next_frame, this_cache); ++ return info->base; ++} ++ ++static const struct frame_base nios2_frame_base = ++{ ++ &nios2_frame_unwind, ++ nios2_frame_base_address, ++ nios2_frame_base_address, ++ nios2_frame_base_address ++}; ++ ++static const struct frame_unwind * ++nios2_frame_sniffer (struct frame_info *next_frame) ++{ ++ return &nios2_frame_unwind; ++} ++ ++ ++static struct gdbarch * ++nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) ++{ ++ struct gdbarch *gdbarch; ++ int register_bytes, i; ++ ++ /* Change the register names based on the current machine type. */ ++ if (info.bfd_arch_info->arch != bfd_arch_nios2) ++ return NULL; ++ ++ /* None found, create a new architecture from the information ++ provided. We don't have any architecture specific state, so just ++ pass in 0 for the struct gdbarch_tdep parameter. */ ++ gdbarch = gdbarch_alloc (&info, NULL); ++ ++ /* Data type sizes. */ ++ set_gdbarch_ptr_bit (gdbarch, 32); ++ set_gdbarch_addr_bit (gdbarch, 32); ++ set_gdbarch_short_bit (gdbarch, 16); ++ set_gdbarch_int_bit (gdbarch, 32); ++ set_gdbarch_long_bit (gdbarch, 32); ++ set_gdbarch_long_long_bit (gdbarch, 64); ++ set_gdbarch_float_bit (gdbarch, 32); ++ set_gdbarch_double_bit (gdbarch, 64); ++ ++ switch (info.byte_order) ++ { ++ case BFD_ENDIAN_BIG: ++ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); ++ set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big); ++ break; ++ ++ case BFD_ENDIAN_LITTLE: ++ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); ++ set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little); ++ break; ++ ++ default: ++ internal_error (__FILE__, __LINE__, ++ "nios2_gdbarch_init: bad byte ordering"); ++ break; ++ } ++ ++ /* The register set. */ ++ set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS); ++ set_gdbarch_sp_regnum (gdbarch, SP_REGNUM); ++ set_gdbarch_pc_regnum (gdbarch, PC_REGNUM); /* Pseudo register PC */ ++ ++ set_gdbarch_register_name (gdbarch, nios2_register_name); ++ /* Length of ordinary registers used in push_word and a few other ++ places. DEPRECATED_REGISTER_RAW_SIZE is the real way to know how ++ big a register is. */ ++/* FIXME ++ set_gdbarch_deprecated_register_size (gdbarch, 4); ++ set_gdbarch_deprecated_register_virtual_type (gdbarch, ++ nios2_register_virtual_type); ++*/ ++ ++ set_gdbarch_register_type (gdbarch, nios2_register_type); ++ ++ /* The "default" register numbering scheme for AMD64 is referred to ++ as the "DWARF Register Number Mapping" in the System V psABI. ++ The preferred debugging format for all known Nios II targets is ++ actually DWARF2, and GCC doesn't seem to support DWARF (that is ++ DWARF-1), but we provide the same mapping just in case. This ++ mapping is also used for stabs, which GCC does support. */ ++ set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); ++ set_gdbarch_dwarf_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); ++ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); ++ ++ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); ++ ++ /* Call dummy code. */ ++ set_gdbarch_frame_align (gdbarch, nios2_frame_align); ++ ++ /* Some registers require conversion from raw format to virtual format. */ ++/* FIXME ++ set_gdbarch_deprecated_register_convertible (gdbarch, nios2_register_convertible); ++*/ ++ ++ set_gdbarch_convert_register_p (gdbarch, nios2_convert_register_p); ++ set_gdbarch_register_to_value (gdbarch, nios2_register_to_value); ++ set_gdbarch_value_to_register (gdbarch, nios2_value_to_register); ++ ++ set_gdbarch_return_value (gdbarch, nios2_return_value); ++ ++ set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue); ++ set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc); ++ set_gdbarch_software_single_step (gdbarch, nios2_software_single_step); ++ ++ set_gdbarch_unwind_dummy_id (gdbarch, nios2_unwind_dummy_id); ++ set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc); ++ ++ /* The dwarf2 unwinder will normally produce the best results if the ++ debug information is available, so register it first. */ ++ frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); ++ ++ /* FIXME: PBrookes - copied from AMD64-TDEP.c (kettenis/20021026): ++ This is ELF-specific. Fine for now, since all supported NIOS II ++ targets are ELF, but that might change in the future. */ ++/* FIXME again.. Does not exist anymore... ++ set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); ++*/ ++ ++ frame_unwind_append_sniffer (gdbarch, nios2_frame_sniffer); ++ ++ frame_base_set_default (gdbarch, &nios2_frame_base); ++ ++ set_gdbarch_print_insn (gdbarch, gdb_print_insn_nios2); ++ ++ return gdbarch; ++} ++ ++void ++_initialize_nios2_tdep (void) ++{ ++ register_gdbarch_init (bfd_arch_nios2, nios2_gdbarch_init); ++ ++ int i, offset = 0; ++ ++ /* Do not display anything after NIOS2_MAX_REG_DISPLAYED_REGNUM */ ++ for (i = 0; i <= NIOS2_MAX_REG_DISPLAYED_REGNUM; i++) ++ { ++ nios2_register_byte_table[i] = offset; ++ offset += nios2_register_info_table[i].size; ++ } ++ ++ for (i = NIOS2_MAX_REG_DISPLAYED_REGNUM + 1; i <= NIOS2_NUM_REGS; i++) ++ { ++ nios2_register_byte_table[i] = -1; ++ } ++ ++} +diff --git a/gdb/regformats/reg-nios2.dat b/gdb/regformats/reg-nios2.dat +new file mode 100644 +index 0000000..77b39a9 +--- /dev/null ++++ b/gdb/regformats/reg-nios2.dat +@@ -0,0 +1,46 @@ ++name:nios2 ++expedite:sp,fp,pc ++32:zero ++32:at ++32:r2 ++32:r3 ++32:r4 ++32:r5 ++32:r6 ++32:r7 ++32:r8 ++32:r9 ++32:r10 ++32:r11 ++32:r12 ++32:r13 ++32:r14 ++32:r15 ++32:r16 ++32:r17 ++32:r18 ++32:r19 ++32:r20 ++32:r21 ++32:r22 ++32:r23 ++32:et ++32:bt ++32:gp ++32:sp ++32:fp ++32:ea ++32:ba ++32:ra ++32:pc ++32:status ++32:estatus ++32:bstatus ++32:ienable ++32:ipending ++32:cpuid ++32:ctl6 ++32:ctl7 ++32:pteaddr ++32:tlbacc ++32:tlbmisc +diff --git a/gdb/testsuite/config/nios2-iss.exp b/gdb/testsuite/config/nios2-iss.exp +new file mode 100644 +index 0000000..624f831 +--- /dev/null ++++ b/gdb/testsuite/config/nios2-iss.exp +@@ -0,0 +1,233 @@ ++# Test framework for GDB (remote protocol) using a "gdbserver", ++# ie. a debug agent running as a native process on the same or ++# a different host. ++ ++# Copyright 2000, 2002 Free Software Foundation, Inc. ++ ++# This program is free software; you can redistribute it and/or modify ++# it under the terms of the GNU General Public License as published by ++# the Free Software Foundation; either version 2 of the License, or ++# (at your option) any later version. ++# ++# This program is distributed in the hope that it will be useful, ++# but WITHOUT ANY WARRANTY; without even the implied warranty of ++# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++# GNU General Public License for more details. ++# ++# You should have received a copy of the GNU General Public License ++# along with this program; if not, write to the Free Software ++# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++# Please email any bugs, comments, and/or additions to this file to: ++# bug-gdb@prep.ai.mit.edu ++ ++# This file was written by Michael Snyder. (msnyder@redhat.com) ++ ++# ++# This module to be used for testing gdb with a "gdbserver" ++# built either from libremote or from gdb/gdbserver. ++# ++ ++# Load the basic testing library, and the remote stuff. ++load_lib ../config/monitor.exp ++ ++# ++# To be addressed or set in your baseboard config file: ++# ++# set_board_info gdb_protocol "remote" ++# Unles you have a gdbserver that uses a different protocol... ++# ++# set_board_info use_gdb_stub 1 ++# This tells the rest of the test suite not to do things ++# like "run" which don't work well on remote targets. ++# ++# set_board_info gdb,do_reload_on_run 1 ++# Unles you have a gdbserver that can handle multiple sessions. ++# ++# set_board_info noargs 1 ++# At present there is no provision in the remote protocol ++# for passing arguments. This test framework does not ++# address the issue, so it's best to set this variable ++# in your baseboard configuration file. ++# FIXME: there's no reason why the test harness couldn't ++# pass commandline args when it spawns gdbserver. ++# ++# set_board_info gdb,noinferiorio 1 ++# Neither the traditional gdbserver nor the one in libremote ++# can presently capture stdout and relay it to GDB via the ++# 'O' packet. This means that tests involving printf will ++# fail unles you set this varibale in your baseboard ++# configuration file. ++# ++# set_board_info gdb,no_hardware_watchpoints 1 ++# Unles you have a gdbserver that supports hardware watchpoints. ++# FIXME: gdb should detect if the target doesn't support them, ++# and fall back to using software watchpoints. ++# ++# set_board_info gdb_server_prog ++# This will be the path to the gdbserver program you want to test. ++# Defaults to "gdbserver". ++# ++# set_board_info sockethost ++# The name of the host computer whose socket is being used. ++# Defaults to "localhost". Note: old gdbserver requires ++# that you define this, but libremote/gdbserver does not. ++# ++# set_board_info socketport ++# Port id to use for socket connection. If not set explicitly, ++# it will start at "9996" and increment for each use. ++# ++ ++ ++ ++# ++# gdb_load -- load a file into the debugger. ++# return a -1 if anything goes wrong. ++# ++ ++global server_exec; ++global portnum; ++set portnum "9996"; ++ ++proc gdb_load { arg } { ++ global host_exec; ++ global server_exec; ++ global portnum; ++ global verbose; ++ global gdb_prompt; ++ ++ regsub "/cygdrive/c" $arg "c:" arg ++ regsub "/cygdrive/d" $arg "d:" arg ++ regsub "/cygdrive/e" $arg "e:" arg ++ regsub "/cygdrive/q" $arg "q:" arg ++ regsub "/cygdrive/r" $arg "r:" arg ++ ++ # Always kill and restart quest (or try to before loading) ++ slay quest ++ slay gdb ++ ++ # Port id -- either specified in baseboard file, or managed here. ++ if [target_info exists gdb,socketport] { ++ set portnum [target_info gdb,socketport]; ++ } else { ++ # Bump the port number to avoid conflicts with hung ports. ++ incr portnum; ++ } ++ ++ verbose "gdb_load : portnum = $portnum arg = $arg" ++ # Extract the local and remote host ids from the target board struct. ++ ++ if [target_info exists sockethost] { ++ set debughost [target_info sockethost]; ++ } else { ++ set debughost "localhost:"; ++ } ++ # Extract the protocol ++ if [target_info exists gdb_protocol] { ++ set protocol [target_info gdb_protocol]; ++ } else { ++ set protocol "remote"; ++ } ++ ++ # Extract the name of the gdbserver, if known (default 'gdbserver'). ++ if [target_info exists gdb_server_prog] { ++ set gdbserver [target_info gdb_server_prog]; ++ } else { ++ set gdbserver "gdbserver"; ++ } ++ ++ verbose "gdbserver is set to $gdbserver" ++ # Extract the socket hostname ++ if [target_info exists sockethost] { ++ set sockethost [target_info sockethost]; ++ } else { ++ set sockethost "" ++ } ++ ++ # Export the host:port pair. ++ set gdbport $debughost$portnum; ++ verbose "gdbport is now $gdbport" ++ # Remember new exec file. ++ if { $arg == "" } { ++ if { ! [info exists host_exec] } { ++ send_gdb "info files\n"; ++ gdb_expect 30 { ++ -re "Symbols from \"(\[^\"\]+)\"" { ++ set host_exec $expect_out(1,string); ++ exp_continue; ++ } ++ -re "Local exec file:\[\r\n\]+\[ \t\]*`(\[^'\]+)'," { ++ set host_exec $expect_out(1,string); ++ exp_continue; ++ } ++ -re "$gdb_prompt $" { } ++ } ++ } ++ } else { ++ set host_exec $arg ++ if [info exists server_exec] { unset server_exec } ++ } ++ ++ # Fire off the debug agent ++ if [target_info exists gdb_server_args] { ++ # This flavour of gdbserver takes as arguments those specified ++ # in the board configuration file ++ set custom_args [target_info gdb_server_args]; ++ set launch_return [eval remote_spawn host \{ $gdbserver $custom_args \} $arg ] ++ verbose "spawned $gdbserver $custom_args $arg with return code $launch_return" ++ } else { ++ # This flavour of gdbserver takes as arguments the port information ++ # and the name of the executable file to be debugged. ++ set server_spawn_id [remote_spawn target\ ++ "$gdbserver $sockethost$portnum "] ++ verbose "remote_spawn $gdbserver $sockethost$portnum" ++ } ++ ++ # We can't call close, because if gdbserver is local then that means ++ # that it will get a SIGHUP. ++ ## close -i $server_spawn_id ++ #wait -nowait -i $server_spawn_id ++ ++ # Give it a little time to establish ++ sleep 1 ++ ++ # tell gdb what file we are debugging ++ if { $arg != "" } { ++ if [gdb_file_cmd $arg] { ++ return -1; ++ } ++ } ++ verbose "gdb_file_cmd has been called with $arg" ++ ++ # attach to the "serial port" ++ gdb_target_cmd $protocol $gdbport; ++ ++ # do the real load if needed ++ if [target_info exists gdb_server_do_load] { ++ send_gdb "load\n" ++ set timeout 2400 ++ verbose "Timeout is now $timeout seconds" 2 ++ gdb_expect { ++ -re ".*$gdb_prompt $" { ++ if $verbose>1 then { ++ send_user "Loaded $arg into $GDB\n" ++ } ++ set timeout 30 ++ verbose "Timeout is now $timeout seconds" 2 ++ return 1 ++ } ++ -re "$gdb_prompt $" { ++ if $verbose>1 then { ++ perror "GDB couldn't load." ++ } ++ } ++ timeout { ++ if $verbose>1 then { ++ perror "Timed out trying to load $arg." ++ } ++ } ++ } ++ } ++ ++ return 0; ++} +diff --git a/include/dis-asm.h b/include/dis-asm.h +index af48e85..e3d84ab 100644 +--- a/include/dis-asm.h ++++ b/include/dis-asm.h +@@ -280,6 +280,8 @@ extern int print_insn_xtensa (bfd_vma, disassemble_info *); + extern int print_insn_z80 (bfd_vma, disassemble_info *); + extern int print_insn_z8001 (bfd_vma, disassemble_info *); + extern int print_insn_z8002 (bfd_vma, disassemble_info *); ++extern int print_insn_little_nios2 (bfd_vma, disassemble_info *); ++extern int print_insn_big_nios2 (bfd_vma, disassemble_info *); + + extern disassembler_ftype arc_get_disassembler (void *); + extern disassembler_ftype cris_get_disassembler (bfd *); +diff --git a/include/elf/nios2.h b/include/elf/nios2.h +new file mode 100644 +index 0000000..ef810c5 +--- /dev/null ++++ b/include/elf/nios2.h +@@ -0,0 +1,65 @@ ++/* Altera New Jersey ELF support for BFD ++ ++ Copyright (C) 2003 ++ by Nigel Gray (ngray@altera.com). ++ ++This file is part of BFD, the Binary File Descriptor library. ++ ++This program is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 2 of the License, or ++(at your option) any later version. ++ ++This program is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this program; if not, write to the Free Software ++Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++/* This file holds definitions specific to the Altera New Jersey ELF ABI. Note ++ that most of this is not actually implemented by BFD. */ ++ ++#ifndef _ELF_NIOS2_H ++#define _ELF_NIOS2_H ++ ++#include "elf/reloc-macros.h" ++ ++/* the order of these numbers must match the order in ++ the elf_nios2_howto_table_rel table for the lookup ++ function to work properly */ ++ ++START_RELOC_NUMBERS (elf_nios2_reloc_type) ++ RELOC_NUMBER (R_NIOS2_NONE, 0) ++ RELOC_NUMBER (R_NIOS2_S16, 1) ++ RELOC_NUMBER (R_NIOS2_U16, 2) ++ RELOC_NUMBER (R_NIOS2_PCREL16, 3) ++ RELOC_NUMBER (R_NIOS2_CALL26, 4) ++ RELOC_NUMBER (R_NIOS2_IMM5, 5) ++ RELOC_NUMBER (R_NIOS2_CACHE_OPX, 6) ++ RELOC_NUMBER (R_NIOS2_IMM6, 7) ++ RELOC_NUMBER (R_NIOS2_IMM8, 8) ++ RELOC_NUMBER (R_NIOS2_HI16, 9) ++ RELOC_NUMBER (R_NIOS2_LO16, 10) ++ RELOC_NUMBER (R_NIOS2_HIADJ16, 11) ++ RELOC_NUMBER (R_NIOS2_BFD_RELOC_32, 12) ++ RELOC_NUMBER (R_NIOS2_BFD_RELOC_16, 13) ++ RELOC_NUMBER (R_NIOS2_BFD_RELOC_8, 14) ++ RELOC_NUMBER (R_NIOS2_GPREL, 15) ++ RELOC_NUMBER (R_NIOS2_GNU_VTINHERIT, 16) ++ RELOC_NUMBER (R_NIOS2_GNU_VTENTRY, 17) ++ RELOC_NUMBER (R_NIOS2_UJMP, 18) ++ RELOC_NUMBER (R_NIOS2_CJMP, 19) ++ RELOC_NUMBER (R_NIOS2_CALLR, 20) ++ RELOC_NUMBER (R_NIOS2_ALIGN, 21) ++ RELOC_NUMBER (R_NIOS2_ILLEGAL, 22) ++END_RELOC_NUMBERS (R_NIOS2_maxext) ++ ++/* Processor specific section flags */ ++ ++/* This is used to mark gp-relative sections */ ++#define SHF_NIOS2_GPREL 0x10000000 ++ ++#endif //_ELF_NIOS2_H +diff --git a/include/opcode/nios2-isa.h b/include/opcode/nios2-isa.h +new file mode 100644 +index 0000000..0023880 +--- /dev/null ++++ b/include/opcode/nios2-isa.h +@@ -0,0 +1,1860 @@ ++/* ++ * This file defines Nios II instruction set constants. ++ * To include it in assembly code (.S file), define ALT_ASM_SRC ++ * before including this file. ++ * ++ * This file is automatically generated by gen_isa.pl - do not edit ++ */ ++ ++#ifndef _NIOS2_ISA_H_ ++#define _NIOS2_ISA_H_ ++ ++/* OP instruction opcode values (index is OP field) */ ++#define NUM_OP_INSTS 64 ++ ++#ifndef ALT_ASM_SRC ++extern const char* op_names[NUM_OP_INSTS]; ++#endif /* ALT_ASM_SRC */ ++ ++/* OPX instruction opcode values (index is OPX field) */ ++#define NUM_OPX_INSTS 64 ++ ++#ifndef ALT_ASM_SRC ++extern const char* opx_names[NUM_OPX_INSTS]; ++#endif /* ALT_ASM_SRC */ ++ ++/* Constants for instruction fields and ISA */ ++#define CPU_RESET_EXC_ID 1 ++#define DIV_ERROR_EXC_ID 9 ++#define DTLB_MISS_EXC_ID 15 ++#define DTLB_PERM_EXC_ID 16 ++#define FAST_INTR_EXC_ID 3 ++#define HBREAK_EXC_ID 0 ++#define ITLB_MISS_EXC_ID 13 ++#define ITLB_PERM_EXC_ID 14 ++#define MISALIGNED_DATA_ADDR_EXC_ID 7 ++#define MISALIGNED_TARGET_PC_EXC_ID 8 ++#define NMI_EXC_ID 2 ++#define NORM_INTR_EXC_ID 4 ++#define SBREAK_EXC_ID 6 ++#define SLAVE_DATA_ACCESS_ERROR_EXC_ID 18 ++#define SLAVE_INST_ACCESS_ERROR_EXC_ID 17 ++#define SUPERVISOR_DATA_ADDR_EXC_ID 12 ++#define SUPERVISOR_INST_ADDR_EXC_ID 10 ++#define SUPERVISOR_INST_EXC_ID 11 ++#define TRAP_EXC_ID 5 ++#define AT_REGNUM 1 ++#define BRETADDR_REGNUM 30 ++#define BSTATUS_REG_LSB 2 ++#define BSTATUS_REG_MMU_LSB 0 ++#define BSTATUS_REG_MMU_MSB 2 ++#define BSTATUS_REG_MMU_SZ 3 ++#define BSTATUS_REG_MMU_MASK 0x7 ++#define BSTATUS_REG_NO_MMU_LSB 0 ++#define BSTATUS_REG_NO_MMU_MSB 0 ++#define BSTATUS_REG_NO_MMU_SZ 1 ++#define BSTATUS_REG_NO_MMU_MASK 0x1 ++#define BSTATUS_REG_REGNUM 2 ++#define BSTATUS_REG_SZ 3 ++#define BSTATUS_REG_MASK 0x7 ++#define BT_REGNUM 25 ++#define CACHE_MAX_BYTES 65536 ++#define CACHE_MAX_LINE_BYTES 32 ++#define CACHE_MIN_LINE_BYTES 4 ++#define COMPARE_OP_EQ 0x0 ++#define COMPARE_OP_GE 0x1 ++#define COMPARE_OP_LSB 3 ++#define COMPARE_OP_LT 0x2 ++#define COMPARE_OP_MSB 4 ++#define COMPARE_OP_NE 0x3 ++#define COMPARE_OP_SZ 2 ++#define COMPARE_OP_MASK 0x3 ++#define CPUID_REG_LSB 0 ++#define CPUID_REG_MSB 31 ++#define CPUID_REG_REGNUM 5 ++#define CPUID_REG_SZ 32 ++#define CPUID_REG_MASK 0xffffffff ++#define DATAPATH_LOG2_SZ 5 ++#define DATAPATH_LOG2_MASK 0x1f ++#define DATAPATH_LSB 0 ++#define DATAPATH_MSB 31 ++#define DATAPATH_SZ 32 ++#define DATAPATH_MASK 0xffffffff ++#define EMPTY_CRST_IW 127034 ++#define EMPTY_HBREAK_IW 4040762 ++#define EMPTY_INTR_IW 3926074 ++#define EMPTY_NOP_IW 100410 ++#define EMPTY_RET_IW 4160759866 ++#define ERETADDR_REGNUM 29 ++#define ESTATUS_REG_LSB 0 ++#define ESTATUS_REG_MMU_LSB 0 ++#define ESTATUS_REG_MMU_MSB 2 ++#define ESTATUS_REG_MMU_SZ 3 ++#define ESTATUS_REG_MMU_MASK 0x7 ++#define ESTATUS_REG_MSB 2 ++#define ESTATUS_REG_NO_MMU_LSB 0 ++#define ESTATUS_REG_NO_MMU_MSB 0 ++#define ESTATUS_REG_NO_MMU_SZ 1 ++#define ESTATUS_REG_NO_MMU_MASK 0x1 ++#define ESTATUS_REG_REGNUM 1 ++#define ESTATUS_REG_SZ 3 ++#define ESTATUS_REG_MASK 0x7 ++#define ET_REGNUM 24 ++#define EXCEPTION_REG_LSB 0 ++#define EXCEPTION_REG_MEA_LSB 0 ++#define EXCEPTION_REG_MEA_MSB 0 ++#define EXCEPTION_REG_MEA_SZ 1 ++#define EXCEPTION_REG_MEA_MASK 0x1 ++#define EXCEPTION_REG_MEE_LSB 1 ++#define EXCEPTION_REG_MEE_MSB 1 ++#define EXCEPTION_REG_MEE_SZ 1 ++#define EXCEPTION_REG_MEE_MASK 0x1 ++#define EXCEPTION_REG_MSB 1 ++#define EXCEPTION_REG_REGNUM 7 ++#define EXCEPTION_REG_SZ 2 ++#define EXCEPTION_REG_MASK 0x3 ++#define FP_REGNUM 28 ++#define FSTATUS_REG_REGNUM 11 ++#define GP_REGNUM 26 ++#define IENABLE_REG_LSB 0 ++#define IENABLE_REG_MSB 31 ++#define IENABLE_REG_REGNUM 3 ++#define IENABLE_REG_SZ 32 ++#define IENABLE_REG_MASK 0xffffffff ++#define IPENDING_REG_LSB 0 ++#define IPENDING_REG_MSB 31 ++#define IPENDING_REG_REGNUM 4 ++#define IPENDING_REG_SZ 32 ++#define IPENDING_REG_MASK 0xffffffff ++#define IW_A_LSB 27 ++#define IW_A_MSB 31 ++#define IW_A_SZ 5 ++#define IW_A_MASK 0x1f ++#define IW_B_LSB 22 ++#define IW_B_MSB 26 ++#define IW_B_SZ 5 ++#define IW_B_MASK 0x1f ++#define IW_C_LSB 17 ++#define IW_C_MSB 21 ++#define IW_C_SZ 5 ++#define IW_C_MASK 0x1f ++#define IW_CONTROL_REGNUM_BASE 0 ++#define IW_CONTROL_REGNUM_LSB 6 ++#define IW_CONTROL_REGNUM_MSB 9 ++#define IW_CONTROL_REGNUM_SZ 4 ++#define IW_CONTROL_REGNUM_MASK 0xf ++#define IW_CUSTOM_N_LSB 6 ++#define IW_CUSTOM_N_MSB 13 ++#define IW_CUSTOM_N_SZ 8 ++#define IW_CUSTOM_N_MASK 0xff ++#define IW_CUSTOM_READRA_LSB 16 ++#define IW_CUSTOM_READRA_MSB 16 ++#define IW_CUSTOM_READRA_SZ 1 ++#define IW_CUSTOM_READRA_MASK 0x1 ++#define IW_CUSTOM_READRB_LSB 15 ++#define IW_CUSTOM_READRB_MSB 15 ++#define IW_CUSTOM_READRB_SZ 1 ++#define IW_CUSTOM_READRB_MASK 0x1 ++#define IW_CUSTOM_WRITERC_LSB 14 ++#define IW_CUSTOM_WRITERC_MSB 14 ++#define IW_CUSTOM_WRITERC_SZ 1 ++#define IW_CUSTOM_WRITERC_MASK 0x1 ++#define IW_IMM16_LSB 6 ++#define IW_IMM16_MSB 21 ++#define IW_IMM16_SZ 16 ++#define IW_IMM16_MASK 0xffff ++#define IW_IMM26_LSB 6 ++#define IW_IMM26_MSB 31 ++#define IW_IMM26_SZ 26 ++#define IW_IMM26_MASK 0x3ffffff ++#define IW_MEMSZ_BYTE 0x0 ++#define IW_MEMSZ_HWORD 0x1 ++#define IW_MEMSZ_LSB 3 ++#define IW_MEMSZ_MSB 4 ++#define IW_MEMSZ_SZ 2 ++#define IW_MEMSZ_MASK 0x3 ++#define IW_MEMSZ_WORD 0x2 ++#define IW_MEMSZ_WORD_MSB 0x1 ++#define IW_OP_LSB 0 ++#define IW_OP_MSB 5 ++#define IW_OP_SZ 6 ++#define IW_OP_MASK 0x3f ++#define IW_OPX_LSB 11 ++#define IW_OPX_MSB 16 ++#define IW_OPX_SZ 6 ++#define IW_OPX_MASK 0x3f ++#define IW_SHIFT_IMM5_LSB 6 ++#define IW_SHIFT_IMM5_MSB 10 ++#define IW_SHIFT_IMM5_SZ 5 ++#define IW_SHIFT_IMM5_MASK 0x1f ++#define IW_SZ 32 ++#define IW_MASK 0xffffffff ++#define IW_TRAP_BREAK_IMM5_LSB 6 ++#define IW_TRAP_BREAK_IMM5_MSB 10 ++#define IW_TRAP_BREAK_IMM5_SZ 5 ++#define IW_TRAP_BREAK_IMM5_MASK 0x1f ++#define JMP_CALLR_VS_RET_IS_RET 0 ++#define JMP_CALLR_VS_RET_OPX_BIT 3 ++#define LOGIC_OP_AND 0x1 ++#define LOGIC_OP_LSB 3 ++#define LOGIC_OP_MSB 4 ++#define LOGIC_OP_NOR 0x0 ++#define LOGIC_OP_OR 0x2 ++#define LOGIC_OP_SZ 2 ++#define LOGIC_OP_MASK 0x3 ++#define LOGIC_OP_XOR 0x3 ++#define MMU_ADDR_BYPASS_TLB 0x3 ++#define MMU_ADDR_BYPASS_TLB_CACHEABLE 0x0 ++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB 29 ++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_MSB 29 ++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_SZ 1 ++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK 0x1 ++#define MMU_ADDR_BYPASS_TLB_LSB 30 ++#define MMU_ADDR_BYPASS_TLB_MSB 31 ++#define MMU_ADDR_BYPASS_TLB_PADDR_LSB 0 ++#define MMU_ADDR_BYPASS_TLB_PADDR_MSB 28 ++#define MMU_ADDR_BYPASS_TLB_PADDR_SZ 29 ++#define MMU_ADDR_BYPASS_TLB_PADDR_MASK 0x1fffffff ++#define MMU_ADDR_BYPASS_TLB_SZ 2 ++#define MMU_ADDR_BYPASS_TLB_MASK 0x3 ++#define MMU_ADDR_IO_REGION 0x7 ++#define MMU_ADDR_IO_REGION_LSB 29 ++#define MMU_ADDR_IO_REGION_MSB 31 ++#define MMU_ADDR_IO_REGION_SZ 3 ++#define MMU_ADDR_IO_REGION_MASK 0x7 ++#define MMU_ADDR_IO_REGION_VPN 0xe0000 ++#define MMU_ADDR_KERNEL_MMU_REGION 0x2 ++#define MMU_ADDR_KERNEL_MMU_REGION_LSB 30 ++#define MMU_ADDR_KERNEL_MMU_REGION_MSB 31 ++#define MMU_ADDR_KERNEL_MMU_REGION_SZ 2 ++#define MMU_ADDR_KERNEL_MMU_REGION_MASK 0x3 ++#define MMU_ADDR_KERNEL_REGION 0x6 ++#define MMU_ADDR_KERNEL_REGION_INT 6 ++#define MMU_ADDR_KERNEL_REGION_LSB 29 ++#define MMU_ADDR_KERNEL_REGION_MSB 31 ++#define MMU_ADDR_KERNEL_REGION_SZ 3 ++#define MMU_ADDR_KERNEL_REGION_MASK 0x7 ++#define MMU_ADDR_PAGE_OFFSET_LSB 0 ++#define MMU_ADDR_PAGE_OFFSET_MSB 11 ++#define MMU_ADDR_PAGE_OFFSET_SZ 12 ++#define MMU_ADDR_PAGE_OFFSET_MASK 0xfff ++#define MMU_ADDR_PFN_LSB 12 ++#define MMU_ADDR_PFN_MSB 31 ++#define MMU_ADDR_PFN_SZ 20 ++#define MMU_ADDR_PFN_MASK 0xfffff ++#define MMU_ADDR_USER_REGION 0x0 ++#define MMU_ADDR_USER_REGION_LSB 31 ++#define MMU_ADDR_USER_REGION_MSB 31 ++#define MMU_ADDR_USER_REGION_SZ 1 ++#define MMU_ADDR_USER_REGION_MASK 0x1 ++#define MMU_ADDR_VPN_LSB 12 ++#define MMU_ADDR_VPN_MSB 31 ++#define MMU_ADDR_VPN_SZ 20 ++#define MMU_ADDR_VPN_MASK 0xfffff ++#define PTEADDR_REG_LSB 0 ++#define PTEADDR_REG_MSB 31 ++#define PTEADDR_REG_PTBASE_LSB 22 ++#define PTEADDR_REG_PTBASE_MSB 31 ++#define PTEADDR_REG_PTBASE_SZ 10 ++#define PTEADDR_REG_PTBASE_MASK 0x3ff ++#define PTEADDR_REG_REGNUM 8 ++#define PTEADDR_REG_RSV_LSB 0 ++#define PTEADDR_REG_RSV_MSB 1 ++#define PTEADDR_REG_RSV_SZ 2 ++#define PTEADDR_REG_RSV_MASK 0x3 ++#define PTEADDR_REG_SZ 32 ++#define PTEADDR_REG_MASK 0xffffffff ++#define PTEADDR_REG_VPN_LSB 2 ++#define PTEADDR_REG_VPN_MSB 21 ++#define PTEADDR_REG_VPN_SZ 20 ++#define PTEADDR_REG_VPN_MASK 0xfffff ++#define REGNUM_SZ 5 ++#define REGNUM_MASK 0x1f ++#define RETADDR_REGNUM 31 ++#define RF_ADDR_SZ 5 ++#define RF_ADDR_MASK 0x1f ++#define RF_NUM_REG 32 ++#define SIM_REG_LSB 0 ++#define SIM_REG_MSB 3 ++#define SIM_REG_PERF_CNT_CLR_LSB 2 ++#define SIM_REG_PERF_CNT_CLR_MSB 2 ++#define SIM_REG_PERF_CNT_CLR_SZ 1 ++#define SIM_REG_PERF_CNT_CLR_MASK 0x1 ++#define SIM_REG_PERF_CNT_EN_LSB 1 ++#define SIM_REG_PERF_CNT_EN_MSB 1 ++#define SIM_REG_PERF_CNT_EN_SZ 1 ++#define SIM_REG_PERF_CNT_EN_MASK 0x1 ++#define SIM_REG_REGNUM 6 ++#define SIM_REG_SHOW_DTLB_LSB 4 ++#define SIM_REG_SHOW_DTLB_MSB 4 ++#define SIM_REG_SHOW_DTLB_SZ 1 ++#define SIM_REG_SHOW_DTLB_MASK 0x1 ++#define SIM_REG_SHOW_ITLB_LSB 3 ++#define SIM_REG_SHOW_ITLB_MSB 3 ++#define SIM_REG_SHOW_ITLB_SZ 1 ++#define SIM_REG_SHOW_ITLB_MASK 0x1 ++#define SIM_REG_SHOW_MMU_REGS_LSB 5 ++#define SIM_REG_SHOW_MMU_REGS_MSB 5 ++#define SIM_REG_SHOW_MMU_REGS_SZ 1 ++#define SIM_REG_SHOW_MMU_REGS_MASK 0x1 ++#define SIM_REG_STOP_LSB 0 ++#define SIM_REG_STOP_MSB 0 ++#define SIM_REG_STOP_SZ 1 ++#define SIM_REG_STOP_MASK 0x1 ++#define SIM_REG_SZ 4 ++#define SIM_REG_MASK 0xf ++#define SP_REGNUM 27 ++#define STATUS_REG_EH_LSB 2 ++#define STATUS_REG_EH_MSB 2 ++#define STATUS_REG_EH_SZ 1 ++#define STATUS_REG_EH_MASK 0x1 ++#define STATUS_REG_LSB 0 ++#define STATUS_REG_MMU_LSB 0 ++#define STATUS_REG_MMU_MSB 2 ++#define STATUS_REG_MMU_RSV_LSB 3 ++#define STATUS_REG_MMU_RSV_MSB 31 ++#define STATUS_REG_MMU_RSV_SZ 29 ++#define STATUS_REG_MMU_RSV_MASK 0x1fffffff ++#define STATUS_REG_MMU_SZ 3 ++#define STATUS_REG_MMU_MASK 0x7 ++#define STATUS_REG_MSB 2 ++#define STATUS_REG_NO_MMU_LSB 0 ++#define STATUS_REG_NO_MMU_MSB 0 ++#define STATUS_REG_NO_MMU_RSV_LSB 1 ++#define STATUS_REG_NO_MMU_RSV_MSB 31 ++#define STATUS_REG_NO_MMU_RSV_SZ 31 ++#define STATUS_REG_NO_MMU_RSV_MASK 0x7fffffff ++#define STATUS_REG_NO_MMU_SZ 1 ++#define STATUS_REG_NO_MMU_MASK 0x1 ++#define STATUS_REG_PIE_LSB 0 ++#define STATUS_REG_PIE_MSB 0 ++#define STATUS_REG_PIE_SZ 1 ++#define STATUS_REG_PIE_MASK 0x1 ++#define STATUS_REG_REGNUM 0 ++#define STATUS_REG_SZ 3 ++#define STATUS_REG_MASK 0x7 ++#define STATUS_REG_U_LSB 1 ++#define STATUS_REG_U_MSB 1 ++#define STATUS_REG_U_SZ 1 ++#define STATUS_REG_U_MASK 0x1 ++#define TLB_MAX_ENTRIES 1024 ++#define TLB_MAX_LINES 512 ++#define TLB_MAX_PID_SZ 14 ++#define TLB_MAX_PID_MASK 0x3fff ++#define TLB_MAX_PTR_SZ 10 ++#define TLB_MAX_PTR_MASK 0x3ff ++#define TLB_MAX_WAYS 8 ++#define TLB_MIN_PID_SZ 1 ++#define TLB_MIN_PID_MASK 0x1 ++#define TLB_MIN_PTR_SZ 7 ++#define TLB_MIN_PTR_MASK 0x7f ++#define TLB_MIN_WAYS 2 ++#define TLBACC_REG_C_LSB 24 ++#define TLBACC_REG_C_MSB 24 ++#define TLBACC_REG_C_SZ 1 ++#define TLBACC_REG_C_MASK 0x1 ++#define TLBACC_REG_G_LSB 20 ++#define TLBACC_REG_G_MSB 20 ++#define TLBACC_REG_G_SZ 1 ++#define TLBACC_REG_G_MASK 0x1 ++#define TLBACC_REG_IG_LSB 25 ++#define TLBACC_REG_IG_MSB 31 ++#define TLBACC_REG_IG_SZ 7 ++#define TLBACC_REG_IG_MASK 0x7f ++#define TLBACC_REG_LSB 0 ++#define TLBACC_REG_MSB 24 ++#define TLBACC_REG_PFN_LSB 0 ++#define TLBACC_REG_PFN_MSB 19 ++#define TLBACC_REG_PFN_SZ 20 ++#define TLBACC_REG_PFN_MASK 0xfffff ++#define TLBACC_REG_R_LSB 23 ++#define TLBACC_REG_R_MSB 23 ++#define TLBACC_REG_R_SZ 1 ++#define TLBACC_REG_R_MASK 0x1 ++#define TLBACC_REG_REGNUM 9 ++#define TLBACC_REG_SZ 25 ++#define TLBACC_REG_MASK 0x1ffffff ++#define TLBACC_REG_W_LSB 22 ++#define TLBACC_REG_W_MSB 22 ++#define TLBACC_REG_W_SZ 1 ++#define TLBACC_REG_W_MASK 0x1 ++#define TLBACC_REG_X_LSB 21 ++#define TLBACC_REG_X_MSB 21 ++#define TLBACC_REG_X_SZ 1 ++#define TLBACC_REG_X_MASK 0x1 ++#define TLBMISC_REG_BAD_LSB 2 ++#define TLBMISC_REG_BAD_MSB 2 ++#define TLBMISC_REG_BAD_SZ 1 ++#define TLBMISC_REG_BAD_MASK 0x1 ++#define TLBMISC_REG_D_LSB 0 ++#define TLBMISC_REG_D_MSB 0 ++#define TLBMISC_REG_D_SZ 1 ++#define TLBMISC_REG_D_MASK 0x1 ++#define TLBMISC_REG_DBL_LSB 3 ++#define TLBMISC_REG_DBL_MSB 3 ++#define TLBMISC_REG_DBL_SZ 1 ++#define TLBMISC_REG_DBL_MASK 0x1 ++#define TLBMISC_REG_LSB 0 ++#define TLBMISC_REG_MSB 23 ++#define TLBMISC_REG_PERM_LSB 1 ++#define TLBMISC_REG_PERM_MSB 1 ++#define TLBMISC_REG_PERM_SZ 1 ++#define TLBMISC_REG_PERM_MASK 0x1 ++#define TLBMISC_REG_PID_LSB 4 ++#define TLBMISC_REG_PID_MSB 17 ++#define TLBMISC_REG_PID_SZ 14 ++#define TLBMISC_REG_PID_MASK 0x3fff ++#define TLBMISC_REG_RD_LSB 24 ++#define TLBMISC_REG_RD_MSB 24 ++#define TLBMISC_REG_RD_SZ 1 ++#define TLBMISC_REG_RD_MASK 0x1 ++#define TLBMISC_REG_REGNUM 10 ++#define TLBMISC_REG_RSV0_LSB 18 ++#define TLBMISC_REG_RSV0_MSB 19 ++#define TLBMISC_REG_RSV0_SZ 2 ++#define TLBMISC_REG_RSV0_MASK 0x3 ++#define TLBMISC_REG_RSV1_LSB 25 ++#define TLBMISC_REG_RSV1_MSB 31 ++#define TLBMISC_REG_RSV1_SZ 7 ++#define TLBMISC_REG_RSV1_MASK 0x7f ++#define TLBMISC_REG_SZ 24 ++#define TLBMISC_REG_MASK 0xffffff ++#define TLBMISC_REG_WAY_LSB 20 ++#define TLBMISC_REG_WAY_MSB 22 ++#define TLBMISC_REG_WAY_SZ 3 ++#define TLBMISC_REG_WAY_MASK 0x7 ++#define TLBMISC_REG_WE_LSB 23 ++#define TLBMISC_REG_WE_MSB 23 ++#define TLBMISC_REG_WE_SZ 1 ++#define TLBMISC_REG_WE_MASK 0x1 ++ ++/* Macros to extract instruction fields */ ++#define GET_IW_A(Iw) \ ++ (((Iw) >> IW_A_LSB) & IW_A_MASK) ++#define SET_IW_A(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_A_MASK << IW_A_LSB))) | \ ++ (((Val) & IW_A_MASK) << IW_A_LSB)) ++#define GET_IW_B(Iw) \ ++ (((Iw) >> IW_B_LSB) & IW_B_MASK) ++#define SET_IW_B(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_B_MASK << IW_B_LSB))) | \ ++ (((Val) & IW_B_MASK) << IW_B_LSB)) ++#define GET_IW_C(Iw) \ ++ (((Iw) >> IW_C_LSB) & IW_C_MASK) ++#define SET_IW_C(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_C_MASK << IW_C_LSB))) | \ ++ (((Val) & IW_C_MASK) << IW_C_LSB)) ++#define GET_IW_CONTROL_REGNUM(Iw) \ ++ (((Iw) >> IW_CONTROL_REGNUM_LSB) & IW_CONTROL_REGNUM_MASK) ++#define SET_IW_CONTROL_REGNUM(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_CONTROL_REGNUM_MASK << IW_CONTROL_REGNUM_LSB))) | \ ++ (((Val) & IW_CONTROL_REGNUM_MASK) << IW_CONTROL_REGNUM_LSB)) ++#define GET_IW_CUSTOM_N(Iw) \ ++ (((Iw) >> IW_CUSTOM_N_LSB) & IW_CUSTOM_N_MASK) ++#define SET_IW_CUSTOM_N(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_CUSTOM_N_MASK << IW_CUSTOM_N_LSB))) | \ ++ (((Val) & IW_CUSTOM_N_MASK) << IW_CUSTOM_N_LSB)) ++#define GET_IW_CUSTOM_READRA(Iw) \ ++ (((Iw) >> IW_CUSTOM_READRA_LSB) & IW_CUSTOM_READRA_MASK) ++#define SET_IW_CUSTOM_READRA(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_CUSTOM_READRA_MASK << IW_CUSTOM_READRA_LSB))) | \ ++ (((Val) & IW_CUSTOM_READRA_MASK) << IW_CUSTOM_READRA_LSB)) ++#define GET_IW_CUSTOM_READRB(Iw) \ ++ (((Iw) >> IW_CUSTOM_READRB_LSB) & IW_CUSTOM_READRB_MASK) ++#define SET_IW_CUSTOM_READRB(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_CUSTOM_READRB_MASK << IW_CUSTOM_READRB_LSB))) | \ ++ (((Val) & IW_CUSTOM_READRB_MASK) << IW_CUSTOM_READRB_LSB)) ++#define GET_IW_CUSTOM_WRITERC(Iw) \ ++ (((Iw) >> IW_CUSTOM_WRITERC_LSB) & IW_CUSTOM_WRITERC_MASK) ++#define SET_IW_CUSTOM_WRITERC(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_CUSTOM_WRITERC_MASK << IW_CUSTOM_WRITERC_LSB))) | \ ++ (((Val) & IW_CUSTOM_WRITERC_MASK) << IW_CUSTOM_WRITERC_LSB)) ++#define GET_IW_IMM16(Iw) \ ++ (((Iw) >> IW_IMM16_LSB) & IW_IMM16_MASK) ++#define SET_IW_IMM16(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_IMM16_MASK << IW_IMM16_LSB))) | \ ++ (((Val) & IW_IMM16_MASK) << IW_IMM16_LSB)) ++#define GET_IW_IMM26(Iw) \ ++ (((Iw) >> IW_IMM26_LSB) & IW_IMM26_MASK) ++#define SET_IW_IMM26(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_IMM26_MASK << IW_IMM26_LSB))) | \ ++ (((Val) & IW_IMM26_MASK) << IW_IMM26_LSB)) ++#define GET_IW_MEMSZ(Iw) \ ++ (((Iw) >> IW_MEMSZ_LSB) & IW_MEMSZ_MASK) ++#define SET_IW_MEMSZ(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_MEMSZ_MASK << IW_MEMSZ_LSB))) | \ ++ (((Val) & IW_MEMSZ_MASK) << IW_MEMSZ_LSB)) ++#define GET_IW_OP(Iw) \ ++ (((Iw) >> IW_OP_LSB) & IW_OP_MASK) ++#define SET_IW_OP(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_OP_MASK << IW_OP_LSB))) | \ ++ (((Val) & IW_OP_MASK) << IW_OP_LSB)) ++#define GET_IW_OPX(Iw) \ ++ (((Iw) >> IW_OPX_LSB) & IW_OPX_MASK) ++#define SET_IW_OPX(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_OPX_MASK << IW_OPX_LSB))) | \ ++ (((Val) & IW_OPX_MASK) << IW_OPX_LSB)) ++#define GET_IW_SHIFT_IMM5(Iw) \ ++ (((Iw) >> IW_SHIFT_IMM5_LSB) & IW_SHIFT_IMM5_MASK) ++#define SET_IW_SHIFT_IMM5(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_SHIFT_IMM5_MASK << IW_SHIFT_IMM5_LSB))) | \ ++ (((Val) & IW_SHIFT_IMM5_MASK) << IW_SHIFT_IMM5_LSB)) ++#define GET_IW_TRAP_BREAK_IMM5(Iw) \ ++ (((Iw) >> IW_TRAP_BREAK_IMM5_LSB) & IW_TRAP_BREAK_IMM5_MASK) ++#define SET_IW_TRAP_BREAK_IMM5(Iw, Val) \ ++ Iw = (((Iw) & (~(IW_TRAP_BREAK_IMM5_MASK << IW_TRAP_BREAK_IMM5_LSB))) | \ ++ (((Val) & IW_TRAP_BREAK_IMM5_MASK) << IW_TRAP_BREAK_IMM5_LSB)) ++ ++/* Macros to extract control register fields */ ++#define GET_BSTATUS_REG_MMU(Reg) \ ++ (((Reg) >> BSTATUS_REG_MMU_LSB) & BSTATUS_REG_MMU_MASK) ++#define SET_BSTATUS_REG_MMU(Reg, Val) \ ++ Reg = (((Reg) & (~(BSTATUS_REG_MMU_MASK << BSTATUS_REG_MMU_LSB))) | \ ++ (((Val) & BSTATUS_REG_MMU_MASK) << BSTATUS_REG_MMU_LSB)) ++#define GET_BSTATUS_REG_NO_MMU(Reg) \ ++ (((Reg) >> BSTATUS_REG_NO_MMU_LSB) & BSTATUS_REG_NO_MMU_MASK) ++#define SET_BSTATUS_REG_NO_MMU(Reg, Val) \ ++ Reg = (((Reg) & (~(BSTATUS_REG_NO_MMU_MASK << BSTATUS_REG_NO_MMU_LSB))) | \ ++ (((Val) & BSTATUS_REG_NO_MMU_MASK) << BSTATUS_REG_NO_MMU_LSB)) ++#define GET_ESTATUS_REG_MMU(Reg) \ ++ (((Reg) >> ESTATUS_REG_MMU_LSB) & ESTATUS_REG_MMU_MASK) ++#define SET_ESTATUS_REG_MMU(Reg, Val) \ ++ Reg = (((Reg) & (~(ESTATUS_REG_MMU_MASK << ESTATUS_REG_MMU_LSB))) | \ ++ (((Val) & ESTATUS_REG_MMU_MASK) << ESTATUS_REG_MMU_LSB)) ++#define GET_ESTATUS_REG_NO_MMU(Reg) \ ++ (((Reg) >> ESTATUS_REG_NO_MMU_LSB) & ESTATUS_REG_NO_MMU_MASK) ++#define SET_ESTATUS_REG_NO_MMU(Reg, Val) \ ++ Reg = (((Reg) & (~(ESTATUS_REG_NO_MMU_MASK << ESTATUS_REG_NO_MMU_LSB))) | \ ++ (((Val) & ESTATUS_REG_NO_MMU_MASK) << ESTATUS_REG_NO_MMU_LSB)) ++#define GET_EXCEPTION_REG_MEA(Reg) \ ++ (((Reg) >> EXCEPTION_REG_MEA_LSB) & EXCEPTION_REG_MEA_MASK) ++#define SET_EXCEPTION_REG_MEA(Reg, Val) \ ++ Reg = (((Reg) & (~(EXCEPTION_REG_MEA_MASK << EXCEPTION_REG_MEA_LSB))) | \ ++ (((Val) & EXCEPTION_REG_MEA_MASK) << EXCEPTION_REG_MEA_LSB)) ++#define GET_EXCEPTION_REG_MEE(Reg) \ ++ (((Reg) >> EXCEPTION_REG_MEE_LSB) & EXCEPTION_REG_MEE_MASK) ++#define SET_EXCEPTION_REG_MEE(Reg, Val) \ ++ Reg = (((Reg) & (~(EXCEPTION_REG_MEE_MASK << EXCEPTION_REG_MEE_LSB))) | \ ++ (((Val) & EXCEPTION_REG_MEE_MASK) << EXCEPTION_REG_MEE_LSB)) ++#define GET_PTEADDR_REG_PTBASE(Reg) \ ++ (((Reg) >> PTEADDR_REG_PTBASE_LSB) & PTEADDR_REG_PTBASE_MASK) ++#define SET_PTEADDR_REG_PTBASE(Reg, Val) \ ++ Reg = (((Reg) & (~(PTEADDR_REG_PTBASE_MASK << PTEADDR_REG_PTBASE_LSB))) | \ ++ (((Val) & PTEADDR_REG_PTBASE_MASK) << PTEADDR_REG_PTBASE_LSB)) ++#define GET_PTEADDR_REG_RSV(Reg) \ ++ (((Reg) >> PTEADDR_REG_RSV_LSB) & PTEADDR_REG_RSV_MASK) ++#define SET_PTEADDR_REG_RSV(Reg, Val) \ ++ Reg = (((Reg) & (~(PTEADDR_REG_RSV_MASK << PTEADDR_REG_RSV_LSB))) | \ ++ (((Val) & PTEADDR_REG_RSV_MASK) << PTEADDR_REG_RSV_LSB)) ++#define GET_PTEADDR_REG_VPN(Reg) \ ++ (((Reg) >> PTEADDR_REG_VPN_LSB) & PTEADDR_REG_VPN_MASK) ++#define SET_PTEADDR_REG_VPN(Reg, Val) \ ++ Reg = (((Reg) & (~(PTEADDR_REG_VPN_MASK << PTEADDR_REG_VPN_LSB))) | \ ++ (((Val) & PTEADDR_REG_VPN_MASK) << PTEADDR_REG_VPN_LSB)) ++#define GET_SIM_REG_PERF_CNT_CLR(Reg) \ ++ (((Reg) >> SIM_REG_PERF_CNT_CLR_LSB) & SIM_REG_PERF_CNT_CLR_MASK) ++#define SET_SIM_REG_PERF_CNT_CLR(Reg, Val) \ ++ Reg = (((Reg) & (~(SIM_REG_PERF_CNT_CLR_MASK << SIM_REG_PERF_CNT_CLR_LSB))) | \ ++ (((Val) & SIM_REG_PERF_CNT_CLR_MASK) << SIM_REG_PERF_CNT_CLR_LSB)) ++#define GET_SIM_REG_PERF_CNT_EN(Reg) \ ++ (((Reg) >> SIM_REG_PERF_CNT_EN_LSB) & SIM_REG_PERF_CNT_EN_MASK) ++#define SET_SIM_REG_PERF_CNT_EN(Reg, Val) \ ++ Reg = (((Reg) & (~(SIM_REG_PERF_CNT_EN_MASK << SIM_REG_PERF_CNT_EN_LSB))) | \ ++ (((Val) & SIM_REG_PERF_CNT_EN_MASK) << SIM_REG_PERF_CNT_EN_LSB)) ++#define GET_SIM_REG_SHOW_DTLB(Reg) \ ++ (((Reg) >> SIM_REG_SHOW_DTLB_LSB) & SIM_REG_SHOW_DTLB_MASK) ++#define SET_SIM_REG_SHOW_DTLB(Reg, Val) \ ++ Reg = (((Reg) & (~(SIM_REG_SHOW_DTLB_MASK << SIM_REG_SHOW_DTLB_LSB))) | \ ++ (((Val) & SIM_REG_SHOW_DTLB_MASK) << SIM_REG_SHOW_DTLB_LSB)) ++#define GET_SIM_REG_SHOW_ITLB(Reg) \ ++ (((Reg) >> SIM_REG_SHOW_ITLB_LSB) & SIM_REG_SHOW_ITLB_MASK) ++#define SET_SIM_REG_SHOW_ITLB(Reg, Val) \ ++ Reg = (((Reg) & (~(SIM_REG_SHOW_ITLB_MASK << SIM_REG_SHOW_ITLB_LSB))) | \ ++ (((Val) & SIM_REG_SHOW_ITLB_MASK) << SIM_REG_SHOW_ITLB_LSB)) ++#define GET_SIM_REG_SHOW_MMU_REGS(Reg) \ ++ (((Reg) >> SIM_REG_SHOW_MMU_REGS_LSB) & SIM_REG_SHOW_MMU_REGS_MASK) ++#define SET_SIM_REG_SHOW_MMU_REGS(Reg, Val) \ ++ Reg = (((Reg) & (~(SIM_REG_SHOW_MMU_REGS_MASK << SIM_REG_SHOW_MMU_REGS_LSB))) | \ ++ (((Val) & SIM_REG_SHOW_MMU_REGS_MASK) << SIM_REG_SHOW_MMU_REGS_LSB)) ++#define GET_SIM_REG_STOP(Reg) \ ++ (((Reg) >> SIM_REG_STOP_LSB) & SIM_REG_STOP_MASK) ++#define SET_SIM_REG_STOP(Reg, Val) \ ++ Reg = (((Reg) & (~(SIM_REG_STOP_MASK << SIM_REG_STOP_LSB))) | \ ++ (((Val) & SIM_REG_STOP_MASK) << SIM_REG_STOP_LSB)) ++#define GET_STATUS_REG_EH(Reg) \ ++ (((Reg) >> STATUS_REG_EH_LSB) & STATUS_REG_EH_MASK) ++#define SET_STATUS_REG_EH(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_EH_MASK << STATUS_REG_EH_LSB))) | \ ++ (((Val) & STATUS_REG_EH_MASK) << STATUS_REG_EH_LSB)) ++#define GET_STATUS_REG_MMU(Reg) \ ++ (((Reg) >> STATUS_REG_MMU_LSB) & STATUS_REG_MMU_MASK) ++#define SET_STATUS_REG_MMU(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_MMU_MASK << STATUS_REG_MMU_LSB))) | \ ++ (((Val) & STATUS_REG_MMU_MASK) << STATUS_REG_MMU_LSB)) ++#define GET_STATUS_REG_MMU_RSV(Reg) \ ++ (((Reg) >> STATUS_REG_MMU_RSV_LSB) & STATUS_REG_MMU_RSV_MASK) ++#define SET_STATUS_REG_MMU_RSV(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_MMU_RSV_MASK << STATUS_REG_MMU_RSV_LSB))) | \ ++ (((Val) & STATUS_REG_MMU_RSV_MASK) << STATUS_REG_MMU_RSV_LSB)) ++#define GET_STATUS_REG_NO_MMU(Reg) \ ++ (((Reg) >> STATUS_REG_NO_MMU_LSB) & STATUS_REG_NO_MMU_MASK) ++#define SET_STATUS_REG_NO_MMU(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_NO_MMU_MASK << STATUS_REG_NO_MMU_LSB))) | \ ++ (((Val) & STATUS_REG_NO_MMU_MASK) << STATUS_REG_NO_MMU_LSB)) ++#define GET_STATUS_REG_NO_MMU_RSV(Reg) \ ++ (((Reg) >> STATUS_REG_NO_MMU_RSV_LSB) & STATUS_REG_NO_MMU_RSV_MASK) ++#define SET_STATUS_REG_NO_MMU_RSV(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_NO_MMU_RSV_MASK << STATUS_REG_NO_MMU_RSV_LSB))) | \ ++ (((Val) & STATUS_REG_NO_MMU_RSV_MASK) << STATUS_REG_NO_MMU_RSV_LSB)) ++#define GET_STATUS_REG_PIE(Reg) \ ++ (((Reg) >> STATUS_REG_PIE_LSB) & STATUS_REG_PIE_MASK) ++#define SET_STATUS_REG_PIE(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_PIE_MASK << STATUS_REG_PIE_LSB))) | \ ++ (((Val) & STATUS_REG_PIE_MASK) << STATUS_REG_PIE_LSB)) ++#define GET_STATUS_REG_U(Reg) \ ++ (((Reg) >> STATUS_REG_U_LSB) & STATUS_REG_U_MASK) ++#define SET_STATUS_REG_U(Reg, Val) \ ++ Reg = (((Reg) & (~(STATUS_REG_U_MASK << STATUS_REG_U_LSB))) | \ ++ (((Val) & STATUS_REG_U_MASK) << STATUS_REG_U_LSB)) ++#define GET_TLBACC_REG_C(Reg) \ ++ (((Reg) >> TLBACC_REG_C_LSB) & TLBACC_REG_C_MASK) ++#define SET_TLBACC_REG_C(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_C_MASK << TLBACC_REG_C_LSB))) | \ ++ (((Val) & TLBACC_REG_C_MASK) << TLBACC_REG_C_LSB)) ++#define GET_TLBACC_REG_G(Reg) \ ++ (((Reg) >> TLBACC_REG_G_LSB) & TLBACC_REG_G_MASK) ++#define SET_TLBACC_REG_G(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_G_MASK << TLBACC_REG_G_LSB))) | \ ++ (((Val) & TLBACC_REG_G_MASK) << TLBACC_REG_G_LSB)) ++#define GET_TLBACC_REG_IG(Reg) \ ++ (((Reg) >> TLBACC_REG_IG_LSB) & TLBACC_REG_IG_MASK) ++#define SET_TLBACC_REG_IG(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_IG_MASK << TLBACC_REG_IG_LSB))) | \ ++ (((Val) & TLBACC_REG_IG_MASK) << TLBACC_REG_IG_LSB)) ++#define GET_TLBACC_REG_PFN(Reg) \ ++ (((Reg) >> TLBACC_REG_PFN_LSB) & TLBACC_REG_PFN_MASK) ++#define SET_TLBACC_REG_PFN(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_PFN_MASK << TLBACC_REG_PFN_LSB))) | \ ++ (((Val) & TLBACC_REG_PFN_MASK) << TLBACC_REG_PFN_LSB)) ++#define GET_TLBACC_REG_R(Reg) \ ++ (((Reg) >> TLBACC_REG_R_LSB) & TLBACC_REG_R_MASK) ++#define SET_TLBACC_REG_R(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_R_MASK << TLBACC_REG_R_LSB))) | \ ++ (((Val) & TLBACC_REG_R_MASK) << TLBACC_REG_R_LSB)) ++#define GET_TLBACC_REG_W(Reg) \ ++ (((Reg) >> TLBACC_REG_W_LSB) & TLBACC_REG_W_MASK) ++#define SET_TLBACC_REG_W(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_W_MASK << TLBACC_REG_W_LSB))) | \ ++ (((Val) & TLBACC_REG_W_MASK) << TLBACC_REG_W_LSB)) ++#define GET_TLBACC_REG_X(Reg) \ ++ (((Reg) >> TLBACC_REG_X_LSB) & TLBACC_REG_X_MASK) ++#define SET_TLBACC_REG_X(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBACC_REG_X_MASK << TLBACC_REG_X_LSB))) | \ ++ (((Val) & TLBACC_REG_X_MASK) << TLBACC_REG_X_LSB)) ++#define GET_TLBMISC_REG_BAD(Reg) \ ++ (((Reg) >> TLBMISC_REG_BAD_LSB) & TLBMISC_REG_BAD_MASK) ++#define SET_TLBMISC_REG_BAD(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_BAD_MASK << TLBMISC_REG_BAD_LSB))) | \ ++ (((Val) & TLBMISC_REG_BAD_MASK) << TLBMISC_REG_BAD_LSB)) ++#define GET_TLBMISC_REG_D(Reg) \ ++ (((Reg) >> TLBMISC_REG_D_LSB) & TLBMISC_REG_D_MASK) ++#define SET_TLBMISC_REG_D(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_D_MASK << TLBMISC_REG_D_LSB))) | \ ++ (((Val) & TLBMISC_REG_D_MASK) << TLBMISC_REG_D_LSB)) ++#define GET_TLBMISC_REG_DBL(Reg) \ ++ (((Reg) >> TLBMISC_REG_DBL_LSB) & TLBMISC_REG_DBL_MASK) ++#define SET_TLBMISC_REG_DBL(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_DBL_MASK << TLBMISC_REG_DBL_LSB))) | \ ++ (((Val) & TLBMISC_REG_DBL_MASK) << TLBMISC_REG_DBL_LSB)) ++#define GET_TLBMISC_REG_PERM(Reg) \ ++ (((Reg) >> TLBMISC_REG_PERM_LSB) & TLBMISC_REG_PERM_MASK) ++#define SET_TLBMISC_REG_PERM(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_PERM_MASK << TLBMISC_REG_PERM_LSB))) | \ ++ (((Val) & TLBMISC_REG_PERM_MASK) << TLBMISC_REG_PERM_LSB)) ++#define GET_TLBMISC_REG_PID(Reg) \ ++ (((Reg) >> TLBMISC_REG_PID_LSB) & TLBMISC_REG_PID_MASK) ++#define SET_TLBMISC_REG_PID(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_PID_MASK << TLBMISC_REG_PID_LSB))) | \ ++ (((Val) & TLBMISC_REG_PID_MASK) << TLBMISC_REG_PID_LSB)) ++#define GET_TLBMISC_REG_RD(Reg) \ ++ (((Reg) >> TLBMISC_REG_RD_LSB) & TLBMISC_REG_RD_MASK) ++#define SET_TLBMISC_REG_RD(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_RD_MASK << TLBMISC_REG_RD_LSB))) | \ ++ (((Val) & TLBMISC_REG_RD_MASK) << TLBMISC_REG_RD_LSB)) ++#define GET_TLBMISC_REG_RSV0(Reg) \ ++ (((Reg) >> TLBMISC_REG_RSV0_LSB) & TLBMISC_REG_RSV0_MASK) ++#define SET_TLBMISC_REG_RSV0(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_RSV0_MASK << TLBMISC_REG_RSV0_LSB))) | \ ++ (((Val) & TLBMISC_REG_RSV0_MASK) << TLBMISC_REG_RSV0_LSB)) ++#define GET_TLBMISC_REG_RSV1(Reg) \ ++ (((Reg) >> TLBMISC_REG_RSV1_LSB) & TLBMISC_REG_RSV1_MASK) ++#define SET_TLBMISC_REG_RSV1(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_RSV1_MASK << TLBMISC_REG_RSV1_LSB))) | \ ++ (((Val) & TLBMISC_REG_RSV1_MASK) << TLBMISC_REG_RSV1_LSB)) ++#define GET_TLBMISC_REG_WAY(Reg) \ ++ (((Reg) >> TLBMISC_REG_WAY_LSB) & TLBMISC_REG_WAY_MASK) ++#define SET_TLBMISC_REG_WAY(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_WAY_MASK << TLBMISC_REG_WAY_LSB))) | \ ++ (((Val) & TLBMISC_REG_WAY_MASK) << TLBMISC_REG_WAY_LSB)) ++#define GET_TLBMISC_REG_WE(Reg) \ ++ (((Reg) >> TLBMISC_REG_WE_LSB) & TLBMISC_REG_WE_MASK) ++#define SET_TLBMISC_REG_WE(Reg, Val) \ ++ Reg = (((Reg) & (~(TLBMISC_REG_WE_MASK << TLBMISC_REG_WE_LSB))) | \ ++ (((Val) & TLBMISC_REG_WE_MASK) << TLBMISC_REG_WE_LSB)) ++ ++/* Macros to extract MMU fields */ ++#define GET_MMU_ADDR_BYPASS_TLB_CACHEABLE(Addr) \ ++ (((Addr) >> MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB) & MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK) ++#define SET_MMU_ADDR_BYPASS_TLB_CACHEABLE(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK << MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB))) | \ ++ (((Val) & MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK) << MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB)) ++#define GET_MMU_ADDR_BYPASS_TLB(Addr) \ ++ (((Addr) >> MMU_ADDR_BYPASS_TLB_LSB) & MMU_ADDR_BYPASS_TLB_MASK) ++#define SET_MMU_ADDR_BYPASS_TLB(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_BYPASS_TLB_MASK << MMU_ADDR_BYPASS_TLB_LSB))) | \ ++ (((Val) & MMU_ADDR_BYPASS_TLB_MASK) << MMU_ADDR_BYPASS_TLB_LSB)) ++#define GET_MMU_ADDR_BYPASS_TLB_PADDR(Addr) \ ++ (((Addr) >> MMU_ADDR_BYPASS_TLB_PADDR_LSB) & MMU_ADDR_BYPASS_TLB_PADDR_MASK) ++#define SET_MMU_ADDR_BYPASS_TLB_PADDR(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_BYPASS_TLB_PADDR_MASK << MMU_ADDR_BYPASS_TLB_PADDR_LSB))) | \ ++ (((Val) & MMU_ADDR_BYPASS_TLB_PADDR_MASK) << MMU_ADDR_BYPASS_TLB_PADDR_LSB)) ++#define GET_MMU_ADDR_IO_REGION(Addr) \ ++ (((Addr) >> MMU_ADDR_IO_REGION_LSB) & MMU_ADDR_IO_REGION_MASK) ++#define SET_MMU_ADDR_IO_REGION(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_IO_REGION_MASK << MMU_ADDR_IO_REGION_LSB))) | \ ++ (((Val) & MMU_ADDR_IO_REGION_MASK) << MMU_ADDR_IO_REGION_LSB)) ++#define GET_MMU_ADDR_KERNEL_MMU_REGION(Addr) \ ++ (((Addr) >> MMU_ADDR_KERNEL_MMU_REGION_LSB) & MMU_ADDR_KERNEL_MMU_REGION_MASK) ++#define SET_MMU_ADDR_KERNEL_MMU_REGION(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_KERNEL_MMU_REGION_MASK << MMU_ADDR_KERNEL_MMU_REGION_LSB))) | \ ++ (((Val) & MMU_ADDR_KERNEL_MMU_REGION_MASK) << MMU_ADDR_KERNEL_MMU_REGION_LSB)) ++#define GET_MMU_ADDR_KERNEL_REGION(Addr) \ ++ (((Addr) >> MMU_ADDR_KERNEL_REGION_LSB) & MMU_ADDR_KERNEL_REGION_MASK) ++#define SET_MMU_ADDR_KERNEL_REGION(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_KERNEL_REGION_MASK << MMU_ADDR_KERNEL_REGION_LSB))) | \ ++ (((Val) & MMU_ADDR_KERNEL_REGION_MASK) << MMU_ADDR_KERNEL_REGION_LSB)) ++#define GET_MMU_ADDR_PAGE_OFFSET(Addr) \ ++ (((Addr) >> MMU_ADDR_PAGE_OFFSET_LSB) & MMU_ADDR_PAGE_OFFSET_MASK) ++#define SET_MMU_ADDR_PAGE_OFFSET(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_PAGE_OFFSET_MASK << MMU_ADDR_PAGE_OFFSET_LSB))) | \ ++ (((Val) & MMU_ADDR_PAGE_OFFSET_MASK) << MMU_ADDR_PAGE_OFFSET_LSB)) ++#define GET_MMU_ADDR_PFN(Addr) \ ++ (((Addr) >> MMU_ADDR_PFN_LSB) & MMU_ADDR_PFN_MASK) ++#define SET_MMU_ADDR_PFN(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_PFN_MASK << MMU_ADDR_PFN_LSB))) | \ ++ (((Val) & MMU_ADDR_PFN_MASK) << MMU_ADDR_PFN_LSB)) ++#define GET_MMU_ADDR_USER_REGION(Addr) \ ++ (((Addr) >> MMU_ADDR_USER_REGION_LSB) & MMU_ADDR_USER_REGION_MASK) ++#define SET_MMU_ADDR_USER_REGION(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_USER_REGION_MASK << MMU_ADDR_USER_REGION_LSB))) | \ ++ (((Val) & MMU_ADDR_USER_REGION_MASK) << MMU_ADDR_USER_REGION_LSB)) ++#define GET_MMU_ADDR_VPN(Addr) \ ++ (((Addr) >> MMU_ADDR_VPN_LSB) & MMU_ADDR_VPN_MASK) ++#define SET_MMU_ADDR_VPN(Addr, Val) \ ++ Addr = (((Addr) & (~(MMU_ADDR_VPN_MASK << MMU_ADDR_VPN_LSB))) | \ ++ (((Val) & MMU_ADDR_VPN_MASK) << MMU_ADDR_VPN_LSB)) ++ ++/* OP instruction values */ ++#define OP_ADDI 4 ++#define OP_ANDHI 44 ++#define OP_ANDI 12 ++#define OP_BEQ 38 ++#define OP_BGE 14 ++#define OP_BGEU 46 ++#define OP_BLT 22 ++#define OP_BLTU 54 ++#define OP_BNE 30 ++#define OP_BR 6 ++#define OP_CALL 0 ++#define OP_CMPEQI 32 ++#define OP_CMPGEI 8 ++#define OP_CMPGEUI 40 ++#define OP_CMPLTI 16 ++#define OP_CMPLTUI 48 ++#define OP_CMPNEI 24 ++#define OP_CUSTOM 50 ++#define OP_FLUSHD 59 ++#define OP_FLUSHDA 27 ++#define OP_INITD 51 ++#define OP_JMPI 1 ++#define OP_LDB 7 ++#define OP_LDBIO 39 ++#define OP_LDBU 3 ++#define OP_LDBUIO 35 ++#define OP_LDH 15 ++#define OP_LDHIO 47 ++#define OP_LDHU 11 ++#define OP_LDHUIO 43 ++#define OP_LDW 23 ++#define OP_LDWIO 55 ++#define OP_MULI 36 ++#define OP_OPX 58 ++#define OP_ORHI 52 ++#define OP_ORI 20 ++#define OP_STB 5 ++#define OP_STBIO 37 ++#define OP_STH 13 ++#define OP_STHIO 45 ++#define OP_STW 21 ++#define OP_STWIO 53 ++#define OP_XORHI 60 ++#define OP_XORI 28 ++ ++/* OPX instruction values */ ++#define OPX_ADD 49 ++#define OPX_AND 14 ++#define OPX_BREAK 52 ++#define OPX_BRET 9 ++#define OPX_CALLR 29 ++#define OPX_CMPEQ 32 ++#define OPX_CMPGE 8 ++#define OPX_CMPGEU 40 ++#define OPX_CMPLT 16 ++#define OPX_CMPLTU 48 ++#define OPX_CMPNE 24 ++#define OPX_CRST 62 ++#define OPX_DIV 37 ++#define OPX_DIVU 36 ++#define OPX_ERET 1 ++#define OPX_FLUSHI 12 ++#define OPX_FLUSHP 4 ++#define OPX_HBREAK 53 ++#define OPX_INITI 41 ++#define OPX_INTR 61 ++#define OPX_JMP 13 ++#define OPX_MUL 39 ++#define OPX_MULXSS 31 ++#define OPX_MULXSU 23 ++#define OPX_MULXUU 7 ++#define OPX_NEXTPC 28 ++#define OPX_NOR 6 ++#define OPX_OR 22 ++#define OPX_RDCTL 38 ++#define OPX_RET 5 ++#define OPX_ROL 3 ++#define OPX_ROLI 2 ++#define OPX_ROR 11 ++#define OPX_SLL 19 ++#define OPX_SLLI 18 ++#define OPX_SRA 59 ++#define OPX_SRAI 58 ++#define OPX_SRL 27 ++#define OPX_SRLI 26 ++#define OPX_SUB 57 ++#define OPX_SYNC 54 ++#define OPX_TRAP 45 ++#define OPX_WRCTL 46 ++#define OPX_XOR 30 ++ ++/* Macros to detect sub-opcode instructions */ ++#define IS_OPX_INST(Iw) (GET_IW_OP(Iw) == OP_OPX) ++#define IS_CUSTOM_INST(Iw) (GET_IW_OP(Iw) == OP_CUSTOM) ++ ++/* Instruction property macros */ ++#define IW_PROP_RESERVED_OP(Iw) (0) ++ ++#define IW_PROP_RESERVED_OPX(Iw) (0) ++ ++#define IW_PROP_RESERVED(Iw) (0) ++ ++#define IW_PROP_SUPERVISOR_ONLY(Iw) ( \ ++ (op_prop_supervisor_only[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_supervisor_only[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_supervisor_only[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_supervisor_only[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_INITI_FLUSHI(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_INITI) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_FLUSHI) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_FLUSH_PIPE(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_flush_pipe[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_flush_pipe[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_JMP_INDIRECT_NON_TRAP(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_jmp_indirect_non_trap[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_jmp_indirect_non_trap[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_JMP_INDIRECT(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_jmp_indirect[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_jmp_indirect[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_JMP_DIRECT(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_CALL)) || \ ++ ((GET_IW_OP((Iw)) == OP_JMPI)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_MUL_LSW(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_MULI)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_MUL) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_MULX(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_mulx[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_mulx[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_MUL(Iw) ( \ ++ (op_prop_mul[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_mul[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_mul[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_mul[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_DIV_UNSIGNED(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_DIVU) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_DIV_SIGNED(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_DIV) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_DIV(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_DIVU) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_DIV) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_UNIMPLEMENTED(Iw) (0) ++ ++#define IW_PROP_IMPLICIT_DST_RETADDR(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_CALL)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_IMPLICIT_DST_ERETADDR(Iw) (0) ++ ++#define IW_PROP_EXCEPTION(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_TRAP) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_INTR) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_BREAK(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_BREAK) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_HBREAK) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_CRST(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_CRST) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_WR_CTL_REG(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_wr_ctl_reg[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_wr_ctl_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_UNCOND_CTI_NON_BR(Iw) ( \ ++ (op_prop_uncond_cti_non_br[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_uncond_cti_non_br[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_uncond_cti_non_br[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_uncond_cti_non_br[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_RETADDR(Iw) ( \ ++ (op_prop_retaddr[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_retaddr[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_retaddr[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_retaddr[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SHIFT_LEFT(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_SLLI) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_SLL) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_SHIFT_LOGICAL(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_shift_logical[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_shift_logical[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_ROT_LEFT(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_ROLI) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_ROL) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_SHIFT_ROT_LEFT(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_shift_rot_left[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_shift_rot_left[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SHIFT_RIGHT_LOGICAL(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_SRLI) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_SRL) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_SHIFT_RIGHT_ARITH(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_SRAI) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_SRA) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_SHIFT_RIGHT(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_shift_right[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_shift_right[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_ROT_RIGHT(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_ROR) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_SHIFT_ROT_RIGHT(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_shift_rot_right[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_shift_rot_right[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SHIFT_ROT(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_shift_rot[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_shift_rot[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SHIFT_ROT_IMM(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_shift_rot_imm[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_shift_rot_imm[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_ROTATE(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_rotate[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_rotate[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOGIC_REG(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_logic_reg[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_logic_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOGIC_HI_IMM16(Iw) ( \ ++ (op_prop_logic_hi_imm16[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_logic_hi_imm16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOGIC_LO_IMM16(Iw) ( \ ++ (op_prop_logic_lo_imm16[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_logic_lo_imm16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOGIC_IMM16(Iw) ( \ ++ (op_prop_logic_imm16[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_logic_imm16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOGIC(Iw) ( \ ++ (op_prop_logic[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_logic[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_logic[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_logic[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_UNSIGNED_LO_IMM16(Iw) ( \ ++ (op_prop_unsigned_lo_imm16[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_unsigned_lo_imm16[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_unsigned_lo_imm16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_unsigned_lo_imm16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_ARITH_IMM16(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_ADDI)) || \ ++ ((GET_IW_OP((Iw)) == OP_MULI)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_CMP_IMM16(Iw) ( \ ++ (op_prop_cmp_imm16[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp_imm16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_JMPI(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_JMPI)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_CMP_IMM16_WITH_CALL_JMPI(Iw) ( \ ++ (op_prop_cmp_imm16_with_call_jmpi[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp_imm16_with_call_jmpi[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_CMP_REG(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_cmp_reg[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_cmp_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SRC_IMM5(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_src_imm5[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_src_imm5[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_CMP_WITH_LT(Iw) ( \ ++ (op_prop_cmp_with_lt[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_cmp_with_lt[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp_with_lt[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_cmp_with_lt[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_CMP_WITH_EQ(Iw) ( \ ++ (op_prop_cmp_with_eq[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_cmp_with_eq[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp_with_eq[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_cmp_with_eq[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_CMP_WITH_GE(Iw) ( \ ++ (op_prop_cmp_with_ge[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_cmp_with_ge[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp_with_ge[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_cmp_with_ge[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_CMP_WITH_NE(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_CMPNEI)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_CMPNE) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_CMP_ALU_SIGNED(Iw) ( \ ++ (op_prop_cmp_alu_signed[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_cmp_alu_signed[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp_alu_signed[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_cmp_alu_signed[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_CMP(Iw) ( \ ++ (op_prop_cmp[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_cmp[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_cmp[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_cmp[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_BR_WITH_LT(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_BLT)) || \ ++ ((GET_IW_OP((Iw)) == OP_BLTU)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_BR_WITH_GE(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_BGE)) || \ ++ ((GET_IW_OP((Iw)) == OP_BGEU)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_BR_WITH_EQ(Iw) ( \ ++ (op_prop_br_with_eq[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_br_with_eq[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_BR_WITH_NE(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_BNE)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_BR_ALU_SIGNED(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_BGE)) || \ ++ ((GET_IW_OP((Iw)) == OP_BLT)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_BR_COND(Iw) ( \ ++ (op_prop_br_cond[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_br_cond[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_BR_UNCOND(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_BR)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_BR(Iw) ( \ ++ (op_prop_br[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_br[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_ALU_SUB(Iw) ( \ ++ (op_prop_alu_sub[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_alu_sub[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_alu_sub[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_alu_sub[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_FORCE_XOR(Iw) ( \ ++ (op_prop_force_xor[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_force_xor[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_force_xor[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_force_xor[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD8(Iw) ( \ ++ (op_prop_load8[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load8[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD16(Iw) ( \ ++ (op_prop_load16[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load16[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD32(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_LDW)) || \ ++ ((GET_IW_OP((Iw)) == OP_LDWIO)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_LOAD_SIGNED(Iw) ( \ ++ (op_prop_load_signed[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load_signed[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD_UNSIGNED(Iw) ( \ ++ (op_prop_load_unsigned[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load_unsigned[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD(Iw) ( \ ++ (op_prop_load[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD_INITD_FLUSHD_FLUSHDA(Iw) ( \ ++ (op_prop_load_initd_flushd_flushda[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load_initd_flushd_flushda[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD_NON_IO(Iw) ( \ ++ (op_prop_load_non_io[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load_non_io[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_STORE8(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_STB)) || \ ++ ((GET_IW_OP((Iw)) == OP_STBIO)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_STORE16(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_STH)) || \ ++ ((GET_IW_OP((Iw)) == OP_STHIO)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_STORE32(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_STW)) || \ ++ ((GET_IW_OP((Iw)) == OP_STWIO)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_STORE(Iw) ( \ ++ (op_prop_store[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_store[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_STORE_NON_IO(Iw) ( \ ++ (op_prop_store_non_io[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_store_non_io[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_MEM(Iw) ( \ ++ (op_prop_mem[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_mem[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_INITD(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_INITD)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_FLUSHD(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_FLUSHD)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_INITD_FLUSHD(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_INITD)) || \ ++ ((GET_IW_OP((Iw)) == OP_FLUSHD)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_FLUSHDA(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_FLUSHDA)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_FLUSHD_FLUSHDA(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_FLUSHD)) || \ ++ ((GET_IW_OP((Iw)) == OP_FLUSHDA)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_INITD_FLUSHD_FLUSHDA(Iw) ( \ ++ (op_prop_initd_flushd_flushda[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_initd_flushd_flushda[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_LOAD_IO(Iw) ( \ ++ (op_prop_load_io[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_load_io[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_STORE_IO(Iw) ( \ ++ (op_prop_store_io[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_store_io[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_MEM_IO(Iw) ( \ ++ (op_prop_mem_io[GET_IW_OP(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_mem_io[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_ARITH(Iw) ( \ ++ (op_prop_arith[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_arith[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_arith[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_arith[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_A_NOT_SRC(Iw) ( \ ++ ( \ ++ ((GET_IW_OP((Iw)) == OP_CALL)) || \ ++ ((GET_IW_OP((Iw)) == OP_JMPI)) \ ++ ) \ ++ || (IS_CUSTOM_INST(Iw) && !GET_IW_CUSTOM_READRA(Iw)) \ ++) ++ ++#define IW_PROP_B_NOT_SRC(Iw) ( \ ++ (op_prop_b_not_src[GET_IW_OP(Iw)]) \ ++ || (IS_CUSTOM_INST(Iw) && !GET_IW_CUSTOM_READRB(Iw))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_b_not_src[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_IGNORE_DST(Iw) ( \ ++ (op_prop_ignore_dst[GET_IW_OP(Iw)]) \ ++ || (IS_CUSTOM_INST(Iw) && !GET_IW_CUSTOM_WRITERC(Iw))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_ignore_dst[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SRC2_CHOOSE_IMM(Iw) ( \ ++ (op_prop_src2_choose_imm[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_src2_choose_imm[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_src2_choose_imm[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_src2_choose_imm[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_WRCTL_INST(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_WRCTL) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_RDCTL_INST(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_RDCTL) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_MUL_SRC1_SIGNED(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_MULXSS) && IS_OPX_INST(Iw)) || \ ++ ((GET_IW_OPX((Iw)) == OPX_MULXSU) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_MUL_SRC2_SIGNED(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_MULXSS) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_MUL_SHIFT_SRC1_SIGNED(Iw) ( \ ++ (IS_OPX_INST(Iw) && opx_prop_mul_shift_src1_signed[GET_IW_OPX(Iw)])) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_mul_shift_src1_signed[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_MUL_SHIFT_SRC2_SIGNED(Iw) ( \ ++ ( \ ++ ((GET_IW_OPX((Iw)) == OPX_MULXSS) && IS_OPX_INST(Iw)) \ ++ ) \ ++ \ ++) ++ ++#define IW_PROP_DONT_DISPLAY_DST_REG(Iw) ( \ ++ (op_prop_dont_display_dst_reg[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_dont_display_dst_reg[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_dont_display_dst_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_dont_display_dst_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_DONT_DISPLAY_SRC1_REG(Iw) ( \ ++ (op_prop_dont_display_src1_reg[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_dont_display_src1_reg[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_dont_display_src1_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_dont_display_src1_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_DONT_DISPLAY_SRC2_REG(Iw) ( \ ++ (op_prop_dont_display_src2_reg[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_dont_display_src2_reg[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_dont_display_src2_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_dont_display_src2_reg[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SRC1_NO_X(Iw) ( \ ++ (op_prop_src1_no_x[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_src1_no_x[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_src1_no_x[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_src1_no_x[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#define IW_PROP_SRC2_NO_X(Iw) ( \ ++ (op_prop_src2_no_x[GET_IW_OP(Iw)] || \ ++ (IS_OPX_INST(Iw) && opx_prop_src2_no_x[GET_IW_OPX(Iw)]))) ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char op_prop_src2_no_x[64]; ++#endif /* ALT_ASM_SRC */ ++ ++#ifndef ALT_ASM_SRC ++extern unsigned char opx_prop_src2_no_x[64]; ++#endif /* ALT_ASM_SRC */ ++ ++/* Instruction types */ ++#define INST_TYPE_OP 0 ++#define INST_TYPE_OPX 1 ++ ++/* Canonical instruction codes independent of encoding */ ++#define CALL_INST_CODE 0 ++#define JMPI_INST_CODE 1 ++#define LDBU_INST_CODE 2 ++#define ADDI_INST_CODE 3 ++#define STB_INST_CODE 4 ++#define BR_INST_CODE 5 ++#define LDB_INST_CODE 6 ++#define CMPGEI_INST_CODE 7 ++#define LDHU_INST_CODE 8 ++#define ANDI_INST_CODE 9 ++#define STH_INST_CODE 10 ++#define BGE_INST_CODE 11 ++#define LDH_INST_CODE 12 ++#define CMPLTI_INST_CODE 13 ++#define ORI_INST_CODE 14 ++#define STW_INST_CODE 15 ++#define BLT_INST_CODE 16 ++#define LDW_INST_CODE 17 ++#define CMPNEI_INST_CODE 18 ++#define FLUSHDA_INST_CODE 19 ++#define XORI_INST_CODE 20 ++#define BNE_INST_CODE 21 ++#define CMPEQI_INST_CODE 22 ++#define LDBUIO_INST_CODE 23 ++#define MULI_INST_CODE 24 ++#define STBIO_INST_CODE 25 ++#define BEQ_INST_CODE 26 ++#define LDBIO_INST_CODE 27 ++#define CMPGEUI_INST_CODE 28 ++#define LDHUIO_INST_CODE 29 ++#define ANDHI_INST_CODE 30 ++#define STHIO_INST_CODE 31 ++#define BGEU_INST_CODE 32 ++#define LDHIO_INST_CODE 33 ++#define CMPLTUI_INST_CODE 34 ++#define CUSTOM_INST_CODE 35 ++#define INITD_INST_CODE 36 ++#define ORHI_INST_CODE 37 ++#define STWIO_INST_CODE 38 ++#define BLTU_INST_CODE 39 ++#define LDWIO_INST_CODE 40 ++#define FLUSHD_INST_CODE 41 ++#define XORHI_INST_CODE 42 ++#define ERET_INST_CODE 43 ++#define ROLI_INST_CODE 44 ++#define ROL_INST_CODE 45 ++#define FLUSHP_INST_CODE 46 ++#define RET_INST_CODE 47 ++#define NOR_INST_CODE 48 ++#define MULXUU_INST_CODE 49 ++#define CMPGE_INST_CODE 50 ++#define BRET_INST_CODE 51 ++#define ROR_INST_CODE 52 ++#define FLUSHI_INST_CODE 53 ++#define JMP_INST_CODE 54 ++#define AND_INST_CODE 55 ++#define CMPLT_INST_CODE 56 ++#define SLLI_INST_CODE 57 ++#define SLL_INST_CODE 58 ++#define OR_INST_CODE 59 ++#define MULXSU_INST_CODE 60 ++#define CMPNE_INST_CODE 61 ++#define SRLI_INST_CODE 62 ++#define SRL_INST_CODE 63 ++#define NEXTPC_INST_CODE 64 ++#define CALLR_INST_CODE 65 ++#define XOR_INST_CODE 66 ++#define MULXSS_INST_CODE 67 ++#define CMPEQ_INST_CODE 68 ++#define DIVU_INST_CODE 69 ++#define DIV_INST_CODE 70 ++#define RDCTL_INST_CODE 71 ++#define MUL_INST_CODE 72 ++#define CMPGEU_INST_CODE 73 ++#define INITI_INST_CODE 74 ++#define TRAP_INST_CODE 75 ++#define WRCTL_INST_CODE 76 ++#define CMPLTU_INST_CODE 77 ++#define ADD_INST_CODE 78 ++#define BREAK_INST_CODE 79 ++#define HBREAK_INST_CODE 80 ++#define SYNC_INST_CODE 81 ++#define SUB_INST_CODE 82 ++#define SRAI_INST_CODE 83 ++#define SRA_INST_CODE 84 ++#define INTR_INST_CODE 85 ++#define CRST_INST_CODE 86 ++#define RSV_INST_CODE 87 ++#define NUM_NIOS2_INST_CODES 88 ++ ++#ifndef ALT_ASM_SRC ++/* Instruction information entry */ ++typedef struct { ++ const char* name; /* Assembly-language instruction name */ ++ int instType; /* INST_TYPE_OP or INST_TYPE_OPX */ ++ unsigned opcode; /* Value of instruction word OP/OPX field */ ++} Nios2InstInfo; ++ ++extern Nios2InstInfo nios2InstInfo[NUM_NIOS2_INST_CODES]; ++#endif /* ALT_ASM_SRC */ ++ ++/* Returns the instruction code given the 32-bit instruction word */ ++#define GET_INST_CODE(Iw) \ ++ (IS_OPX_INST(Iw) ? opxToInstCode[GET_IW_OPX(Iw)] : opToInstCode[GET_IW_OP(Iw)]) ++ ++#ifndef ALT_ASM_SRC ++extern int opToInstCode[64]; ++extern int opxToInstCode[64]; ++#endif /* ALT_ASM_SRC */ ++ ++/* ++ * MMU Memory Region Macros ++ */ ++#define USER_REGION_MIN_VADDR 0x00000000 ++#define USER_REGION_MAX_VADDR 0x7fffffff ++#define KERNEL_MMU_REGION_MIN_VADDR 0x80000000 ++#define KERNEL_MMU_REGION_MAX_VADDR 0xbfffffff ++#define KERNEL_REGION_MIN_VADDR 0xc0000000 ++#define KERNEL_REGION_MAX_VADDR 0xdfffffff ++#define IO_REGION_MIN_VADDR 0xe0000000 ++#define IO_REGION_MAX_VADDR 0xffffffff ++ ++#define MMU_PAGE_SIZE (0x1 << (MMU_ADDR_PAGE_OFFSET_SZ)) ++ ++#define isMmuUserRegion(Vaddr) \ ++ (GET_MMU_ADDR_USER_REGION(Vaddr) == MMU_ADDR_USER_REGION) ++#define isMmuKernelMmuRegion(Vaddr) \ ++ (GET_MMU_ADDR_KERNEL_MMU_REGION(Vaddr) == MMU_ADDR_KERNEL_MMU_REGION) ++#define isMmuKernelRegion(Vaddr) \ ++ (GET_MMU_ADDR_KERNEL_REGION(Vaddr) == MMU_ADDR_KERNEL_REGION) ++#define isMmuIORegion(Vaddr) \ ++ (GET_MMU_ADDR_IO_REGION(Vaddr) == MMU_ADDR_IO_REGION) ++ ++/* Does this virtual address bypass the TLB? */ ++#define vaddrBypassTlb(Vaddr) \ ++ (GET_MMU_ADDR_BYPASS_TLB(Vaddr) == MMU_ADDR_BYPASS_TLB) ++ ++/* If TLB is bypassed, is the address cacheable or uncachable. */ ++#define vaddrBypassTlbCacheable(Vaddr) \ ++ (GET_MMU_ADDR_BYPASS_TLB_CACHEABLE(Vaddr) == MMU_ADDR_BYPASS_TLB_CACHEABLE) ++ ++/* ++ * Compute physical address for regions that bypass the TLB. ++ * Just need to clear some top bits. ++ */ ++#define bypassTlbVaddrToPaddr(Vaddr) \ ++ ((Vaddr) & (MMU_ADDR_BYPASS_TLB_PADDR_MASK << MMU_ADDR_BYPASS_TLB_PADDR_LSB)) ++ ++/* ++ * Will the physical address fit in the Kernel/IO region virtual address space? ++ */ ++#define fitsInKernelRegion(Paddr) \ ++ (GET_MMU_ADDR_KERNEL_REGION(Paddr) == 0) ++#define fitsInIORegion(Paddr) \ ++ (GET_MMU_ADDR_IO_REGION(Paddr) == 0) ++ ++/* Convert a physical address to a Kernel/IO region virtual address. */ ++#define paddrToKernelRegionVaddr(Paddr) \ ++ ((Paddr) | (MMU_ADDR_KERNEL_REGION << MMU_ADDR_KERNEL_REGION_LSB)) ++#define paddrToIORegionVaddr(Paddr) \ ++ ((Paddr) | (MMU_ADDR_IO_REGION << MMU_ADDR_IO_REGION_LSB)) ++ ++/* ++ * Convert a virtual address to a Kernel/IO region virtual address. ++ * Uses bypassTlbVaddrToPaddr to clear top bits. ++ */ ++#define vaddrToKernelRegionVaddr(Vaddr) \ ++ paddrToKernelRegionVaddr(bypassTlbVaddrToPaddr(Vaddr)) ++#define vaddrToIORegionVaddr(Vaddr) \ ++ paddrToIORegionVaddr(bypassTlbVaddrToPaddr(Vaddr)) ++ ++/* Convert between VPN/PFN and virtual/physical addresses. */ ++#define vpnToVaddr(Vpn) ((Vpn) << MMU_ADDR_VPN_LSB) ++#define pfnToPaddr(Pfn) ((Pfn) << MMU_ADDR_PFN_LSB) ++#define vaddrToVpn(Vaddr) GET_MMU_ADDR_VPN(Vaddr) ++#define paddrToPfn(Paddr) GET_MMU_ADDR_PFN(Paddr) ++ ++/* Bitwise OR with a KERNEL region address to make it an IO region address */ ++#define KERNEL_TO_IO_REGION 0x20000000 ++ ++#endif /* _NIOS2_ISA_H_ */ +diff --git a/include/opcode/nios2.h b/include/opcode/nios2.h +new file mode 100644 +index 0000000..992bb80 +--- /dev/null ++++ b/include/opcode/nios2.h +@@ -0,0 +1,361 @@ ++/* nios2.h. Altera New Jersey opcode list for GAS, the GNU assembler. ++ ++ Copyright (C) 2003 ++ by Nigel Gray (ngray@altera.com). ++ ++This file is part of GDB, GAS, and the GNU binutils. ++ ++GDB, GAS, and the GNU binutils are free software; you can redistribute ++them and/or modify them under the terms of the GNU General Public ++License as published by the Free Software Foundation; either version ++1, or (at your option) any later version. ++ ++GDB, GAS, and the GNU binutils are distributed in the hope that they ++will be useful, but WITHOUT ANY WARRANTY; without even the implied ++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See ++the GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this file; see the file COPYING. If not, write to the Free ++Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#ifndef _NIOS2_H_ ++#define _NIOS2_H_ ++ ++ ++/**************************************************************************** ++ * This file contains structures, bit masks and shift counts used ++ * by the GNU toolchain to define the New Jersey instruction set and ++ * access various opcode fields. ++ ****************************************************************************/ ++ ++enum overflow_type ++{ ++ call_target_overflow = 0, ++ branch_target_overflow, ++ address_offset_overflow, ++ signed_immed16_overflow, ++ unsigned_immed16_overflow, ++ unsigned_immed5_overflow, ++ custom_opcode_overflow, ++ no_overflow ++}; ++ ++/*--------------------------------------------------------------------------- ++ This structure holds information for a particular instruction ++ ---------------------------------------------------------------------------*/ ++ ++/* match When assembling, this ++ opcode is modified by the arguments to produce the actual opcode ++ that is used. If pinfo is INSN_MACRO, then this is 0. */ ++ ++/* mask If pinfo is not INSN_MACRO, then this is a bit mask for the ++ relevant portions of the opcode when disassembling. If the ++ actual opcode anded with the match field equals the opcode field, ++ then we have found the correct instruction. If pinfo is ++ INSN_MACRO, then this field is the macro identifier. */ ++ ++/* For a macro, this is INSN_MACRO. Otherwise, it is a collection ++ of bits describing the instruction, notably any relevant hazard ++ information. */ ++ ++struct nios2_opcode ++{ ++ const char *name; /* The name of the instruction. */ ++ const char *args; /* A string describing the arguments for this instruction. */ ++ const char *args_test; /* Like args, but with an extra argument for the expected opcode */ ++ unsigned long num_args; /* the number of arguments the instruction takes */ ++ unsigned long match; /* The basic opcode for the instruction. */ ++ unsigned long mask; /* mask for the opcode field of the instruction */ ++ unsigned long pinfo; /* is this a real instruction or instruction macro */ ++ enum overflow_type overflow_msg; /* msg template used to generate informative message when fixup overflows */ ++}; ++ ++/* This value is used in the nios2_opcode.pinfo field to indicate that the instruction ++ is a macro or pseudo-op. This requires special treatment by the assembler, and is ++ used by the disassembler to determine whether to check for a nop */ ++#define NIOS2_INSN_MACRO 0x80000000 ++#define NIOS2_INSN_MACRO_MOV 0x80000001 ++#define NIOS2_INSN_MACRO_MOVI 0x80000002 ++#define NIOS2_INSN_MACRO_MOVIA 0x80000004 ++ ++#define NIOS2_INSN_RELAXABLE 0x40000000 ++#define NIOS2_INSN_UBRANCH 0x00000010 ++#define NIOS2_INSN_CBRANCH 0x00000020 ++#define NIOS2_INSN_CALL 0x00000040 ++ ++#define NIOS2_INSN_ADDI 0x00000080 ++#define NIOS2_INSN_ANDI 0x00000100 ++#define NIOS2_INSN_ORI 0x00000200 ++#define NIOS2_INSN_XORI 0x00000400 ++ ++ ++ ++/* Associates a register name ($6) with a 5-bit index (eg 6) */ ++struct nios2_reg ++{ ++ const char *name; ++ const int index; ++}; ++ ++ ++/* ------------------------------------------------------------------------- ++ Bitfield masks for New Jersey instructions ++ -------------------------------------------------------------------------*/ ++ ++/* These are bit masks and shift counts to use to access the various ++ fields of an instruction. */ ++ ++/* Macros for getting and setting an instruction field */ ++#define GET_INSN_FIELD(X, i) ((i) & OP_MASK_##X) >> OP_SH_##X ++#define SET_INSN_FIELD(X, i, j) (i) = ((i) &~ (OP_MASK_##X)) | ((j) << OP_SH_##X) ++ ++ ++/* ++ We include the auto-generated file nios2-isa.h and define the mask ++ and shifts below in terms of those in nios2-isa.h. This ensures ++ that the binutils and hardware are always in sync ++*/ ++ ++#include "nios2-isa.h" ++ ++#define OP_MASK_OP (IW_OP_MASK << IW_OP_LSB) ++#define OP_SH_OP IW_OP_LSB ++ ++ ++/* Masks and shifts for I-type instructions */ ++ ++#define OP_MASK_IOP (IW_OP_MASK << IW_OP_LSB) ++#define OP_SH_IOP IW_OP_LSB ++ ++#define OP_MASK_IMM16 (IW_IMM16_MASK << IW_IMM16_LSB) ++#define OP_SH_IMM16 IW_IMM16_LSB ++ ++#define OP_MASK_IRD (IW_B_MASK << IW_B_LSB) // the same as T for I-type ++#define OP_SH_IRD IW_B_LSB ++ ++#define OP_MASK_IRT (IW_B_MASK << IW_B_LSB) ++#define OP_SH_IRT IW_B_LSB ++ ++#define OP_MASK_IRS (IW_A_MASK << IW_A_LSB) ++#define OP_SH_IRS IW_A_LSB ++ ++/* Masks and shifts for R-type instructions */ ++ ++#define OP_MASK_ROP (IW_OP_MASK << IW_OP_LSB) ++#define OP_SH_ROP IW_OP_LSB ++ ++#define OP_MASK_ROPX (IW_OPX_MASK << IW_OPX_LSB) ++#define OP_SH_ROPX IW_OPX_LSB ++ ++#define OP_MASK_RRD (IW_C_MASK << IW_C_LSB) ++#define OP_SH_RRD IW_C_LSB ++ ++#define OP_MASK_RRT (IW_B_MASK << IW_B_LSB) ++#define OP_SH_RRT IW_B_LSB ++ ++#define OP_MASK_RRS (IW_A_MASK << IW_A_LSB) ++#define OP_SH_RRS IW_A_LSB ++ ++/* Masks and shifts for J-type instructions */ ++ ++#define OP_MASK_JOP (IW_OP_MASK << IW_OP_LSB) ++#define OP_SH_JOP IW_OP_LSB ++ ++#define OP_MASK_IMM26 (IW_IMM26_MASK << IW_IMM26_LSB) ++#define OP_SH_IMM26 IW_IMM26_LSB ++ ++/* Masks and shifts for CTL instructions */ ++ ++#define OP_MASK_RCTL 0x000007c0 ++#define OP_SH_RCTL 6 ++ ++/* break instruction imm5 field */ ++#define OP_MASK_TRAP_IMM5 0x000007c0 ++#define OP_SH_TRAP_IMM5 6 ++ ++/* instruction imm5 field */ ++#define OP_MASK_IMM5 (IW_SHIFT_IMM5_MASK << IW_SHIFT_IMM5_LSB) ++#define OP_SH_IMM5 IW_SHIFT_IMM5_LSB ++ ++/* cache operation fields (type j,i(s)) */ ++#define OP_MASK_CACHE_OPX (IW_B_MASK << IW_B_LSB) ++#define OP_SH_CACHE_OPX IW_B_LSB ++#define OP_MASK_CACHE_RRS (IW_A_MASK << IW_A_LSB) ++#define OP_SH_CACHE_RRS IW_A_LSB ++ ++/* custom instruction masks */ ++#define OP_MASK_CUSTOM_A 0x00010000 ++#define OP_SH_CUSTOM_A 16 ++ ++#define OP_MASK_CUSTOM_B 0x00008000 ++#define OP_SH_CUSTOM_B 15 ++ ++#define OP_MASK_CUSTOM_C 0x00004000 ++#define OP_SH_CUSTOM_C 14 ++ ++#define OP_MASK_CUSTOM_N 0x00003fc0 ++#define OP_SH_CUSTOM_N 6 ++#define OP_MAX_CUSTOM_N 255 ++ ++/* ++ The following macros define the opcode matches for each ++ instruction ++ code & OP_MASK_INST == OP_MATCH_INST ++ */ ++ ++/* OP instruction matches */ ++#define OP_MATCH_ADDI OP_ADDI ++#define OP_MATCH_ANDHI OP_ANDHI ++#define OP_MATCH_ANDI OP_ANDI ++#define OP_MATCH_BEQ OP_BEQ ++#define OP_MATCH_BGE OP_BGE ++#define OP_MATCH_BGEU OP_BGEU ++#define OP_MATCH_BLT OP_BLT ++#define OP_MATCH_BLTU OP_BLTU ++#define OP_MATCH_BNE OP_BNE ++#define OP_MATCH_BR OP_BR ++#define OP_MATCH_FLUSHD OP_FLUSHD ++#define OP_MATCH_FLUSHDA OP_FLUSHDA ++#define OP_MATCH_INITD OP_INITD ++#define OP_MATCH_CALL OP_CALL ++#define OP_MATCH_CMPEQI OP_CMPEQI ++#define OP_MATCH_CMPGEI OP_CMPGEI ++#define OP_MATCH_CMPGEUI OP_CMPGEUI ++#define OP_MATCH_CMPLTI OP_CMPLTI ++#define OP_MATCH_CMPLTUI OP_CMPLTUI ++#define OP_MATCH_CMPNEI OP_CMPNEI ++#define OP_MATCH_JMPI OP_JMPI ++#define OP_MATCH_LDB OP_LDB ++#define OP_MATCH_LDBIO OP_LDBIO ++#define OP_MATCH_LDBU OP_LDBU ++#define OP_MATCH_LDBUIO OP_LDBUIO ++#define OP_MATCH_LDH OP_LDH ++#define OP_MATCH_LDHIO OP_LDHIO ++#define OP_MATCH_LDHU OP_LDHU ++#define OP_MATCH_LDHUIO OP_LDHUIO ++#define OP_MATCH_LDW OP_LDW ++#define OP_MATCH_LDWIO OP_LDWIO ++#define OP_MATCH_MULI OP_MULI ++#define OP_MATCH_OPX OP_OPX ++#define OP_MATCH_ORHI OP_ORHI ++#define OP_MATCH_ORI OP_ORI ++#define OP_MATCH_STB OP_STB ++#define OP_MATCH_STBIO OP_STBIO ++#define OP_MATCH_STH OP_STH ++#define OP_MATCH_STHIO OP_STHIO ++#define OP_MATCH_STW OP_STW ++#define OP_MATCH_STWIO OP_STWIO ++#define OP_MATCH_CUSTOM OP_CUSTOM ++#define OP_MATCH_XORHI OP_XORHI ++#define OP_MATCH_XORI OP_XORI ++#define OP_MATCH_OPX OP_OPX ++ ++ ++ ++/* OPX instruction values */ ++#define OP_MATCH_ADD ((OPX_ADD << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_AND ((OPX_AND << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_BREAK ((0x1e << 17) | (OPX_BREAK << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_BRET ((0xf0000000) | (OPX_BRET << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CALLR ((0x1f << 17) | (OPX_CALLR << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CMPEQ ((OPX_CMPEQ << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CMPGE ((OPX_CMPGE << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CMPGEU ((OPX_CMPGEU << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CMPLT ((OPX_CMPLT << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CMPLTU ((OPX_CMPLTU << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_CMPNE ((OPX_CMPNE << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_DIV ((OPX_DIV << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_DIVU ((OPX_DIVU << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_JMP ((OPX_JMP << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_MUL ((OPX_MUL << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_MULXSS ((OPX_MULXSS << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_MULXSU ((OPX_MULXSU << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_MULXUU ((OPX_MULXUU << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_NEXTPC ((OPX_NEXTPC << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_NOR ((OPX_NOR << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_OR ((OPX_OR << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_RDCTL ((OPX_RDCTL << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_RET ((0xf8000000) | (OPX_RET << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_ROL ((OPX_ROL << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_ROLI ((OPX_ROLI << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_ROR ((OPX_ROR << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SLL ((OPX_SLL << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SLLI ((OPX_SLLI << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SRA ((OPX_SRA << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SRAI ((OPX_SRAI << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SRL ((OPX_SRL << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SRLI ((OPX_SRLI << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SUB ((OPX_SUB << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_SYNC ((OPX_SYNC << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_TRAP ((0x1d << 17) | (OPX_TRAP << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_ERET ((0xe8000000) | (OPX_ERET << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_WRCTL ((OPX_WRCTL << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_XOR ((OPX_XOR << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_FLUSHI ((OPX_FLUSHI << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_FLUSHP ((OPX_FLUSHP << IW_OPX_LSB) | (OP_OPX)) ++#define OP_MATCH_INITI ((OPX_INITI << IW_OPX_LSB) | (OP_OPX)) ++ ++/* ++ Some unusual op masks ++*/ ++#define OP_MASK_BREAK ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP) & 0xfffff03f) ++#define OP_MASK_CALLR ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_JMP ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_SYNC ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_TRAP ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP) & 0xfffff83f) ++#define OP_MASK_WRCTL ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) /*& 0xfffff83f */ ++#define OP_MASK_NEXTPC ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_FLUSHI ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_INITI ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) ++ ++#define OP_MASK_ROLI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_SLLI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_SRAI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_SRLI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) ++#define OP_MASK_RDCTL ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) /*& 0xfffff83f */ ++ ++#ifndef OP_MASK ++#define OP_MASK 0xffffffff ++#endif ++ ++/* These are the data structures we use to hold the instruction information */ ++ ++extern const struct nios2_opcode nios2_builtin_opcodes[]; ++extern const int bfd_nios2_num_builtin_opcodes; ++extern struct nios2_opcode *nios2_opcodes; ++extern int bfd_nios2_num_opcodes; ++ ++/* These are the data structures used to hold the operand parsing information */ ++//extern const struct nios2_arg_parser nios2_arg_parsers[]; ++//extern struct nios2_arg_parser* nios2_arg_parsers; ++//extern const int nios2_num_builtin_arg_parsers; ++//extern int nios2_num_arg_parsers; ++ ++/* These are the data structures used to hold the register information */ ++extern const struct nios2_reg nios2_builtin_regs[]; ++extern struct nios2_reg *nios2_regs; ++extern const int nios2_num_builtin_regs; ++extern int nios2_num_regs; ++ ++/* Machine-independent macro for number of opcodes */ ++ ++#define NUMOPCODES bfd_nios2_num_opcodes ++#define NUMREGISTERS nios2_num_regs; ++ ++/* these are used in disassembly to get the correct register names */ ++#define NUMREGNAMES 32 ++#define NUMCTLREGNAMES 32 ++#define CTLREGBASE 42 ++#define COPROCREGBASE 83 ++#define NUMCOPROCREGNAMES 32 ++ ++ ++/* this is made extern so that the assembler can use it to find out ++ what instruction caused an error */ ++extern const struct nios2_opcode *nios2_find_opcode_hash (unsigned long); ++ ++/* overflow message strings used in the assembler */ ++extern char *overflow_msgs[]; ++ ++#endif // _NIOS2_H +diff --git a/opcodes/Makefile.am b/opcodes/Makefile.am +index ebd252f..a7ca06b 100644 +--- a/opcodes/Makefile.am ++++ b/opcodes/Makefile.am +@@ -146,6 +146,13 @@ CFILES = \ + mt-dis.c \ + mt-ibld.c \ + mt-opc.c \ ++ nios2-opc.c \ ++ nios2-dis.c \ ++ ms1-asm.c \ ++ ms1-desc.c \ ++ ms1-dis.c \ ++ ms1-ibld.c \ ++ ms1-opc.c \ + ns32k-dis.c \ + openrisc-asm.c \ + openrisc-desc.c \ +@@ -281,6 +288,8 @@ ALL_MACHINES = \ + mt-dis.lo \ + mt-ibld.lo \ + mt-opc.lo \ ++ nios2-opc.lo \ ++ nios2-dis.lo \ + ns32k-dis.lo \ + openrisc-asm.lo \ + openrisc-desc.lo \ +@@ -980,6 +989,13 @@ mt-opc.lo: mt-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \ + mt-desc.h $(INCDIR)/opcode/cgen-bitset.h $(INCDIR)/opcode/cgen.h \ + $(INCDIR)/symcat.h $(INCDIR)/opcode/cgen-bitset.h mt-opc.h \ + $(INCDIR)/libiberty.h $(INCDIR)/ansidecl.h $(INCDIR)/safe-ctype.h ++nios2-opc.lo: nios2-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \ ++ $(INCDIR)/opcode/nios2.h ++nios2-dis.lo: nios2-dis.c sysdep.h config.h $(INCDIR)/ansidecl.h \ ++ $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/symcat.h $(INCDIR)/opcode/nios2.h \ ++ opintl.h $(BFDDIR)/elf-bfd.h $(INCDIR)/elf/common.h \ ++ $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \ ++ $(INCDIR)/elf/nios2.h $(INCDIR)/elf/reloc-macros.h + ns32k-dis.lo: ns32k-dis.c $(BFD_H) $(INCDIR)/ansidecl.h \ + $(INCDIR)/symcat.h sysdep.h config.h $(INCDIR)/ansidecl.h \ + $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/opcode/ns32k.h \ +diff --git a/opcodes/Makefile.in b/opcodes/Makefile.in +index 85003e6..9e3baae 100644 +--- a/opcodes/Makefile.in ++++ b/opcodes/Makefile.in +@@ -360,6 +360,8 @@ CFILES = \ + mt-dis.c \ + mt-ibld.c \ + mt-opc.c \ ++ nios2-opc.c \ ++ nios2-dis.c \ + ns32k-dis.c \ + openrisc-asm.c \ + openrisc-desc.c \ +@@ -495,6 +497,8 @@ ALL_MACHINES = \ + mt-dis.lo \ + mt-ibld.lo \ + mt-opc.lo \ ++ nios2-opc.lo \ ++ nios2-dis.lo \ + ns32k-dis.lo \ + openrisc-asm.lo \ + openrisc-desc.lo \ +@@ -1517,6 +1521,13 @@ mt-opc.lo: mt-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \ + mt-desc.h $(INCDIR)/opcode/cgen-bitset.h $(INCDIR)/opcode/cgen.h \ + $(INCDIR)/symcat.h $(INCDIR)/opcode/cgen-bitset.h mt-opc.h \ + $(INCDIR)/libiberty.h $(INCDIR)/ansidecl.h $(INCDIR)/safe-ctype.h ++nios2-opc.lo: nios2-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \ ++ $(INCDIR)/opcode/nios2.h ++nios2-dis.lo: nios2-dis.c sysdep.h config.h $(INCDIR)/ansidecl.h \ ++ $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/symcat.h $(INCDIR)/opcode/nios2.h \ ++ opintl.h $(BFDDIR)/elf-bfd.h $(INCDIR)/elf/common.h \ ++ $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \ ++ $(INCDIR)/elf/nios2.h $(INCDIR)/elf/reloc-macros.h + ns32k-dis.lo: ns32k-dis.c $(BFD_H) $(INCDIR)/ansidecl.h \ + $(INCDIR)/symcat.h sysdep.h config.h $(INCDIR)/ansidecl.h \ + $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/opcode/ns32k.h \ +diff --git a/opcodes/configure b/opcodes/configure +index 8e3e27e..a28cc46 100755 +--- a/opcodes/configure ++++ b/opcodes/configure +@@ -6561,6 +6561,7 @@ if test x${all_targets} = xfalse ; then + bfd_mn10300_arch) ta="$ta m10300-dis.lo m10300-opc.lo" ;; + bfd_mt_arch) ta="$ta mt-asm.lo mt-desc.lo mt-dis.lo mt-ibld.lo mt-opc.lo" using_cgen=yes ;; + bfd_msp430_arch) ta="$ta msp430-dis.lo" ;; ++ bfd_nios2_arch) ta="$ta nios2-opc.lo nios2-dis.lo" ;; + bfd_ns32k_arch) ta="$ta ns32k-dis.lo" ;; + bfd_openrisc_arch) ta="$ta openrisc-asm.lo openrisc-desc.lo openrisc-dis.lo openrisc-ibld.lo openrisc-opc.lo" using_cgen=yes ;; + bfd_or32_arch) ta="$ta or32-dis.lo or32-opc.lo" using_cgen=yes ;; +diff --git a/opcodes/configure.in b/opcodes/configure.in +index d937784..c9df814 100644 +--- a/opcodes/configure.in ++++ b/opcodes/configure.in +@@ -190,6 +190,7 @@ if test x${all_targets} = xfalse ; then + bfd_mn10300_arch) ta="$ta m10300-dis.lo m10300-opc.lo" ;; + bfd_mt_arch) ta="$ta mt-asm.lo mt-desc.lo mt-dis.lo mt-ibld.lo mt-opc.lo" using_cgen=yes ;; + bfd_msp430_arch) ta="$ta msp430-dis.lo" ;; ++ bfd_nios2_arch) ta="$ta nios2-opc.lo nios2-dis.lo" ;; + bfd_ns32k_arch) ta="$ta ns32k-dis.lo" ;; + bfd_openrisc_arch) ta="$ta openrisc-asm.lo openrisc-desc.lo openrisc-dis.lo openrisc-ibld.lo openrisc-opc.lo" using_cgen=yes ;; + bfd_or32_arch) ta="$ta or32-dis.lo or32-opc.lo" using_cgen=yes ;; +diff --git a/opcodes/disassemble.c b/opcodes/disassemble.c +index ca28f56..dfacbb9 100644 +--- a/opcodes/disassemble.c ++++ b/opcodes/disassemble.c +@@ -80,6 +80,7 @@ + #define ARCH_xtensa + #define ARCH_z80 + #define ARCH_z8k ++#define ARCH_nios2 + #define INCLUDE_SHMEDIA + #endif + +@@ -424,6 +425,14 @@ disassembler (abfd) + disassemble = print_insn_iq2000; + break; + #endif ++#ifdef ARCH_nios2 ++ case bfd_arch_nios2: ++ if (bfd_big_endian (abfd)) ++ disassemble = print_insn_big_nios2; ++ else ++ disassemble = print_insn_little_nios2; ++ break; ++#endif + #ifdef ARCH_m32c + case bfd_arch_m32c: + disassemble = print_insn_m32c; +diff --git a/opcodes/nios2-dis.c b/opcodes/nios2-dis.c +new file mode 100644 +index 0000000..ac9eb0d +--- /dev/null ++++ b/opcodes/nios2-dis.c +@@ -0,0 +1,462 @@ ++/* nios2-dis.c -- Altera New Jersey disassemble routines. ++ ++ Copyright (C) 2003 ++ by Nigel Gray (ngray@altera.com). ++ ++This file is part of GDB, GAS, and the GNU binutils. ++ ++GDB, GAS, and the GNU binutils are free software; you can redistribute ++them and/or modify them under the terms of the GNU General Public ++License as published by the Free Software Foundation; either version ++1, or (at your option) any later version. ++ ++GDB, GAS, and the GNU binutils are distributed in the hope that they ++will be useful, but WITHOUT ANY WARRANTY; without even the implied ++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See ++the GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this file; see the file COPYING. If not, write to the Free ++Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#include <stdlib.h> ++#include <assert.h> ++#include <string.h> ++#include "dis-asm.h" ++#include "opcode/nios2.h" ++ ++/* No symbol table is available when this code runs out in an embedded ++ system as when it is used for disassembler support in a monitor. */ ++ ++#if !defined(EMBEDDED_ENV) ++#define SYMTAB_AVAILABLE 1 ++#include "elf-bfd.h" ++#include "elf/nios2.h" ++#endif ++ ++/* length of New Jersey instruction in bytes */ ++#define INSNLEN 4 ++ ++/* helper function prototypes */ ++static int nios2_disassemble (bfd_vma, unsigned long, disassemble_info *); ++static void nios2_init_opcode_hash (void); ++ ++ ++static int nios2_print_insn_arg (const char *argptr, unsigned long opcode, ++ bfd_vma address, disassemble_info * info); ++ ++ ++/* print_insn_nios2 is the main disassemble function for New Jersey. ++ The function diassembler(abfd) (source in disassemble.c) returns a ++ pointer to this either print_insn_big_nios2 or ++ print_insn_little_nios2, which in turn call this function, when the ++ bfd machine type is New Jersey. print_insn_nios2 reads the ++ instruction word at the address given, and prints the disassembled ++ instruction on the stream info->stream using info->fprintf_func. */ ++ ++static int ++print_insn_nios2 (bfd_vma address, disassemble_info * info, ++ enum bfd_endian endianness) ++{ ++ /* buffer into which the instruction bytes are written */ ++ bfd_byte buffer[INSNLEN]; ++ /* used to indicate return status from function calls */ ++ int status; ++ ++ assert (info != NULL); ++ ++ status = (*info->read_memory_func) (address, buffer, INSNLEN, info); ++ if (status == 0) ++ { ++ unsigned long insn; ++ if (endianness == BFD_ENDIAN_BIG) ++ insn = (unsigned long) bfd_getb32 (buffer); ++ else ++ insn = (unsigned long) bfd_getl32 (buffer); ++ status = nios2_disassemble (address, insn, info); ++ } ++ else ++ { ++ (*info->memory_error_func) (status, address, info); ++ status = -1; ++ } ++ return status; ++} ++ ++int ++print_insn_big_nios2 (bfd_vma address, disassemble_info * info) ++{ ++ return print_insn_nios2 (address, info, BFD_ENDIAN_BIG); ++} ++ ++int ++print_insn_little_nios2 (bfd_vma address, disassemble_info * info) ++{ ++ return print_insn_nios2 (address, info, BFD_ENDIAN_LITTLE); ++} ++ ++/* Data structures used by the opcode hash table */ ++ ++typedef struct _nios2_opcode_hash ++{ ++ const struct nios2_opcode *opcode; ++ struct _nios2_opcode_hash *next; ++} nios2_opcode_hash; ++ ++static bfd_boolean nios2_hash_init = 0; ++static nios2_opcode_hash *nios2_hash[(OP_MASK_OP) + 1]; ++ ++/* separate hash table for pseudo-ops */ ++static nios2_opcode_hash *nios2_ps_hash[(OP_MASK_OP) + 1]; ++ ++/* Function to initialize the opcode hash table */ ++ ++void ++nios2_init_opcode_hash () ++{ ++ unsigned int i; ++ register const struct nios2_opcode *op; ++ nios2_opcode_hash *tmp_hash; ++ ++ for (i = 0; i <= OP_MASK_OP; ++i) ++ { ++ nios2_hash[0] = NULL; ++ } ++ for (i = 0; i <= OP_MASK_OP; i++) ++ { ++ for (op = nios2_opcodes; op < &nios2_opcodes[NUMOPCODES]; op++) ++ { ++ if ((op->pinfo & NIOS2_INSN_MACRO) == NIOS2_INSN_MACRO) ++ { ++ if (i == ((op->match >> OP_SH_OP) & OP_MASK_OP) && ++ (op-> ++ pinfo & (NIOS2_INSN_MACRO_MOV | NIOS2_INSN_MACRO_MOVI) & ++ 0x7fffffff) != 0) ++ { ++ tmp_hash = nios2_ps_hash[i]; ++ if (tmp_hash == NULL) ++ { ++ tmp_hash = ++ (nios2_opcode_hash *) ++ malloc (sizeof (nios2_opcode_hash)); ++ nios2_ps_hash[i] = tmp_hash; ++ } ++ else ++ { ++ while (tmp_hash->next != NULL) ++ tmp_hash = tmp_hash->next; ++ tmp_hash->next = ++ (nios2_opcode_hash *) ++ malloc (sizeof (nios2_opcode_hash)); ++ tmp_hash = tmp_hash->next; ++ } ++ if (tmp_hash == NULL) ++ { ++ fprintf (stderr, ++ "error allocating memory...broken disassembler\n"); ++ abort (); ++ } ++ tmp_hash->opcode = op; ++ tmp_hash->next = NULL; ++ } ++ } ++ else if (i == ((op->match >> OP_SH_OP) & OP_MASK_OP)) ++ { ++ tmp_hash = nios2_hash[i]; ++ if (tmp_hash == NULL) ++ { ++ tmp_hash = ++ (nios2_opcode_hash *) malloc (sizeof (nios2_opcode_hash)); ++ nios2_hash[i] = tmp_hash; ++ } ++ else ++ { ++ while (tmp_hash->next != NULL) ++ tmp_hash = tmp_hash->next; ++ tmp_hash->next = ++ (nios2_opcode_hash *) malloc (sizeof (nios2_opcode_hash)); ++ tmp_hash = tmp_hash->next; ++ } ++ if (tmp_hash == NULL) ++ { ++ fprintf (stderr, ++ "error allocating memory...broken disassembler\n"); ++ abort (); ++ } ++ tmp_hash->opcode = op; ++ tmp_hash->next = NULL; ++ } ++ } ++ } ++ nios2_hash_init = 1; ++#ifdef DEBUG_HASHTABLE ++ for (i = 0; i <= OP_MASK_OP; ++i) ++ { ++ printf ("index: 0x%02X ops: ", i); ++ tmp_hash = nios2_hash[i]; ++ if (tmp_hash != NULL) ++ { ++ while (tmp_hash != NULL) ++ { ++ printf ("%s ", tmp_hash->opcode->name); ++ tmp_hash = tmp_hash->next; ++ } ++ } ++ printf ("\n"); ++ } ++ ++ for (i = 0; i <= OP_MASK_OP; ++i) ++ { ++ printf ("index: 0x%02X ops: ", i); ++ tmp_hash = nios2_ps_hash[i]; ++ if (tmp_hash != NULL) ++ { ++ while (tmp_hash != NULL) ++ { ++ printf ("%s ", tmp_hash->opcode->name); ++ tmp_hash = tmp_hash->next; ++ } ++ } ++ printf ("\n"); ++ } ++#endif ++} ++ ++/* Function which returns a pointer to an nios2_opcode struct for ++ a given instruction opcode, or NULL if there is an error */ ++ ++const struct nios2_opcode * ++nios2_find_opcode_hash (unsigned long opcode) ++{ ++ nios2_opcode_hash *entry; ++ ++ /* Build a hash table to shorten the search time. */ ++ if (!nios2_hash_init) ++ { ++ nios2_init_opcode_hash (); ++ } ++ ++ /* first look in the pseudo-op hashtable */ ++ entry = nios2_ps_hash[(opcode >> OP_SH_OP) & OP_MASK_OP]; ++ ++ /* look for a match and if we get one, this is the instruction we decode */ ++ while (entry != NULL) ++ { ++ if ((entry->opcode->match) == (opcode & entry->opcode->mask)) ++ return entry->opcode; ++ else ++ entry = entry->next; ++ } ++ ++ /* if we haven't yet returned, then we need to look in the main ++ hashtable */ ++ entry = nios2_hash[(opcode >> OP_SH_OP) & OP_MASK_OP]; ++ ++ if (entry == NULL) ++ return NULL; ++ ++ ++ while (entry != NULL) ++ { ++ if ((entry->opcode->match) == (opcode & entry->opcode->mask)) ++ return entry->opcode; ++ else ++ entry = entry->next; ++ } ++ ++ return NULL; ++} ++ ++/* nios2_disassemble does all the work of disassembling a New Jersey ++ instruction opcode */ ++ ++int ++nios2_disassemble (bfd_vma address, unsigned long opcode, ++ disassemble_info * info) ++{ ++ const struct nios2_opcode *op; ++ const char *argstr; ++ ++ info->bytes_per_line = INSNLEN; ++ info->bytes_per_chunk = INSNLEN; ++ info->display_endian = info->endian; ++ info->insn_info_valid = 1; ++ info->branch_delay_insns = 0; ++ info->data_size = 0; ++ info->insn_type = dis_nonbranch; ++ info->target = 0; ++ info->target2 = 0; ++ ++ /* Find the major opcode and use this to disassemble ++ the instruction and its arguments */ ++ op = nios2_find_opcode_hash (opcode); ++ ++ if (op != NULL) ++ { ++ bfd_boolean is_nop = FALSE; ++ if (op->pinfo == NIOS2_INSN_MACRO_MOV) ++ { ++ /* check for mov r0, r0 and if it is ++ change to nop */ ++ int dst, src; ++ dst = GET_INSN_FIELD (RRD, opcode); ++ src = GET_INSN_FIELD (RRS, opcode); ++ if (dst == 0 && src == 0) ++ { ++ (*info->fprintf_func) (info->stream, "nop"); ++ is_nop = TRUE; ++ } ++ else ++ { ++ (*info->fprintf_func) (info->stream, "%s", op->name); ++ } ++ } ++ else ++ { ++ (*info->fprintf_func) (info->stream, "%s", op->name); ++ } ++ ++ if (!is_nop) ++ { ++ argstr = op->args; ++ if (argstr != NULL && *argstr != '\0') ++ { ++ (*info->fprintf_func) (info->stream, "\t"); ++ while (*argstr != '\0') ++ { ++ nios2_print_insn_arg (argstr, opcode, address, info); ++ ++argstr; ++ } ++ } ++ } ++ } ++ else ++ { ++ /* Handle undefined instructions. */ ++ info->insn_type = dis_noninsn; ++ (*info->fprintf_func) (info->stream, "0x%x", (unsigned int) opcode); ++ } ++ // this tells the caller how far to advance the program counter ++ return INSNLEN; ++} ++ ++/* The function nios2_print_insn_arg uses the character pointed ++ to by argptr to determine how it print the next token or separator ++ character in the arguments to an instruction */ ++int ++nios2_print_insn_arg (const char *argptr, ++ unsigned long opcode, bfd_vma address, ++ disassemble_info * info) ++{ ++ unsigned long i = 0; ++ unsigned long reg_base; ++ ++ assert (argptr != NULL); ++ assert (info != NULL); ++ ++ switch (*argptr) ++ { ++ case ',': ++ case '(': ++ case ')': ++ (*info->fprintf_func) (info->stream, "%c", *argptr); ++ break; ++ case 'd': ++ i = GET_INSN_FIELD (RRD, opcode); ++ ++ if (GET_INSN_FIELD (OP, opcode) == OP_MATCH_CUSTOM ++ && GET_INSN_FIELD (CUSTOM_C, opcode) == 0) ++ reg_base = COPROCREGBASE; ++ else ++ reg_base = 0; ++ ++ if (i < NUMREGNAMES) ++ (*info->fprintf_func) (info->stream, "%s", ++ nios2_regs[i + reg_base].name); ++ else ++ (*info->fprintf_func) (info->stream, "unknown"); ++ break; ++ case 's': ++ i = GET_INSN_FIELD (RRS, opcode); ++ ++ if (GET_INSN_FIELD (OP, opcode) == OP_MATCH_CUSTOM ++ && GET_INSN_FIELD (CUSTOM_A, opcode) == 0) ++ reg_base = COPROCREGBASE; ++ else ++ reg_base = 0; ++ ++ if (i < NUMREGNAMES) ++ (*info->fprintf_func) (info->stream, "%s", ++ nios2_regs[i + reg_base].name); ++ else ++ (*info->fprintf_func) (info->stream, "unknown"); ++ break; ++ case 't': ++ i = GET_INSN_FIELD (RRT, opcode); ++ ++ if (GET_INSN_FIELD (OP, opcode) == OP_MATCH_CUSTOM ++ && GET_INSN_FIELD (CUSTOM_B, opcode) == 0) ++ reg_base = COPROCREGBASE; ++ else ++ reg_base = 0; ++ ++ if (i < NUMREGNAMES) ++ (*info->fprintf_func) (info->stream, "%s", ++ nios2_regs[i + reg_base].name); ++ else ++ (*info->fprintf_func) (info->stream, "unknown"); ++ break; ++ case 'i': ++ /* 16-bit signed immediate */ ++ i = (signed) (GET_INSN_FIELD (IMM16, opcode) << 16) >> 16; ++ (*info->fprintf_func) (info->stream, "%d", (int) i); ++ break; ++ case 'u': ++ /* 16-bit unsigned immediate */ ++ i = GET_INSN_FIELD (IMM16, opcode); ++ (*info->fprintf_func) (info->stream, "%d", (int) i); ++ break; ++ case 'o': ++ /* 16-bit signed immediate address offset */ ++ i = (signed) (GET_INSN_FIELD (IMM16, opcode) << 16) >> 16; ++ address = address + 4 + i; /* NG changed to byte offset 1/9/03 */ ++ (*info->print_address_func) (address, info); ++ break; ++ case 'p': ++ /* 5-bit unsigned immediate */ ++ i = GET_INSN_FIELD (CACHE_OPX, opcode); ++ (*info->fprintf_func) (info->stream, "%d", (int) i); ++ break; ++ case 'j': ++ /* 5-bit unsigned immediate */ ++ i = GET_INSN_FIELD (IMM5, opcode); ++ (*info->fprintf_func) (info->stream, "%d", (int) i); ++ break; ++ case 'l': ++ /* 8-bit unsigned immediate */ ++ /* FIXME - not yet implemented */ ++ i = GET_INSN_FIELD (CUSTOM_N, opcode); ++ (*info->fprintf_func) (info->stream, "%u", (int) i); ++ break; ++ case 'm': ++ /* 26-bit unsigned immediate */ ++ i = GET_INSN_FIELD (IMM26, opcode); ++ /* this translates to an address because its only used in call instructions */ ++ address = (address & 0xf0000000) | (i << 2); ++ (*info->print_address_func) (address, info); ++ break; ++ case 'c': ++ i = GET_INSN_FIELD (IMM5, opcode); /* ctrl register index */ ++ (*info->fprintf_func) (info->stream, "%s", ++ nios2_regs[CTLREGBASE + i].name); ++ break; ++ case 'b': ++ i = GET_INSN_FIELD (IMM5, opcode); ++ (*info->fprintf_func) (info->stream, "%d", (int) i); ++ break; ++ default: ++ (*info->fprintf_func) (info->stream, "unknown"); ++ break; ++ } ++ return 0; ++} +diff --git a/opcodes/nios2-opc.c b/opcodes/nios2-opc.c +new file mode 100644 +index 0000000..c860207 +--- /dev/null ++++ b/opcodes/nios2-opc.c +@@ -0,0 +1,320 @@ ++/* nios2-opc.c -- Altera New Jersey opcode list. ++ ++ Copyright (C) 2003 ++ by Nigel Gray (ngray@altera.com). ++ ++This file is part of GDB, GAS, and the GNU binutils. ++ ++GDB, GAS, and the GNU binutils are free software; you can redistribute ++them and/or modify them under the terms of the GNU General Public ++License as published by the Free Software Foundation; either version ++1, or (at your option) any later version. ++ ++GDB, GAS, and the GNU binutils are distributed in the hope that they ++will be useful, but WITHOUT ANY WARRANTY; without even the implied ++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See ++the GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this file; see the file COPYING. If not, write to the Free ++Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#include <stdio.h> ++#include "opcode/nios2.h" ++ ++/* Register string table */ ++ ++const struct nios2_reg nios2_builtin_regs[] = { ++ {"zero", 0}, ++ {"at", 1}, // assembler temporary ++ {"r2", 2}, ++ {"r3", 3}, ++ {"r4", 4}, ++ {"r5", 5}, ++ {"r6", 6}, ++ {"r7", 7}, ++ {"r8", 8}, ++ {"r9", 9}, ++ {"r10", 10}, ++ {"r11", 11}, ++ {"r12", 12}, ++ {"r13", 13}, ++ {"r14", 14}, ++ {"r15", 15}, ++ {"r16", 16}, ++ {"r17", 17}, ++ {"r18", 18}, ++ {"r19", 19}, ++ {"r20", 20}, ++ {"r21", 21}, ++ {"r22", 22}, ++ {"r23", 23}, ++ {"et", 24}, ++ {"bt", 25}, ++ {"gp", 26}, /* global pointer */ ++ {"sp", 27}, /* stack pointer */ ++ {"fp", 28}, /* frame pointer */ ++ {"ea", 29}, /* exception return address */ ++ {"ba", 30}, /* breakpoint return address */ ++ {"ra", 31}, /* return address */ ++ ++ /* alternative names for special registers */ ++ {"r0", 0}, ++ {"r1", 1}, ++ {"r24", 24}, ++ {"r25", 25}, ++ {"r26", 26}, ++ {"r27", 27}, ++ {"r28", 28}, ++ {"r29", 29}, ++ {"r30", 30}, ++ {"r31", 31}, ++ ++ /* control register names */ ++ {"status", 0}, ++ {"estatus", 1}, ++ {"bstatus", 2}, ++ {"ienable", 3}, ++ {"ipending", 4}, ++ {"cpuid", 5}, ++ {"ctl6", 6}, ++ {"ctl7", 7}, ++ {"pteaddr", 8}, ++ {"tlbacc", 9}, ++ {"tlbmisc", 10}, ++ {"fstatus", 11}, ++ {"ctl12", 12}, ++ {"ctl13", 13}, ++ {"ctl14", 14}, ++ {"ctl15", 15}, ++ {"ctl16", 16}, ++ {"ctl17", 17}, ++ {"ctl18", 18}, ++ {"ctl19", 19}, ++ {"ctl20", 20}, ++ {"ctl21", 21}, ++ {"ctl22", 22}, ++ {"ctl23", 23}, ++ {"ctl24", 24}, ++ {"ctl25", 25}, ++ {"ctl26", 26}, ++ {"ctl27", 27}, ++ {"ctl28", 28}, ++ {"ctl29", 29}, ++ {"ctl30", 30}, ++ {"ctl31", 31}, ++ ++ /* alternative names for special control registers */ ++ {"ctl0", 0}, ++ {"ctl1", 1}, ++ {"ctl2", 2}, ++ {"ctl3", 3}, ++ {"ctl4", 4}, ++ {"ctl5", 5}, ++ {"ctl8", 8}, ++ {"ctl9", 9}, ++ {"ctl10", 10}, ++ {"ctl11", 11}, ++ ++ /* coprocessor register names */ ++ {"c0", 0}, ++ {"c1", 1}, ++ {"c2", 2}, ++ {"c3", 3}, ++ {"c4", 4}, ++ {"c5", 5}, ++ {"c6", 6}, ++ {"c7", 7}, ++ {"c8", 8}, ++ {"c9", 9}, ++ {"c10", 10}, ++ {"c11", 11}, ++ {"c12", 12}, ++ {"c13", 13}, ++ {"c14", 14}, ++ {"c15", 15}, ++ {"c16", 16}, ++ {"c17", 17}, ++ {"c18", 18}, ++ {"c19", 19}, ++ {"c20", 20}, ++ {"c21", 21}, ++ {"c22", 22}, ++ {"c23", 23}, ++ {"c24", 24}, ++ {"c25", 25}, ++ {"c26", 26}, ++ {"c27", 27}, ++ {"c28", 28}, ++ {"c29", 29}, ++ {"c30", 30}, ++ {"c31", 31}, ++}; ++ ++#define NIOS2_NUM_REGS \ ++ ((sizeof nios2_builtin_regs) / (sizeof (nios2_builtin_regs[0]))) ++const int nios2_num_builtin_regs = NIOS2_NUM_REGS; ++ ++/* const removed from the following to allow for dynamic extensions to the ++ * built-in instruction set. */ ++struct nios2_reg *nios2_regs = (struct nios2_reg *) nios2_builtin_regs; ++int nios2_num_regs = NIOS2_NUM_REGS; ++#undef NIOS2_NUM_REGS ++ ++/* overflow message string templates */ ++ ++char *overflow_msgs[] = { ++ "call target address 0x%08x out of range 0x%08x to 0x%08x", ++ "branch offset %d out of range %d to %d", ++ "%s offset %d out of range %d to %d", ++ "immediate value %d out of range %d to %d", ++ "immediate value %u out of range %u to %u", ++ "immediate value %u out of range %u to %u", ++ "custom instruction opcode %u out of range %u to %u", ++}; ++ ++ ++ ++/*-------------------------------------------------------------------------------- ++ This is the opcode table used by the New Jersey GNU as, disassembler and GDB ++ --------------------------------------------------------------------------------*/ ++ ++/* ++ The following letters can appear in the args field of the nios2_opcode ++ structure: ++ ++ c - a 5-bit control register index or break opcode ++ d - a 5-bit destination register index ++ s - a 5-bit left source register index ++ t - a 5-bit right source register index ++ i - a 16-bit signed immediate ++ u - a 16-bit unsigned immediate ++ ++ j - a 5-bit unsigned immediate ++ k - a 6-bit unsigned immediate ++ l - an 8-bit unsigned immediate ++ m - a 26-bit unsigned immediate ++*/ ++ ++/* *INDENT-OFF* */ ++/* FIXME: Re-format for GNU standards */ ++const struct nios2_opcode nios2_builtin_opcodes[] = ++{ ++ /* name, args, args_test num_args, match, mask, pinfo */ ++ {"add", "d,s,t", "d,s,t,E", 3, OP_MATCH_ADD, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"addi", "t,s,i", "t,s,i,E", 3, OP_MATCH_ADDI, OP_MASK_IOP, NIOS2_INSN_ADDI, signed_immed16_overflow }, ++ {"subi", "t,s,i", "t,s,i,E", 3, OP_MATCH_ADDI, OP_MASK_IOP, NIOS2_INSN_MACRO, signed_immed16_overflow }, ++ {"and", "d,s,t", "d,s,t,E", 3, OP_MATCH_AND, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"andhi", "t,s,u", "t,s,u,E", 3, OP_MATCH_ANDHI, OP_MASK_IOP, 0, unsigned_immed16_overflow }, ++ {"andi", "t,s,u", "t,s,u,E", 3, OP_MATCH_ANDI, OP_MASK_IOP, NIOS2_INSN_ANDI, unsigned_immed16_overflow }, ++ {"beq", "s,t,o", "s,t,o,E", 3, OP_MATCH_BEQ, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bge", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGE, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bgeu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGEU, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bgt", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLT, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bgtu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLTU, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"ble", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGE, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bleu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGEU, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"blt", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLT, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bltu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLTU, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"bne", "s,t,o", "s,t,o,E", 3, OP_MATCH_BNE, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow }, ++ {"br", "o", "o,E", 1, OP_MATCH_BR, OP_MASK_IOP, NIOS2_INSN_UBRANCH, branch_target_overflow }, ++ {"break", "b", "b,E", 1, OP_MATCH_BREAK, OP_MASK_BREAK, 0, no_overflow }, ++ {"bret", "", "E", 0, OP_MATCH_BRET, OP_MASK, 0, no_overflow }, ++ {"flushd", "i(s)", "i(s)E", 2, OP_MATCH_FLUSHD, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"flushda", "i(s)", "i(s)E", 2, OP_MATCH_FLUSHDA, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"flushi", "s", "s,E", 1, OP_MATCH_FLUSHI, OP_MASK_FLUSHI, 0, no_overflow }, ++ {"flushp", "", "E", 0, OP_MATCH_FLUSHP, OP_MASK, 0, no_overflow }, ++ {"initd", "i(s)", "i(s)E", 2, OP_MATCH_INITD, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"initi", "s", "s,E", 1, OP_MATCH_INITI, OP_MASK_INITI, 0, no_overflow }, ++ {"call", "m", "m,E", 1, OP_MATCH_CALL, OP_MASK_IOP, NIOS2_INSN_CALL, call_target_overflow }, ++ {"callr", "s", "s,E", 1, OP_MATCH_CALLR, OP_MASK_CALLR, 0, no_overflow }, ++ {"cmpeq", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPEQ, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"cmpeqi", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPEQI, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"cmpge", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGE, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"cmpgei", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPGEI, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"cmpgeu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGEU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"cmpgeui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPGEUI, OP_MASK_IOP, 0, unsigned_immed16_overflow }, ++ {"cmpgt", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLT, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow }, ++ {"cmpgti", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPGEI, OP_MASK_IOP, NIOS2_INSN_MACRO, signed_immed16_overflow }, ++ {"cmpgtu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLTU, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow }, ++ {"cmpgtui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPGEUI, OP_MASK_IOP, NIOS2_INSN_MACRO, unsigned_immed16_overflow }, ++ {"cmple", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGE, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow }, ++ {"cmplei", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPLTI, OP_MASK_IOP, NIOS2_INSN_MACRO, signed_immed16_overflow }, ++ {"cmpleu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGEU, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow }, ++ {"cmpleui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPLTUI, OP_MASK_IOP, NIOS2_INSN_MACRO, unsigned_immed16_overflow }, ++ {"cmplt", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLT, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"cmplti", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPLTI, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"cmpltu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLTU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"cmpltui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPLTUI, OP_MASK_IOP, 0, unsigned_immed16_overflow }, ++ {"cmpne", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPNE, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"cmpnei", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPNEI, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"div", "d,s,t", "d,s,t,E", 3, OP_MATCH_DIV, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"divu", "d,s,t", "d,s,t,E", 3, OP_MATCH_DIVU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"jmp", "s", "s,E", 1, OP_MATCH_JMP, OP_MASK_JMP, 0, no_overflow }, ++ {"jmpi", "m", "m,E", 1, OP_MATCH_JMPI, OP_MASK_IOP, 0, no_overflow }, ++ {"ldb", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDB, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldbio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDBIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldbu", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDBU, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldbuio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDBUIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldh", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDH, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldhio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDHIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldhu", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDHU, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldhuio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDHUIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldw", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDW, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"ldwio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDWIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"mov", "d,s", "d,s,E", 2, OP_MATCH_ADD, OP_MASK_RRT|OP_MASK_ROPX|OP_MASK_ROP, NIOS2_INSN_MACRO_MOV, no_overflow }, ++ {"movhi", "t,u", "t,u,E", 2, OP_MATCH_ORHI, OP_MASK_IRS|OP_MASK_IOP, NIOS2_INSN_MACRO_MOVI, unsigned_immed16_overflow }, ++ {"movui", "t,u", "t,u,E", 2, OP_MATCH_ORI, OP_MASK_IRS|OP_MASK_IOP, NIOS2_INSN_MACRO_MOVI, unsigned_immed16_overflow }, ++ {"movi", "t,i", "t,i,E", 2, OP_MATCH_ADDI, OP_MASK_IRS|OP_MASK_IOP, NIOS2_INSN_MACRO_MOVI, signed_immed16_overflow }, ++ /* movia expands to two instructions so there is no mask or match */ ++ {"movia", "t,o", "t,o,E", 2, OP_MATCH_ORHI, OP_MASK_IOP, NIOS2_INSN_MACRO_MOVIA, no_overflow }, ++ {"mul", "d,s,t", "d,s,t,E", 3, OP_MATCH_MUL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"muli", "t,s,i", "t,s,i,E", 3, OP_MATCH_MULI, OP_MASK_IOP, 0, signed_immed16_overflow }, ++ {"mulxss", "d,s,t", "d,s,t,E", 3, OP_MATCH_MULXSS, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"mulxsu", "d,s,t", "d,s,t,E", 3, OP_MATCH_MULXSU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"mulxuu", "d,s,t", "d,s,t,E", 3, OP_MATCH_MULXUU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"nextpc", "d", "d,E", 1, OP_MATCH_NEXTPC, OP_MASK_NEXTPC, 0, no_overflow }, ++ {"nop", "", "E", 0, OP_MATCH_ADD, OP_MASK, NIOS2_INSN_MACRO_MOV, no_overflow }, ++ {"nor", "d,s,t", "d,s,t,E", 3, OP_MATCH_NOR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"or", "d,s,t", "d,s,t,E", 3, OP_MATCH_OR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"orhi", "t,s,u", "t,s,u,E", 3, OP_MATCH_ORHI, OP_MASK_IOP, 0, unsigned_immed16_overflow }, ++ {"ori", "t,s,u", "t,s,u,E", 3, OP_MATCH_ORI, OP_MASK_IOP, NIOS2_INSN_ORI, unsigned_immed16_overflow }, ++ {"rdctl", "d,c", "d,c,E", 2, OP_MATCH_RDCTL, OP_MASK_RDCTL, 0, no_overflow }, ++ {"ret", "", "E", 0, OP_MATCH_RET, OP_MASK, 0, no_overflow }, ++ {"rol", "d,s,t", "d,s,t,E", 3, OP_MATCH_ROL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"roli", "d,s,j", "d,s,j,E", 3, OP_MATCH_ROLI, OP_MASK_ROLI, 0, unsigned_immed5_overflow }, ++ {"ror", "d,s,t", "d,s,t,E", 3, OP_MATCH_ROR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"sll", "d,s,t", "d,s,t,E", 3, OP_MATCH_SLL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"slli", "d,s,j", "d,s,j,E", 3, OP_MATCH_SLLI, OP_MASK_SLLI, 0, unsigned_immed5_overflow }, ++ {"sra", "d,s,t", "d,s,t,E", 3, OP_MATCH_SRA, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"srai", "d,s,j", "d,s,j,E", 3, OP_MATCH_SRAI, OP_MASK_SRAI, 0, unsigned_immed5_overflow }, ++ {"srl", "d,s,t", "d,s,t,E", 3, OP_MATCH_SRL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"srli", "d,s,j", "d,s,j,E", 3, OP_MATCH_SRLI, OP_MASK_SRLI, 0, unsigned_immed5_overflow }, ++ {"stb", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STB, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"stbio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STBIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"sth", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STH, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"sthio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STHIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"stw", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STW, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"stwio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STWIO, OP_MASK_IOP, 0, address_offset_overflow }, ++ {"sub", "d,s,t", "d,s,t,E", 3, OP_MATCH_SUB, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"sync", "", "E", 0, OP_MATCH_SYNC, OP_MASK_SYNC, 0, no_overflow }, ++ {"trap", "", "E", 0, OP_MATCH_TRAP, OP_MASK_TRAP, 0, no_overflow }, ++ {"eret", "", "E", 0, OP_MATCH_ERET, OP_MASK, 0, no_overflow }, ++ {"custom", "l,d,s,t", "l,d,s,t,E", 4, OP_MATCH_CUSTOM, OP_MASK_ROP, 0, custom_opcode_overflow }, ++ {"wrctl", "c,s", "c,s,E", 2, OP_MATCH_WRCTL, OP_MASK_WRCTL, 0, no_overflow }, ++ {"xor", "d,s,t", "d,s,t,E", 3, OP_MATCH_XOR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow }, ++ {"xorhi", "t,s,u", "t,s,u,E", 3, OP_MATCH_XORHI, OP_MASK_IOP, 0, unsigned_immed16_overflow }, ++ {"xori", "t,s,u", "t,s,u,E", 3, OP_MATCH_XORI, OP_MASK_IOP, NIOS2_INSN_XORI, unsigned_immed16_overflow } ++}; ++/* *INDENT-ON* */ ++ ++#define NIOS2_NUM_OPCODES \ ++ ((sizeof nios2_builtin_opcodes) / (sizeof (nios2_builtin_opcodes[0]))) ++const int bfd_nios2_num_builtin_opcodes = NIOS2_NUM_OPCODES; ++ ++/* const removed from the following to allow for dynamic extensions to the ++ * built-in instruction set. */ ++struct nios2_opcode *nios2_opcodes = ++ (struct nios2_opcode *) nios2_builtin_opcodes; ++int bfd_nios2_num_opcodes = NIOS2_NUM_OPCODES; ++#undef NIOS2_NUM_OPCODES |