<?xml version="1.0" encoding="iso-8859-1"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Buildroot - Usage and documentation</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> <link rel="stylesheet" type="text/css" href="stylesheet.css" /> </head> <body> <div class="main"> <div class="titre"> <h1>Buildroot</h1> </div> <p><a href="http://buildroot.uclibc.org/">Buildroot</a> usage and documentation by Thomas Petazzoni. Contributions from Karsten Kruse, Ned Ludd, Martin Herren and others. </p> <p><small>$LastChangedDate$</small></p> <ul> <li><a href="#about">About Buildroot</a></li> <li><a href="#download">Obtaining Buildroot</a></li> <li><a href="#using">Using Buildroot</a></li> <li><a href="#custom_targetfs">Customizing the target filesystem</a></li> <li><a href="#custom_busybox">Customizing the Busybox configuration</a></li> <li><a href="#custom_uclibc">Customizing the uClibc configuration</a></li> <li><a href="#buildroot_innards">How Buildroot works</a></li> <li><a href="#using_toolchain">Using the uClibc toolchain</a></li> <li><a href="#toolchain_standalone">Using the uClibc toolchain outside of Buildroot</a></li> <li><a href="#downloaded_packages">Location of downloaded packages</a> </li> <li><a href="#add_software">Extending Buildroot with more Software</a></li> <li><a href="#links">Resources</a></li> </ul> <h2><a name="about" id="about"></a>About Buildroot</h2> <p>Buildroot is a set of Makefiles and patches that allow to easily generate both a cross-compilation toolchain and a root filesystem for your target. The cross-compilation toolchain uses uClibc (<a href= "http://www.uclibc.org/">http://www.uclibc.org/</a>), a tiny C standard library. </p> <p>Buildroot is useful mainly for people working with embedded systems. Embedded systems often use processors that are not the regular x86 processors everyone is used to have on his PC. It can be PowerPC processors, MIPS processors, ARM processors, etc. </p> <p>A compilation toolchain is the set of tools that allows to compile code for your system. It consists of a compiler (in our case, <code>gcc</code>), binary utils like assembler and linker (in our case, <code>binutils</code>) and a C standard library (for example <a href="http://www.gnu.org/software/libc/libc.html">GNU Libc</a>, <a href="http://www.uclibc.org/">uClibc</a> or <a href="http://www.fefe.de/dietlibc/">dietlibc</a>). The system installed on your development station certainly already has a compilation toolchain that you can use to compile application that runs on your system. If you're using a PC, your compilation toolchain runs on an x86 processor and generates code for a x86 processor. Under most Linux systems, the compilation toolchain uses the GNU libc as C standard library. This compilation toolchain is called the "host compilation toolchain", and more generally, the machine on which it is running, and on which you're working is called the "host system". The compilation toolchain is provided by your distribution, and Buildroot has nothing to do with it. </p> <p>As said above, the compilation toolchain that comes with your system runs and generates code for the processor of your host system. As your embedded system has a different processor, you need a cross-compilation toolchain: it's a compilation toolchain that runs on your host system but that generates code for your target system (and target processor). For example, if your host system uses x86 and your target system uses ARM, the regular compilation toolchain of your host runs on x86 and generates code for x86, while the cross-compilation toolchain runs on x86 and generates code for ARM. </p> <p>Even if your embedded system uses a x86 processor, you might interested in Buildroot, for two reasons:</p> <ul> <li>The compilation toolchain of your host certainly uses the GNU Libc which is a complete but huge C standard library. Instead of using GNU Libc on your target system, you can use uClibc which is a tiny C standard library. If you want to use this C library, then you need a compilation toolchain to generate binaries linked with it. Buildroot can do it for you. </li> <li>Buildroot automates the building of a root filesystem with all needed tools like busybox. It makes it much easier than doing it by hand. </li> </ul> <p>You might wonder why such a tool is needed when you can compile <code>gcc</code>, <code>binutils</code>, uClibc and all the tools by hand. Of course, doing so is possible. But dealing with all configure options, with all problems of every <code>gcc</code> or <code>binutils</code> version it very time-consuming and uninteresting. Buildroot automates this process through the use of Makefiles, and has a collection of patches for each <code>gcc</code> and <code>binutils</code> version to make them work on most architectures. </p> <h2><a name="download" id="download"></a>Obtaining Buildroot</h2> <p>Buildroot is available as daily SVN snapshots or directly using SVN. </p> <p>The latest snapshot is always available at <a href="http://buildroot.uclibc.org/downloads/snapshots/buildroot-snapshot.tar.bz2">http://buildroot.uclibc.org/downloads/snapshots/buildroot-snapshot.tar.bz2</a>, and previous snapshots are also available at <a href="http://buildroot.uclibc.org/downloads/snapshots/">http://buildroot.uclibc.org/downloads/snapshots/</a>. </p> <p>To download Buildroot using SVN, you can simply follow the rules described on the "Accessing SVN"-page (<a href= "http://buildroot.uclibc.org/subversion.html">http://buildroot.uclibc.org/subversion.html</a>) of the uClibc buildroot website (<a href= "http://buildroot.uclibc.org">http://buildroot.uclibc.org</a>), and download the <code>buildroot</code> SVN module. For the impatient, here's a quick recipe:</p> <pre> $ svn co svn://uclibc.org/trunk/buildroot </pre> <h2><a name="using" id="using"></a>Using Buildroot</h2> <p>Buildroot has a nice configuration tool similar to the one you can find in the Linux Kernel (<a href= "http://www.kernel.org/">http://www.kernel.org/</a>) or in Busybox (<a href="http://www.busybox.org/">http://www.busybox.org/</a>). Note that you can build everything as a normal user. There is no need to be root to configure and use Buildroot. The first step is to run the configuration assistant:</p> <pre> $ make menuconfig </pre> <p>For each entry of the configuration tool, you can find associated help that describes the purpose of the entry. </p> <p>One of the key configuration items is the <code>PROJECT</code> which determines where some board specific packages are built and where the results are stored. </p> <p>Once everything is configured, the configuration tool has generated a <code>.config</code> file that contains the description of your configuration. It will be used by the Makefiles to do what's needed. </p> <p>Let's go:</p> <pre> $ make </pre> <p>This command will download, configure and compile all the selected tools, and finally generate a target filesystem. The target filesystem will be named <code>root_fs_ARCH.EXT</code> where <code>ARCH</code> is your architecture and <code>EXT</code> depends on the type of target filesystem selected in the <code>Target options</code> section of the configuration tool. The file is stored in the "binaries/<code>$(PROJECT)</code>/" directory</p> <p>If you intend to do an offline-build and just want to download all sources that you previously selected in "make menuconfig" then issue:</p> <pre> $ make source </pre> <p>You can now disconnect or copy the content of your <code>dl</code> directory to the build-host. </p> <h3><a name="environment_variables" id="environment_variables"></a> Environment variables</h3> <p>Buildroot optionally honors some environment variables that are passed to <code>make</code> :</p> <ul> <li>HOSTCXX</li> <li>HOSTCC</li> <li>UCLIBC_CONFIG_FILE=<path/to/.config></li> <li>BUSYBOX_CONFIG_FILE=<path/to/.config></li> </ul> <p>An example that uses config files located in the toplevel directory and in your $HOME:</p> <pre> $ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config </pre> <p>If you want to use a compiler other than the default <code>gcc</code> or <code>g++</code> for building helper-binaries on your host, then do</p> <pre> $ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc-4.3-HEAD </pre> <h3><a name="helper_completion" id="helper_completion"></a> Using auto-completion</h3> <p>If you are lazy enough that you don't want to type the entire <i>make menuconfig</i> command line, you can enable auto-completion in your shell. Here is how you can do that using <i>bash</i>:</p> <pre> $ complete -W menuconfig make </pre> <p>Then just enter the beginning of the line, and ask <i>bash</i> to complete it for you by pressing the <i>TAB</i> key:</p> <pre> $ make me<TAB> </pre> <p>will result in <i>bash</i> to append <i>nuconfig</i> for you!</p> <p>Alternatively, some distributions (of which Debian and Mandriva are but an example) have more powerful make completion. Depending on you distribution, you may have to install a package to enable completion. Under Mandriva, this is <i>bash-completion</i>, while Debian ships it as part of the <i>bash</i> package.</p> <p>Other shells, such as <i>zsh</i>, also have completion facilities. See the documentation for your shell.</p> <h2><a name="custom_targetfs" id="custom_targetfs"></a>Customizing the target filesystem</h2> <p>There are a few ways to customize the resulting target filesystem:</p> <ul> <li>Customize the target filesystem directly, and rebuild the image. The target filesystem is available under <code>project_build_ARCH/root/</code> where <code>ARCH</code> is the chosen target architecture. You can simply make your changes here, and run make afterwards, which will rebuild the target filesystem image. This method allows to do everything on the target filesystem, but if you decide to completely rebuild your toolchain and tools, these changes will be lost. </li> <li>Customize the target filesystem skeleton, available under <code>target/generic/target_skeleton/</code>. You can customize configuration files or other stuff here. However, the full file hierarchy is not yet present, because it's created during the compilation process. So you can't do everything on this target filesystem skeleton, but changes to it remain even if you completely rebuild the cross-compilation toolchain and the tools. <br /> You can also customize the <code>target/generic/device_table.txt</code> file which is used by the tools that generate the target filesystem image to properly set permissions and create device nodes. The <code>target/generic/skel.tar.gz</code> file contains the main directories of a root filesystem and there is no obvious reason for which it should be changed. These main directories are in an tarball inside of inside the skeleton because it contains symlinks that would be broken otherwise. <br /> These customizations are deployed into <code>project_build_ARCH/root/</code> just before the actual image is made. So simply rebuilding the image by running make should propagate any new changes to the image. </li> <li>When configuring the build system, using <code>make menuconfig</code>, you can specify the contents of the /etc/hostname and /etc/issue (the welcome banner) in the <code>PROJECT</code> section</li> </ul> <h2><a name="custom_busybox" id="custom_busybox"></a>Customizing the Busybox configuration</h2> <p><a href="http://www.busybox.net/">Busybox</a> is very configurable, and you may want to customize it. You can follow these simple steps to do it. It's not an optimal way, but it's simple and it works. </p> <ol> <li>Make a first compilation of buildroot with busybox without trying to customize it. </li> <li>Invoke <code>make busybox-menuconfig</code>. The nice configuration tool appears and you can customize everything. </li> <li>Run the compilation of buildroot again. </li> </ol> <p>Otherwise, you can simply change the <code>package/busybox/busybox-<version>.config</code> file if you know the options you want to change without using the configuration tool. </p> <p>If you want to use an existing config file for busybox, then see section <a href="#environment_variables">environment variables</a>. </p> <h2><a name="custom_uclibc" id="custom_uclibc"></a>Customizing the uClibc configuration</h2> <p>Just like <a href="#custom_busybox">BusyBox</a>, <a href="http://www.uclibc.org/">uClibc</a> offers a lot of configuration options. They allow to select various functionalities, depending on your needs and limitations. </p> <p>The easiest way to modify the configuration of uClibc is to follow these steps :</p> <ol> <li>Make a first compilation of buildroot without trying to customize uClibc. </li> <li>Invoke <code>make uclibc-menuconfig</code>. The nice configuration assistant, similar to the one used in the Linux Kernel or in Buildroot appears. Make your configuration as appropriate. </li> <li>Copy the <code>.config</code> file to <code>toolchain/uClibc/uClibc.config</code> or <code>toolchain/uClibc/uClibc.config-locale</code>. The former is used if you haven't selected locale support in Buildroot configuration, and the latter is used if you have selected locale support. </li> <li>Run the compilation of Buildroot again</li> </ol> <p>Otherwise, you can simply change <code>toolchain/uClibc/uClibc.config</code> or <code>toolchain/uClibc/uClibc.config-locale</code> without running the configuration assistant. </p> <p>If you want to use an existing config file for uclibc, then see section <a href="#environment_variables">environment variables</a>. </p> <h2><a name="buildroot_innards" id="buildroot_innards"></a>How Buildroot works</h2> <p>As said above, Buildroot is basically a set of Makefiles that download, configure and compiles software with the correct options. It also includes some patches for various software, mainly the ones involved in the cross-compilation tool chain (<code>gcc</code>, <code>binutils</code> and uClibc). </p> <p>There is basically one Makefile per software, and they are named with the <code>.mk</code> extension. Makefiles are split into four sections:</p> <ul> <li><b>project</b> (in the <code>project/</code> directory) contains the Makefiles and associated files for all software related to the building several root file systems in the same buildroot tree. </li> <li><b>toolchain</b> (in the <code>toolchain/</code> directory) contains the Makefiles and associated files for all software related to the cross-compilation toolchain : <code>binutils</code>, <code>ccache</code>, <code>gcc</code>, <code>gdb</code>, <code>kernel-headers</code> and <code>uClibc</code>. </li> <li><b>package</b> (in the <code>package/</code> directory) contains the Makefiles and associated files for all user-space tools that Buildroot can compile and add to the target root filesystem. There is one sub-directory per tool. </li> <li><b>target</b> (in the <code>target</code> directory) contains the Makefiles and associated files for software related to the generation of the target root filesystem image. Four types of filesystems are supported : ext2, jffs2, cramfs and squashfs. For each of them, there's a sub-directory with the required files. There is also a <code>default/</code> directory that contains the target filesystem skeleton. </li> </ul> <p>Each directory contains at least 2 files :</p> <ul> <li><code>something.mk</code> is the Makefile that downloads, configures, compiles and installs the software <code>something</code>. </li> <li><code>Config.in</code> is a part of the configuration tool description file. It describes the option related to the current software. </li> </ul> <p>The main Makefile do the job through the following steps (once the configuration is done):</p> <ol> <li>Create the download directory (<code>dl/</code> by default). This is where the tarballs will be downloaded. It is interesting to know that the tarballs are in this directory because it may be useful to save them somewhere to avoid further downloads. </li> <li>Create the shared build directory (<code>build_ARCH/</code> by default, where <code>ARCH</code> is your architecture). This is where all non configurable user-space tools will be compiled.When building two or more targets using the same architecture, the first build will go through the full download, configure, make process, but the second and later builds will only copy the result from the first build to its project specific target directory significantly speeding up the build process</li> <li>Create the project specific build directory (<code>project_build_ARCH/$(PROJECT)</code> by default, where <code>ARCH</code> is your architecture). This is where all configurable user-space tools will be compiled. The project specific build directory is neccessary, if two different targets needs to use a specific package, but the packages have different configuration for both targets. Some examples of packages built in this directory are busybox and linux. </li> <li>Create the project specific result directory (<code>binaries/$(PROJECT)</code> by default, where <code>ARCH</code> is your architecture). This is where the root filesystem images are stored, It is also used to store the linux kernel image and any utilities, boot-loaders etc. needed for a target. </li> <li>Create the toolchain build directory (<code>toolchain_build_ARCH/</code> by default, where <code>ARCH</code> is your architecture). This is where the cross compilation toolchain will be compiled. </li> <li>Setup the staging directory (<code>build_ARCH/staging_dir/</code> by default). This is where the cross-compilation toolchain will be installed. If you want to use the same cross-compilation toolchain for other purposes, such as compiling third-party applications, you can add <code>build_ARCH/staging_dir/usr/bin</code> to your PATH, and then use <code>arch-linux-gcc</code> to compile your application. In order to setup this staging directory, it first removes it, and then it creates various subdirectories and symlinks inside it. </li> <li>Create the target directory (<code>project_build_ARCH/root/</code> by default) and the target filesystem skeleton. This directory will contain the final root filesystem. To setup it up, it first deletes it, then it uncompress the <code>target/generic/skel.tar.gz</code> file to create the main subdirectories and symlinks, copies the skeleton available in <code>target/generic/target_skeleton</code> and then removes useless <code>.svn/</code> directories. </li> <li>Add the <code>TARGETS</code> dependency. This should generally check if the configuration option for this package is enabled, and if so then "subscribe" this package to be compiled by adding it to the TARGETS global variable. </li> </ol> <h2><a name="multi_project" id="multi_project"></a>Building several projects in the same buildroot source tree</h2> <p><b>BACKGROUND</b></p> <p>Buildroot has always supported building several projects in the same tree if each project was for a different architecture. </p> <p>The root file system has been created in the <code>"build_<ARCH>/root"</code> directory which is unique for each architecture. Toolchains have been built in <code>"toolchain_build_<ARCH>"</code>. </p> <p> It the user wanted to build several root file systems for the same architecture, a prefix or suffix could be added in the configuration file so the root file system would be built in <code>"<PREFIX>_build_<ARCH>_<SUFFIX>/root"</code> By supplying <u>unique</u> combinations of <code>"<PREFIX>"</code> and <code>"<SUFFIX>"</code> each project would get a <u>unique</u> root file system tree. </p> <p>The disadvantage of this approach is that a new toolchain was built for each project, adding considerable time to the build process, even if it was two projects for the same chip. </p> <p>This drawback has been somewhat lessened with <code>gcc-4.x.y</code> which allows buildroot to use an external toolchain. Certain packages requires special features in the toolchain, and if an external toolchain is selected, this may lack the neccessary features to complete the build of the root file system.</p> <p>A bigger problem was that the <code>"build_<ARCH>"</code> tree was also duplicated, so each </code>package</code> would also be rebuilt once per project, resulting in even longer build times.</p> <p><b>PROJECT TO SHARE TOOLCHAIN AND PACKAGE BUILDS</b></p> <p>Work has started on a project which will allow the user to build multiple root file systems for the same architecture in the same tree. The toolchain and the package build directory will be shared, but each project will have a dedicated directory tree for project specific builds. </p> <p>With this approach, most, if not all packages will be compiled when the first project is built. The process is almost identical to the original process. Packages are downloaded and extracted to the shared <code>"build_<ARCH>/<package>"</code> directory. They are configured and compiled. </p> <p>Package libraries and headers are installed in the shared $(STAGING_DIR), and then the project specific root file system "$(TARGET_DIR)" is populated. </p> <p>At the end of the build, the root file system will be used to generate the resulting root file system binaries. </p> <p>Once the first project has been built, building other projects will typically involve populating the new project's root file system directory from the existing binaries generated in the shared <code>"build_<ARCH>/<>"</code> directory. </p> <p>Only packages, not used by the first project, will have to go through the normal extract-configure-compile flow. </p> <p><b>IMPLEMENTATION</b></p> <p>The core of the solution is the introduction of two new directories: </p> <ul> <li><code>project_build_<ARCH></code></li> <li><code>binaries;</code></li> </ul> <p>Each of the directories contain one subdirectory per project. The name of the subdirectory is configured by the user in the normal buildroot configuration, using the value of: </p> <p><code>Project Options ---> Project name</code></p> <p>The configuration defines the $(PROJECT) variable.</p> <p>The default project name is <code>"uclibc"</code>.</p> <p><code>"package/Makefile.in"</code> defines: <pre> <code>PROJECT_BUILD_DIR:=project_build_$(ARCH)/$(PROJECT)</code> <code>BINARIES_DIR:=binaries/$(PROJECT)</code> </pre> </p> <p>It also defines the location for the target root file system: <pre> <code>TARGET_DIR:=$(PROJECT_BUILD_DIR)/$(PROJECT)/root</code> </pre> </p> <p>I.E: If the user has choosen <code>"myproject"</code> as the $(PROJECT) name: <ul> <li><code>"project_build_<ARCH>/myproject"</code></li> <li><code>"binaries/myproject"</code></li> </ul> <p>will be created. </p> <p>Currently, the <u>root file system</u>, <u>busybox</u> and an Atmel customized version of <u><code>U-Boot</code></u>, as well as some Atmel specific bootloaders like <u>at91-bootstrap</u> and <u>dataflashboot.bin</u> are built in <code>"$(PROJECT_BUILD_DIR)"</code> <p>The resulting binaries for all architectures are stored in the <code>"$(BINARIES_DIR)"</code> directory. <p> <p><b>SUMMARY</b></p> <p>The project will share directories which can be share without conflicts, but will use unique build directories, where the user can configure the build. </p> <p><b>THINGS TO DO</b></p> <ol> <li>Linux</li> <p>The current Linux implementation is flawed. It only works if the user chooses to use one of the few kernels selected as base for the kernel-headers. While the Makefile seems to have hooks, allowing the developer to specify whatever version he/she wants in the target/device/*/* Makefiles, the build will fail if another kernel version is choosen.</p> <p>The reason for this is that the kernel patches are not applied by the <code>"target/linux/linux.mk"</code> build script fragment. They are only applied by the <code>"toolchain/kernel-headers/*.makefile"</code> build script fragments</p> <p>If the kernel-header version and the linux version differs, there will be two <code>"linux-2.6.X.Y"</code> directories in <code>"build_<ARCH>/<>"</code>, each with its own set of patches. </p> <p>The solution in the works, is to move the build of Linux to <code>"project_build_<ARCH>/<project name>/linux-2.6.X.Y"</code> combined with method to configure which patches can be applied. Possibly, the linux source tree used to generate the kernel headers will be moved to the <code>"toolchain_build_<ARCH>"</code> directory </p> <p>The user will be able to select from three different Linux strategies: <ul> <li>Conservative Strategy: Only use version ssupported by the kernel headers</li> <li>Stable Linux Strategy: Allow any 2.6.X.Y combination. (Minimum 2.6.19)</li> <li>Power-User Strategy: Allow <code>"-git"</code>, or <code>"-mm"</code>, or user downloadable kernels</li> </ul> <p>The current kernel patches can be configured to be applied to the linux source tree even if the version differs from the kernel header version. </p> <p>Since the user can select any kernel-patch he/she will be able to select a non-working combination. If the patch fails, the user will have to generate a new proprietary kernel-patch or decide to not apply the kernel patches</p> <p>Other optional patches will be <u>board specific</u> or <u>architecture specific</u> patches. </p> <p>There will also be a way for the user to supply absolute or relative paths to patches, possibly outside the main tree. This can be used to apply custom kernel-header-patches, if the versions available in buildroot cannot be applied to the specific linux version used</p> <p>Maybe, there will also be a possibility to supply an <code>"URL"</code> to a patch available on Internet. </p> <li>Configurable packages</li> <p>Many packages can, on top of the simple "enable/disable build", be further configured using Kconfig. Currently these packages will be compiled using the configuration specified in the <code>".config"</code> file of the <u>first</u> project demanding the build of the package.</p> <p>If <u>another</u> project uses the same packages, but with a different configuration,these packages will <u>not</u> be rebuilt, and the root file system for the new project will be populated with files from the build of the <u>first</u> project</p> <p>If multiple project are built, and a specific package needs two different configuration, then the user must delete the package from the <code>"build_<ARCH>"</code> directory before rebuilding the new project.<p> <p>A long term solution is to edit the package makefile and move the build of the configurable packages from <code>"build_<ARCH>"</code> to <code>"project_build_<ARCH>/<project name>"</code> and send a patch to the buildroot mailing list. <li>Naming conventions</li> <p>Names of resulting binaries should reflect the "project name" <li>Generating File System binaries</li> <p> Packages which needs to be installed with the "root" as owner, will generate a <code>".fakeroot.<package>"</code> file which will be used for the final build of the root file system binary. </p> <p>This was previously located in the <code>"$(STAGING_DIR)"</code> directory, but was recently moved to the <code>"$(PROJECT_BUILD_DIR)"</code> directory. </p> <p>Currently only three packages: <code>"at"</code>, <code>"ltp-testsuite"</code> and <code>"nfs-utils"</code> requests fakeroot. <p> <p>The makefile fragments for each file system type like <code>"ext2"</code>, <code>"jffs2"</code> or <code>"squashfs"</code> will, when the file system binary is generated, collect all present <code>".fakeroot.<package>"</code> files to a single <code>"_fakeroot.<file system>"</code> file and call fakeroot.</p> <code>".fakeroot.<package>"</code> files are deleted as the last action of the Buildroot Makefile. </p> <p>It needs to be evaluated if any further action for the file system binary build is needed. </p> </ol> <h2><a name="using_toolchain" id="using_toolchain"></a>Using the uClibc toolchain</h2> <p>You may want to compile your own programs or other software that are not packaged in Buildroot. In order to do this, you can use the toolchain that was generated by Buildroot. </p> <p>The toolchain generated by Buildroot by default is located in <code>build_ARCH/staging_dir/</code>. The simplest way to use it is to add <code>build_ARCH/staging_dir/usr/bin/</code> to your PATH environnement variable, and then to use <code>arch-linux-gcc</code>, <code>arch-linux-objdump</code>, <code>arch-linux-ld</code>, etc. </p> <p>For example, you may add the following to your <code>.bashrc</code> (considering you're building for the MIPS architecture and that Buildroot is located in <code>~/buildroot/</code>) :</p> <pre> export PATH="$PATH:~/buildroot/build_mips/staging_dir/usr/bin/" </pre> <p>Then you can simply do :</p> <pre> mips-linux-gcc -o foo foo.c </pre> <p><b>Important</b> : do not try to move a gcc-3.x toolchain to an other directory, it won't work. There are some hardcoded paths in the <i>gcc</i> configuration. If the default toolchain directory doesn't suit your needs, please refer to the <a href="#toolchain_standalone">Using the uClibc toolchain outside of buildroot</a> section. </p> <p>If you are using a current gcc-4.x, then use --sysroot and -isysroot since these toolchains have fully functional sysroot support. No hardcoded paths do exist in these configurations. </p> <h2><a name="toolchain_standalone" id="toolchain_standalone"></a>Using the uClibc toolchain outside of buildroot</h2> <p>By default, the cross-compilation toolchain is generated inside <code>build_ARCH/staging_dir/</code>. But sometimes, it may be useful to install it somewhere else, so that it can be used to compile other programs or by other users. Moving the <code>build_ARCH/staging_dir/</code> directory elsewhere is <b>not possible if using gcc-3.x</b>, because there are some hardcoded paths in the toolchain configuration. This works, thanks to sysroot support, with current, stable gcc-4.x toolchains, of course. </p> <p>If you want to use the generated gcc-3.x toolchain for other purposes, you can configure Buildroot to generate it elsewhere using the option of the configuration tool : <code>Build options -> Toolchain and header file location</code>, which defaults to <code>$(BUILD_DIR)/staging_dir/</code>. </p> <h2><a name="downloaded_packages" id="downloaded_packages"></a>Location of downloaded packages</h2> <p>It might be useful to know that the various tarballs that are downloaded by the <i>Makefiles</i> are all stored in the <code>DL_DIR</code> which by default is the <code>dl</code> directory. It's useful for example if you want to keep a complete version of Buildroot which is know to be working with the associated tarballs. This will allow you to regenerate the toolchain and the target filesystem with exactly the same versions. </p> <p>If you maintain several buildroot trees, it might be better to have a shared download location. This can be accessed by creating a symbolic link from the <code>dl</code> directory to the shared download location. </p> <p>I.E:</p> <pre> ln -s <shared download location> dl </pre> <p>Another way of accessing a shared download location is to create the <code>BUILDROOT_DL_DIR</code> environment variable. If this is set, then the value of DL_DIR in the project is overridden. The following line should be added to <code>"~/.bashrc"</code>. <p> <pre> export BUILDROOT_DL_DIR <shared download location> </pre> <h2><a name="add_software" id="add_software"></a>Extending Buildroot with more software</h2> <p>This section will only consider the case in which you want to add user-space software. </p> <h3>Package directory</h3> <p>First of all, create a directory under the <code>package</code> directory for your software, for example <code>foo</code>. </p> <h3><code>Config.in</code> file</h3> <p>Then, create a file named <code>Config.in</code>. This file will contain the portion of options description related to our <code>foo</code> software that will be used and displayed in the configuration tool. It should basically contain :</p> <pre> config BR2_PACKAGE_FOO bool "foo" default n help This is a comment that explains what foo is. http://foosoftware.org/foo/ </pre> <p>Of course, you can add other options to configure particular things in your software. </p> <h3>The real <i>Makefile</i></h3> <p>Finally, here's the hardest part. Create a file named <code>foo.mk</code>. It will contain the <i>Makefile</i> rules that are in charge of downloading, configuring, compiling and installing the software. Below is an example that we will comment afterwards. </p> <pre> <a name="line1" id="line1">1</a> ############################################################# <a name="line2" id="line2">2</a> # <a name="line3" id="line3">3</a> # foo <a name="line4" id="line4">4</a> # <a name="line5" id="line5">5</a> ############################################################# <a name="line6" id="line6">6</a> FOO_VERSION:=1.0 <a name="line7" id="line7">7</a> FOO_SOURCE:=foo-$(FOO_VERSION).tar.gz <a name="line8" id="line8">8</a> FOO_SITE:=http://www.foosoftware.org/downloads <a name="line9" id="line9">9</a> FOO_DIR:=$(BUILD_DIR)/foo-$(FOO_VERSION) <a name="line10" id="line10">10</a> FOO_BINARY:=foo <a name="line11" id="line11">11</a> FOO_TARGET_BINARY:=usr/bin/foo <a name="line12" id="line12">12</a> <a name="line13" id="line13">13</a> $(DL_DIR)/$(FOO_SOURCE): <a name="line14" id="line14">14</a> $(WGET) -P $(DL_DIR) $(FOO_SITE)/$(FOO_SOURCE) <a name="line15" id="line15">15</a> <a name="line16" id="line16">16</a> $(FOO_DIR)/.source: $(DL_DIR)/$(FOO_SOURCE) <a name="line17" id="line17">17</a> $(ZCAT) $(DL_DIR)/$(FOO_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) - <a name="line18" id="line18">18</a> touch $@ <a name="line19" id="line19">19</a> <a name="line20" id="line20">20</a> $(FOO_DIR)/.configured: $(FOO_DIR)/.source <a name="line21" id="line21">21</a> (cd $(FOO_DIR); rm -rf config.cache ; \ <a name="line22" id="line22">22</a> $(TARGET_CONFIGURE_OPTS) \ <a name="line23" id="line23">23</a> CFLAGS="$(TARGET_CFLAGS)" \ <a name="line24" id="line24">24</a> ./configure \ <a name="line25" id="line25">25</a> --target=$(GNU_TARGET_NAME) \ <a name="line26" id="line26">26</a> --host=$(GNU_TARGET_NAME) \ <a name="line27" id="line27">27</a> --build=$(GNU_HOST_NAME) \ <a name="line28" id="line28">28</a> --prefix=/usr \ <a name="line29" id="line29">29</a> --sysconfdir=/etc \ <a name="line30" id="line30">30</a> ); <a name="line31" id="line31">31</a> touch $@ <a name="line32" id="line32">32</a> <a name="line33" id="line33">33</a> $(FOO_DIR)/$(FOO_BINARY): $(FOO_DIR)/.configured <a name="line34" id="line34">34</a> $(MAKE) CC=$(TARGET_CC) -C $(FOO_DIR) <a name="line35" id="line35">35</a> <a name="line36" id="line36">36</a> $(TARGET_DIR)/$(FOO_TARGET_BINARY): $(FOO_DIR)/$(FOO_BINARY) <a name="line37" id="line37">37</a> $(MAKE) prefix=$(TARGET_DIR)/usr -C $(FOO_DIR) install <a name="line38" id="line38">38</a> rm -Rf $(TARGET_DIR)/usr/man <a name="line39" id="line39">39</a> <a name="line40" id="line40">40</a> foo: uclibc ncurses $(TARGET_DIR)/$(FOO_TARGET_BINARY) <a name="line41" id="line41">41</a> <a name="line42" id="line42">42</a> foo-source: $(DL_DIR)/$(FOO_SOURCE) <a name="line43" id="line43">43</a> <a name="line44" id="line44">44</a> foo-clean: <a name="line45" id="line45">45</a> $(MAKE) prefix=$(TARGET_DIR)/usr -C $(FOO_DIR) uninstall <a name="line46" id="line46">46</a> -$(MAKE) -C $(FOO_DIR) clean <a name="line47" id="line47">47</a> <a name="line48" id="line48">48</a> foo-dirclean: <a name="line49" id="line49">49</a> rm -rf $(FOO_DIR) <a name="line50" id="line50">50</a> <a name="line51" id="line51">51</a> ############################################################# <a name="line52" id="line52">52</a> # <a name="line53" id="line53">53</a> # Toplevel Makefile options <a name="line54" id="line54">54</a> # <a name="line55" id="line55">55</a> ############################################################# <a name="line56" id="line56">56</a> ifeq ($(strip $(BR2_PACKAGE_FOO)),y) <a name="line57" id="line57">57</a> TARGETS+=foo <a name="line58" id="line58">58</a> endif </pre> <p>First of all, this <i>Makefile</i> example works for a single binary software. For other software such as libraries or more complex stuff with multiple binaries, it should be adapted. Look at the other <code>*.mk</code> files in the <code>package</code> directory. </p> <p>At lines <a href="#line6">6-11</a>, a couple of useful variables are defined :</p> <ul> <li><code>FOO_VERSION</code> : The version of <i>foo</i> that should be downloaded. </li> <li><code>FOO_SOURCE</code> : The name of the tarball of <i>foo</i> on the download website of FTP site. As you can see <code>FOO_VERSION</code> is used. </li> <li><code>FOO_SITE</code> : The HTTP or FTP site from which <i>foo</i> archive is downloaded. It must include the complete path to the directory where <code>FOO_SOURCE</code> can be found. </li> <li><code>FOO_DIR</code> : The directory into which the software will be configured and compiled. Basically, it's a subdirectory of <code>BUILD_DIR</code> which is created upon decompression of the tarball. </li> <li><code>FOO_BINARY</code> : Software binary name. As said previously, this is an example for a single binary software. </li> <li><code>FOO_TARGET_BINARY</code> : The full path of the binary inside the target filesystem. </li> </ul> <p>Lines <a href="#line13">13-14</a> defines a target that downloads the tarball from the remote site to the download directory (<code>DL_DIR</code>). </p> <p>Lines <a href="#line16">16-18</a> defines a target and associated rules that uncompress the downloaded tarball. As you can see, this target depends on the tarball file, so that the previous target (line <a href="#line13">13-14</a>) is called before executing the rules of the current target. Uncompressing is followed by <i>touching</i> a hidden file to mark the software has having been uncompressed. This trick is used everywhere in Buildroot <i>Makefile</i> to split steps (download, uncompress, configure, compile, install) while still having correct dependencies. </p> <p>Lines <a href="#line20">20-31</a> defines a target and associated rules that configures the software. It depends on the previous target (the hidden <code>.source</code> file) so that we are sure the software has been uncompressed. In order to configure it, it basically runs the well-known <code>./configure</code> script. As we may be doing cross-compilation, <code>target</code>, <code>host</code> and <code>build</code> arguments are given. The prefix is also set to <code>/usr</code>, not because the software will be installed in <code>/usr</code> on your host system, but in the target filesystem. Finally it creates a <code>.configured</code> file to mark the software as configured. </p> <p>Lines <a href="#line33">33-34</a> defines a target and a rule that compiles the software. This target will create the binary file in the compilation directory, and depends on the software being already configured (hence the reference to the <code>.configured</code> file). It basically runs <code>make</code> inside the source directory. </p> <p>Lines <a href="#line36">36-38</a> defines a target and associated rules that install the software inside the target filesystem. It depends on the binary file in the source directory, to make sure the software has been compiled. It uses the <code>install</code> target of the software <code>Makefile</code> by passing a <code>prefix</code> argument, so that the <code>Makefile</code> doesn't try to install the software inside host <code>/usr</code> but inside target <code>/usr</code>. After the installation, the <code>/usr/man</code> directory inside the target filesystem is removed to save space. </p> <p>Line <a href="#line40">40</a> defines the main target of the software, the one that will be eventually be used by the top level <code>Makefile</code> to download, compile, and then install this package. This target should first of all depends on all needed dependecies of the software (in our example, <i>uclibc</i> and <i>ncurses</i>), and also depend on the final binary. This last dependency will call all previous dependencies in the correct order. </p> <p>Line <a href="#line42">42</a> defines a simple target that only downloads the code source. This is not used during normal operation of Buildroot, but is needed if you intend to download all required sources at once for later offline build. Note that if you add a new package providing a <code>foo-source</code> target is <i>mandatory</i> to support users that wish to do offline-builds. Furthermore it eases checking if all package-sources are downloadable. </p> <p>Lines <a href="#line44">44-46</a> define a simple target to clean the software build by calling the <i>Makefiles</i> with the appropriate option. The <code>-clean</code> target should run <code>make clean</code> on $(BUILD_DIR)/package-version and MUST uninstall all files of the package from $(STAGING_DIR) and from $(TARGET_DIR). </p> <p>Lines <a href="#line48">48-49</a> define a simple target to completely remove the directory in which the software was uncompressed, configured and compiled. The <code>-dirclean</code> target MUST completely rm $(BUILD_DIR)/ package-version. </p> <p>Lines <a href="#line51">51-58</a> adds the target <code>foo</code> to the list of targets to be compiled by Buildroot by first checking if the configuration option for this package has been enabled using the configuration tool, and if so then "subscribes" this package to be compiled by adding it to the TARGETS global variable. The name added to the TARGETS global variable is the name of this package's target, as defined on line <a href="#line40">40</a>, which is used by Buildroot to download, compile, and then install this package. </p> <h3>Conclusion</h3> <p>As you can see, adding a software to buildroot is simply a matter of writing a <i>Makefile</i> using an already existing example and to modify it according to the compilation process of the software. </p> <p>If you package software that might be useful for other persons, don't forget to send a patch to Buildroot developers !</p> <h2><a name="links" id="links"></a>Resources</h2> <p>To learn more about Buildroot you can visit these websites:</p> <ul> <li><a href="http://www.uclibc.org/">http://www.uclibc.org/</a></li> <li><a href="http://www.busybox.net/">http://www.busybox.net/</a></li> </ul> </div> <!-- <a href="http://validator.w3.org/check?uri=referer"><img border="0" height="31" width="88" src="images/valid-html401.png" alt="Valid HTML"></img></a> --> </body> </html>