<!DOCTYPE html>
<html lang="en">

<head>
  <title>Buildroot - Usage and documentation</title>
  <meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
  <link rel="stylesheet" href="stylesheet.css">
</head>

<body>
  <div class="main">
    <div class="titre">
      <h1>Buildroot</h1>
    </div>

    <p><a href="http://buildroot.net/">Buildroot</a> usage and documentation 
    by Thomas Petazzoni. Contributions from Karsten Kruse, Ned Ludd, Martin 
    Herren and others.</p>

    <ul>
      <li><a href="#about">About Buildroot</a></li>
      <li><a href="#download">Obtaining Buildroot</a></li>
      <li><a href="#using">Using Buildroot</a></li>
      <li><a href="#custom_targetfs">Customizing the generated target filesystem</a></li>
      <li><a href="#custom_busybox">Customizing the Busybox configuration</a></li>
      <li><a href="#custom_uclibc">Customizing the uClibc configuration</a></li>
      <li><a href="#custom_linux26">Customizing the Linux kernel configuration</a></li>
      <li><a href="#rebuilding_packages">Understanding how to rebuild packages</a></li>
      <li><a href="#buildroot_innards">How Buildroot works</a></li>
      <li><a href="#using_toolchain">Using the uClibc toolchain outside Buildroot</a></li>
      <li><a href="#external_toolchain">Use an external toolchain</a></li>
      <li><a href="#downloaded_packages">Location of downloaded packages</a></li>
      <li><a href="#add_packages">Adding new packages to Buildroot</a></li>
      <li><a href="#board_support">Creating your own board support</a></li>
      <li><a href="#links">Resources</a></li>
    </ul>

    <h2 id="about">About Buildroot</h2>

    <p>Buildroot is a set of Makefiles and patches that allows you to easily 
    generate a cross-compilation toolchain, a root filesystem and a Linux 
    kernel image for your target. Buildroot can be used for one, two or all 
    of these options, independently.</p>

    <p>Buildroot is useful mainly for people working with embedded systems. 
    Embedded systems often use processors that are not the regular x86 
    processors everyone is used to having in his PC. They can be PowerPC 
    processors, MIPS processors, ARM processors, etc.</p>

    <p>A compilation toolchain is the set of tools that allows you to 
    compile code for your system. It consists of a compiler (in our case, 
    <code>gcc</code>), binary utils like assembler and linker (in our case, 
    <code>binutils</code>) and a C standard library (for example 
    <a href="http://www.gnu.org/software/libc/libc.html">GNU Libc</a>, 
    <a href="http://www.uclibc.org/">uClibc</a> or 
    <a href="http://www.fefe.de/dietlibc/">dietlibc</a>). The system installed 
    on your development station certainly already has a compilation 
    toolchain that you can use to compile an application that runs on your 
    system. If you're using a PC, your compilation toolchain runs on an x86 
    processor and generates code for an x86 processor. Under most Linux 
    systems, the compilation toolchain uses the GNU libc (glibc) as the C 
    standard library.  This compilation toolchain is called the &quot;host 
    compilation toolchain&quot;. The machine on which it is running, and on 
    which you're working, is called the &quot;host system&quot;. The 
    compilation toolchain is provided by your distribution, and Buildroot 
    has nothing to do with it (other than using it to build a 
    cross-compilation toolchain and other tools that are run on the 
    development host).</p>

    <p>As said above, the compilation toolchain that comes with your system 
    runs on and generates code for the processor in your host system. As 
    your embedded system has a different processor, you need a 
    cross-compilation toolchain &mdash; a compilation toolchain that runs on 
    your host system but generates code for your target system (and target 
    processor). For example, if your host system uses x86 and your target 
    system uses ARM, the regular compilation toolchain on your host runs on 
    x86 and generates code for x86, while the cross-compilation toolchain 
    runs on x86 and generates code for ARM.</p>

    <p>Even if your embedded system uses an x86 processor, you might be 
    interested in Buildroot for two reasons:</p>

    <ul>
      <li>The compilation toolchain on your host certainly uses the GNU Libc 
      which is a complete but huge C standard library. Instead of using GNU 
      Libc on your target system, you can use uClibc which is a tiny C 
      standard library. If you want to use this C library, then you need a 
      compilation toolchain to generate binaries linked with it. Buildroot 
      can do that for you.</li>

      <li>Buildroot automates the building of a root filesystem with all needed
      tools like busybox. That makes it much easier than doing it by hand.</li>
    </ul>

    <p>You might wonder why such a tool is needed when you can compile
    <code>gcc</code>, <code>binutils</code>, <code>uClibc</code> and all
    the other tools by hand. Of course doing so is possible. But, dealing with 
    all of the configure options and problems of every <code>gcc</code> or 
    <code>binutils</code> version is very time-consuming and uninteresting. 
    Buildroot automates this process through the use of Makefiles and has a 
    collection of patches for each <code>gcc</code> and <code>binutils</code> 
    version to make them work on most architectures.</p>

    <p>Moreover, Buildroot provides an infrastructure for reproducing
    the build process of your kernel, cross-toolchain, and embedded root 
    filesystem. Being able to reproduce the build process will be useful when a 
    component needs to be patched or updated or when another person is supposed 
    to take over the project.</p>

    <h2 id="download">Obtaining Buildroot</h2>

    <p>Buildroot releases are made approximately every 3
    months. Direct Git access and daily snapshots are also
    available if you want more bleeding edge.</p>

    <p>Releases are available at 
    <a href="http://buildroot.net/downloads/">http://buildroot.net/downloads/</a>.</p>

    <p>The latest snapshot is always available at 
    <a href="http://buildroot.net/downloads/snapshots/buildroot-snapshot.tar.bz2">http://buildroot.net/downloads/snapshots/buildroot-snapshot.tar.bz2</a>,
    and previous snapshots are also available at 
    <a href="http://buildroot.net/downloads/snapshots/">http://buildroot.net/downloads/snapshots/</a>.</p>

    <p>To download Buildroot using Git you can simply follow
    the rules described on the &quot;Accessing Git&quot; page 
    (<a href= "http://buildroot.net/git.html">http://buildroot.net/git.html</a>)
    of the Buildroot website 
    (<a href="http://buildroot.net">http://buildroot.net</a>).
    For the impatient, here's a quick recipe:</p>

<pre>
 $ git clone git://git.buildroot.net/buildroot
</pre>

    <h2 id="using">Using Buildroot</h2>

    <p>Buildroot has a nice configuration tool similar to the one you can find
    in the Linux kernel 
    (<a href="http://www.kernel.org/">http://www.kernel.org/</a>) or in Busybox
    (<a href="http://www.busybox.org/">http://www.busybox.org/</a>). Note that
    you can (and should) build everything as a normal user. There is no need to 
    be root to configure and use Buildroot. The first step is to run the 
    configuration assistant:</p>

<pre>
 $ make menuconfig
</pre>

    <p>to run the curses-based configurator, or</p>

<pre>
 $ make xconfig
</pre>

    <p>or</p>

<pre>
 $ make gconfig
</pre>

    <p>to run the Qt3 or GTK-based configurators.</p>

    <p>All of these "make" commands will need to build a configuration 
    utility, so you may need to install "development" packages for relevant 
    libraries used by the configuration utilities. On Debian-like systems, 
    the <code>libncurses5-dev</code> package is required to use the <i>
    menuconfig</i> interface, <code>libqt3-mt-dev</code> is required to use 
    the <i>xconfig</i> interface, and <code>libglib2.0-dev, libgtk2.0-dev 
    and libglade2-dev</code> are needed to used the <i>gconfig</i> interface.</p>

    <p>For each menu entry in the configuration tool, you can find associated 
    help that describes the purpose of the entry.</p>

    <p>Once everything is configured, the configuration tool generates a
    <code>.config</code> file that contains the description of your
    configuration. It will be used by the Makefiles to do what's needed.</p>


    <p>Let's go:</p>

<pre>
 $ make
</pre>

    <p>This command will generally perform the following steps:</p>
    <ul>
      <li>Download source files (as required)</li>
      <li>Configure cross-compile toolchain</li>
      <li>Build/install cross-compile toolchain</li>
      <li>Build/install selected target packages</li>
      <li>Build a kernel image</li>
      <li>Create a root filesystem in selected formats</li>
    </ul>
    <p>Some of the above steps might not be performed if they are not
    selected in the Buildroot configuration.
   </p>

    <p>Buildroot output is stored in a single directory, <code>output/</code>. 
    This directory contains several subdirectories:</p>

    <ul>
      <li><code>images/</code> where all the images (kernel image, 
      bootloader and root filesystem images) are stored.</li>

      <li><code>build/</code> where all the components except for the 
      cross-compilation toolchain are built (this includes tools needed to 
      run Buildroot on the host and packages compiled for the target). The 
      <code>build/</code> directory contains one subdirectory for each of 
      these components.</li>

      <li><code>staging/</code> which contains a hierarchy similar to a root 
      filesystem hierarchy. This directory contains the installation of the 
      cross-compilation toolchain and all the userspace packages selected 
      for the target. However, this directory is <i>not</i> intended to be 
      the root filesystem for the target: it contains a lot of development 
      files, unstripped binaries and libraries that make it far too big for 
      an embedded system. These development files are used to compile 
      libraries and applications for the target that depend on other 
      libraries.</li>

      <li><code>target/</code> which contains <i>almost</i> the root 
      filesystem for the target: everything needed is present except the 
      device files in <code>/dev/</code> (Buildroot can't create them 
      because Buildroot doesn't run as root and does not want to run as 
      root). Therefore, this directory <b>should not be used on your target</b>.
      Instead, you should use one of the images built in the 
      <code>images/</code> directory. If you need an extracted image of the 
      root filesystem for booting over NFS, then use the tarball image 
      generated in <code>images/</code> and extract it as root.<br/>Compared 
      to <code>staging/</code>, <code>target/</code> contains only the 
      files and libraries needed to run the selected target applications: 
      the development files (headers, etc.) are not present.</li>

      <li><code>host/</code> contains the installation of tools compiled for 
      the host that are needed for the proper execution of Buildroot except 
      for the cross-compilation toolchain which is installed under 
      <code>staging/</code>.</li>

      <li><code>toolchain/</code> contains the build directories for the 
      various components of the cross-compilation toolchain.</li>
    </ul>

    <h3 id="offline_builds">Offline builds</h3>

    <p>If you intend to do an offline build and just want to download
    all sources that you previously selected in the configurator
    (<i>menuconfig</i>, <i>xconfig</i> or <i>gconfig</i>), then issue:</p>

<pre>
 $ make source
</pre>

    <p>You can now disconnect or copy the content of your <code>dl</code>
    directory to the build-host.</p>

    <h3 id="building_out_of_tree">Building out-of-tree</h3>

    <p>Buildroot supports building out of tree with a syntax similar to the 
    Linux kernel. To use it, add O=&lt;directory&gt; to the make command 
    line:</p>

<pre>
 $ make O=/tmp/build
</pre>

    <p>Or:</p>

<pre>
 $ cd /tmp/build; make O=$PWD -C path/to/buildroot
</pre>

    <p>All the output files will be located under <code>/tmp/build</code>.</p>

    <p>When using out-of-tree builds, the Buildroot <code>.config</code> and 
    temporary files are also stored in the output directory. This means that 
    you can safely run multiple builds in parallel using the same source 
    tree as long as they use unique output directories.</p>

    <p>For ease of use, Buildroot generates a Makefile wrapper in the output 
    directory - So after the first run, you no longer need to pass 
    <code>O=..</code> and <code>-C ..</code>, simply run (in the output 
    directory):</p>

<pre>
 $ make &lt;target&gt;
</pre>

    <h3 id="environment_variables">Environment variables</h3>

    <p>Buildroot also honors some environment variables when they are passed
    to <code>make</code> or set in the environment:</p>
    <ul>
      <li><code>HOSTCXX</code>, the host C++ compiler to use</li>
      <li><code>HOSTCC</code>, the host C compiler to use</li>
      <li><code>UCLIBC_CONFIG_FILE=&lt;path/to/.config&gt;</code>, path to 
      the uClibc configuration file to use to compile uClibc if an 
      internal toolchain is being built</li>
      <li><code>BUSYBOX_CONFIG_FILE=&lt;path/to/.config&gt;</code>, path to 
      the Busybox configuration file</li>
      <li><code>BUILDROOT_DL_DIR</code> to override the directory in which 
      Buildroot stores/retrieves downloaded files</li>
    </ul>

    <p>An example that uses config files located in the toplevel directory and
    in your $HOME:</p>

<pre>
$ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config
</pre>

    <p>If you want to use a compiler other than the default <code>gcc</code>
    or <code>g++</code> for building helper-binaries on your host, then do</p>

<pre>
$ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc-4.3-HEAD
</pre>

	<h2 id="custom_targetfs">Customizing the generated target filesystem</h2>

    <p>There are a few ways to customize the resulting target filesystem:</p>

    <ul>
      <li>Customize the target filesystem directly and rebuild the image. 
      The target filesystem is available under <code>output/target/</code>. 
      You can simply make your changes here and run make afterwards &mdash; 
      this will rebuild the target filesystem image. This method allows you 
      to do anything to the target filesystem, but if you decide to 
      completely rebuild your toolchain and tools, these changes will be 
      lost.</li>

      <li>Customize the target filesystem skeleton available under <code>
      fs/skeleton/</code>. You can customize configuration files or other 
      stuff here. However, the full file hierarchy is not yet present 
      because it's created during the compilation process. Therefore, you 
      can't do everything on this target filesystem skeleton, but changes to 
      it do remain even if you completely rebuild the cross-compilation 
      toolchain and the tools. <br /> You can also customize the <code>
      target/generic/device_table.txt</code> file which is used by the 
      tools that generate the target filesystem image to properly set 
      permissions and create device nodes.<br /> These customizations are 
      deployed into <code>output/target/</code> just before the actual image 
      is made. Simply rebuilding the image by running make should propagate 
      any new changes to the image.</li>

      <li>Add support for your own target in Buildroot so that you
      have your own target skeleton (see <a href="#board_support">this
      section</a> for details).</li>

      <li>In the Buildroot configuration, you can specify the path to a 
      post-build script that gets called <i>after</i> Buildroot builds all 
      the selected software but <i>before</i> the the rootfs packages are 
      assembled. The destination root filesystem folder is given as the 
      first argument to this script, and this script can then be used to 
      copy programs, static data or any other needed file to your target 
      filesystem.<br/>You should, however, use this feature with care. 
      Whenever you find that a certain package generates wrong or unneeded 
      files, you should fix that package rather than work around it with a 
      post-build cleanup script.</li>

      <li>A special package, <i>customize</i>, stored in
      <code>package/customize</code> can be used. You can put all the
      files that you want to see in the final target root filesystem
      in <code>package/customize/source</code> and then enable this
      special package in the configuration system.</li>
    </ul>

    <h2 id="custom_busybox">Customizing the Busybox configuration</h2>

    <p><a href="http://www.busybox.net/">Busybox</a> is very configurable, 
    and you may want to customize it. You can follow these simple steps to 
    do so. This method isn't optimal, but it's simple and it works:</p>

    <ol>
      <li>Do an initial compilation of Buildroot with busybox without 
      trying to customize it.</li>

      <li>Invoke <code>make busybox-menuconfig</code>.
      The nice configuration tool appears, and you can
      customize everything.</li>

      <li>Run the compilation of Buildroot again.</li>
    </ol>

    <p>Otherwise, you can simply change the
    <code>package/busybox/busybox-&lt;version&gt;.config</code> file if you
    know the options you want to change without using the configuration tool.
    </p>
    
    <p>If you want to use an existing config file for busybox, then see
    section <a href="#environment_variables">environment variables</a>.</p>

    <h2 id="custom_uclibc">Customizing the uClibc configuration</h2>

    <p>Just like <a href="#custom_busybox">BusyBox</a>, <a
    href="http://www.uclibc.org/">uClibc</a> offers a lot of
    configuration options. They allow you to select various
    functionalities depending on your needs and limitations.</p>

    <p>The easiest way to modify the configuration of uClibc is to
    follow these steps:</p>

    <ol>
      <li>Do an initial compilation of Buildroot without trying to
      customize uClibc.</li>

      <li>Invoke <code>make uclibc-menuconfig</code>.
      The nice configuration assistant, similar to
      the one used in the Linux kernel or Buildroot, appears. Make
      your configuration changes as appropriate.</li>

      <li>Copy the <code>.config</code> file to
      <code>toolchain/uClibc/uClibc.config</code> or
      <code>toolchain/uClibc/uClibc.config-locale</code>. The former
      is used if you haven't selected locale support in Buildroot
      configuration, and the latter is used if you have selected
      locale support.</li>

      <li>Run the compilation of Buildroot again.</li>
    </ol>

    <p>Otherwise, you can simply change
    <code>toolchain/uClibc/uClibc.config</code> or
    <code>toolchain/uClibc/uClibc.config-locale</code> without running
    the configuration assistant.</p>

    <p>If you want to use an existing config file for uclibc, then see
    section <a href="#environment_variables">environment variables</a>.</p>

    <h2 id="custom_linux26">Customizing the Linux kernel configuration</h2>

    <p>The Linux kernel configuration can be customized just like <a
    href="#custom_busybox">BusyBox</a> and <a href="#custom_uclibc">uClibc</a>
    using <code>make linux26-menuconfig</code>. Make sure you have
    enabled the kernel build in <code>make menuconfig</code> first.
    Once done, run <code>make</code> to (re)build everything.</p>

    <p>If you want to use an existing config file for Linux, then see
    section <a href="#environment_variables">environment variables</a>.</p>

    <h2 id="rebuilding_packages">Understanding how to rebuild packages</h2>

    <p>One of the most common questions asked by Buildroot
    users is how to rebuild a given package or how to
    remove a package without rebuilding everything from scratch.</p>

    <p>Removing a package is currently unsupported by Buildroot
    without rebuilding from scratch. This is because Buildroot doesn't
    keep track of which package installs what files in the
    <code>output/staging</code> and <code>output/target</code>
    directories. However, implementing clean package removal is on the
    TODO-list of Buildroot developers.</p>

    <p>The easiest way to rebuild a single package from scratch is to
    remove its build directory in <code>output/build</code>. Buildroot
    will then re-extract, re-configure, re-compile and re-install this
    package from scratch.</p>

    <p>However, if you don't want to rebuild the package completely
    from scratch, a better understanding of the Buildroot internals is
    needed. Internally, to keep track of which steps have been done
    and which steps remain to be done, Buildroot maintains stamp
    files (empty files that just tell whether this or that action
    has been done). The problem is that these stamp files are not
    uniformly named and handled by the different packages, so some
    understanding of the particular package is needed.</p>

    <p>For packages relying on Buildroot packages infrastructures (see
    <a href="#add_packages">this section</a> for details), the
    following stamp files are relevant:</p>

    <ul>
      <li><code>output/build/packagename-version/.stamp_configured</code>. If
      removed, Buildroot will trigger the recompilation of the package
      from the configuration step (execution of
      <code>./configure</code>).</li>

      <li><code>output/build/packagename-version/.stamp_built</code>. If
      removed, Buildroot will trigger the recompilation of the package
      from the compilation step (execution of <code>make</code>).</li>
    </ul>

    <p>For other packages, an analysis of the specific <i>package.mk</i> 
    file is needed. For example, the zlib Makefile used to look like this 
    (before it was converted to the generic package infrastructure):</p>

<pre>
$(ZLIB_DIR)/.configured: $(ZLIB_DIR)/.patched
	(cd $(ZLIB_DIR); rm -rf config.cache; \
		[...]
	)
	touch $@

$(ZLIB_DIR)/libz.a: $(ZLIB_DIR)/.configured
	$(MAKE) -C $(ZLIB_DIR) all libz.a
	touch -c $@
</pre>

    <p>If you want to trigger the reconfiguration, you need to
    remove <code>output/build/zlib-version/.configured</code>. If
    you want to trigger only the recompilation, you need to remove
    <code>output/build/zlib-version/libz.a</code>.</p>

    <p>Note that most packages, if not all, will progressively be
    ported over the generic or the autotools infrastructure, making it
    much easier to rebuild individual packages.</p>

    <h2 id="buildroot_innards">How Buildroot works</h2>

    <p>As mentioned above, Buildroot is basically a set of Makefiles that 
    downloads, configures and compiles software with the correct options. It 
    also includes patches for various software packages &mdash;  mainly the 
    ones involved in the cross-compilation tool chain (<code>gcc</code>, 
    <code>binutils</code> and <code>uClibc</code>).</p>

    <p>There is basically one Makefile per software package, and they are 
    named with the <code>.mk</code> extension. Makefiles are split into 
    three main sections:</p>

    <ul>
      <li><b>toolchain</b> (in the <code>toolchain/</code> directory) contains
      the Makefiles and associated files for all software related to the
      cross-compilation toolchain: <code>binutils</code>, <code>ccache</code>,
      <code>gcc</code>, <code>gdb</code>, <code>kernel-headers</code> and
      <code>uClibc</code>.</li>

      <li><b>package</b> (in the <code>package/</code> directory) contains the
      Makefiles and associated files for all user-space tools that Buildroot
      can compile and add to the target root filesystem. There is one
      sub-directory per tool.</li>

      <li><b>target</b> (in the <code>target</code> directory) contains the
      Makefiles and associated files for software related to the generation of
      the target root filesystem image. Four types of filesystems are supported:
      ext2, jffs2, cramfs and squashfs. For each of them there is a
      sub-directory with the required files. There is also a
      <code>default/</code> directory that contains the target filesystem
      skeleton.</li>
    </ul>

    <p>Each directory contains at least 2 files:</p>

    <ul>
      <li><code>something.mk</code> is the Makefile that downloads, configures,
      compiles and installs the package <code>something</code>.</li>

      <li><code>Config.in</code> is a part of the configuration tool
      description file. It describes the options related to the 
      package.</li>
    </ul>

    <p>The main Makefile performs the following steps (once the
    configuration is done):</p>

    <ol>
      <li>Create all the output directories: <code>staging</code>,
      <code>target</code>, <code>build</code>, <code>stamps</code>,
      etc. in the output directory (<code>output/</code> by default,
      another value can be specified using <code>O=</code>)</li>

      <li>Generate all the targets listed in the
      <code>BASE_TARGETS</code> variable. When an internal toolchain
      is used, this means generating the cross-compilation
      toolchain. When an external toolchain is used, this means checking
      the features of the external toolchain and importing it into the
      Buildroot environment.</li>

      <li>Generate all the targets listed in the <code>TARGETS</code>
      variable. This variable is filled by all the individual
      components' Makefiles. Generating these targets will
      trigger the compilation of the userspace packages (libraries,
      programs), the kernel, the bootloader and the generation of the
      root filesystem images, depending on the configuration.</li>
    </ol>

    <h2 id="board_support"> Creating your own board support</h2>

    <p>Creating your own board support in Buildroot allows you to have
    a convenient place to store your project's target filesystem skeleton
    and configuration files for Buildroot, Busybox, uClibc, and the kernel.

    <p>Follow these steps to integrate your board in Buildroot:</p>

    <ol>
      <li>Create a new directory in <code>target/device/</code> named
      after your company or organization</li>

      <li>Add a line <code>source
      "target/device/yourcompany/Config.in"</code> in
      <code>target/device/Config.in</code> so that your board appears
      in the configuration system</li>

      <li>In <code>target/device/yourcompany/</code>, create a
      directory for your project. This way, you'll be able to store
      several of your company's projects inside Buildroot.</li>

      <li>Create a <code>target/device/yourcompany/Config.in</code>
      file that looks like the following:

<pre>
menuconfig BR2_TARGET_COMPANY
	bool "Company projects"

if BR2_TARGET_COMPANY

config BR2_TARGET_COMPANY_PROJECT_FOOBAR
	bool "Support for Company project Foobar"
	help
	  This option enables support for Company project Foobar

endif
</pre>

      Of course, you should customize the different values to match your
      company/organization and your project. This file will create a
      menu entry that contains the different projects of your
      company/organization.</li>

      <li>Create a <code>target/device/yourcompany/Makefile.in</code>
      file that looks like the following:

<pre>
ifeq ($(BR2_TARGET_COMPANY_PROJECT_FOOBAR),y)
include target/device/yourcompany/project-foobar/Makefile.in
endif
</pre>

      </li>

      <li>Create the
      <code>target/device/yourcompany/project-foobar/Makefile.in</code>
      file. It is recommended that you define a
      <code>BOARD_PATH</code> variable set to
      <code>target/device/yourcompany/project-foobar</code> as it
      will simplify further definitions. Then, the file might define
      one or several of the following variables:
        <ul>
          <li><code>TARGET_SKELETON</code> to a directory that contains
          the target skeleton for your project. If this variable is
          defined, this target skeleton will be used instead of the
          default one. If defined, the convention is to define it to
          <code>$(BOARD_PATH)/target_skeleton</code> so that the target
          skeleton is stored in the board specific directory.</li>
        </ul>
      </li>

      <li>In the
      <code>target/device/yourcompany/project-foobar/</code>
      directory you can store configuration files for the kernel,
      Busybox or uClibc.

      You can furthermore create one or more preconfigured configuration
      files, referencing those files. These config files are named
      <code>something_defconfig</code> and are stored in the toplevel
      <code>configs/</code> directory. Your users will then be able
      to run <code>make something_defconfig</code> and get the right
      configuration for your project</li>
    </ol>

    <h2 id="using_toolchain">Using the generated toolchain outside Buildroot</h2>

    <p>You may want to compile for your target your own programs or other 
    software that are not packaged in Buildroot. In order to do this you can 
    use the toolchain that was generated by Buildroot.</p>

    <p>The toolchain generated by Buildroot is located by default in 
    <code>output/staging/</code>. The simplest way to use it is to add 
    <code>output/staging/usr/bin/</code> to your PATH environment variable and 
    then to use <code>ARCH-linux-gcc</code>, <code>ARCH-linux-objdump</code>, 
    <code>ARCH-linux-ld</code>, etc.</p>

    <p><b>Important</b>: do not try to move a gcc-3.x toolchain to another 
    directory &mdash; it won't work because there are some hardcoded paths 
    in the gcc-3.x configuration. If you are using a current gcc-4.x, it is 
    possible to relocate the toolchain &mdash; but then <code>--sysroot</code> 
    must be passed every time the compiler is called to tell where the 
    libraries and header files are.</p>

    <p>It is also possible to generate the Buildroot toolchain in a 
    directory other than <code>output/staging</code> by using the <code>
    Build options -&gt; Toolchain and header file location</code> options. 
    This could be useful if the toolchain must be shared with other users.</p>

    <h2 id="downloaded_packages">Location of downloaded packages</h2>

    <p>It might be useful to know that the various tarballs that are
    downloaded by the Makefiles are all stored in the <code>DL_DIR</code> 
    which by default is the <code>dl</code> directory. It's useful, for 
    example, if you want to keep a complete version of Buildroot which is 
    know to be working with the associated tarballs. This will allow you to 
    regenerate the toolchain and the target filesystem with exactly the same 
    versions.</p>

    <p>If you maintain several Buildroot trees, it might be better to have a 
    shared download location. This can be accessed by creating a symbolic 
    link from the <code>dl</code> directory to the shared download location:</p>

<pre>
ln -s &lt;shared download location&gt; dl
</pre>

    <p>Another way of accessing a shared download location is to
    create the <code>BUILDROOT_DL_DIR</code> environment variable.
    If this is set, then the value of DL_DIR in the project is
    overridden. The following line should be added to
    <code>&quot;~/.bashrc&quot;</code>.</p>

<pre>
export BUILDROOT_DL_DIR &lt;shared download location&gt;
</pre>

    <h2 id="external_toolchain">Using an external toolchain</h2>

    <p>It might be useful not to use the toolchain generated by
    Buildroot, for example if you already have a toolchain that is known
    to work for your specific CPU, or if the toolchain generation feature
    of Buildroot is not sufficiently flexible for you (for example if you
    need to generate a system with <i>glibc</i> instead of
    <i>uClibc</i>). Buildroot supports using an <i>external
    toolchain</i>.</p>

    <p>To enable the use of an external toolchain, go in the
    <code>Toolchain</code> menu, and :</p>

    <ul>
      <li>Select the <code>External binary toolchain</code> toolchain
      type</li>
      <li>Adjust the <code>External toolchain path</code>
      appropriately. It should be set to a path where a bin/ directory
      contains your cross-compiling tools</li>
      <li>Adjust the <code>External toolchain prefix</code> so that the
      prefix, suffixed with <code>-gcc</code> or <code>-ld</code> will
      correspond to your cross-compiling tools</li>
    </ul>

    <p>If you are using an external toolchain based on <i>uClibc</i>, the
    <code>Core C library from the external toolchain</code> and
    <code>Libraries to copy from the external toolchain</code> options
    should already have correct values. However, if your external
    toolchain is based on <i>glibc</i>, you'll have to change these values
    according to your cross-compiling toolchain.</p>

    <p>To generate external toolchains, we recommend using 
    <a href="http://ymorin.is-a-geek.org/dokuwiki/projects/crosstool">Crosstool-NG</a>.
    It allows generating toolchains based on <i>uClibc</i>, <i>glibc</i>
    and <i>eglibc</i> for a wide range of architectures and has good
    community support.</p>

    <h2 id="add_packages">Adding new packages to Buildroot</h2>

    <p>This section covers how new packages (userspace libraries or 
    applications) can be integrated into Buildroot. It also allows to 
    understand how existing packages are integrated, which is needed to fix 
    issues or tune their configuration.</p>

    <ul>
      <li><a href="#package-directory">Package directory</a></li>
      <li><a href="#config-in-file"><code>Config.in</code> file</a></li>
      <li><a href="#mk-file">The <code>.mk</code> file</a>
        <ul>
          <li><a href="#generic-tutorial">Makefile for generic packages : tutorial</a></li>
          <li><a href="#generic-reference">Makefile for generic packages : reference</a></li>
          <li><a href="#autotools-tutorial">Makefile for autotools-based packages : tutorial</a></li>
          <li><a href="#autotools-reference">Makefile for autotools-based packages : reference</a></li>
          <li><a href="#manual-tutorial">Manual Makefile : tutorial</a></li>
        </ul>
      </li>
      <li><a href="#gettext-integration">Gettext integration and interaction with packages</a></li>
    </ul>

    <h3 id="package-directory">Package directory</h3>

    <p>First of all, create a directory under the <code>package</code>
    directory for your software, for example <code>foo</code>.</p>

    <p>Some packages have been grouped by topic in a sub-directory:
    <code>multimedia</code>, <code>java</code>, <code>databases</code>,
    <code>editors</code>, <code>x11r7</code>, <code>games</code>. If your 
    package fits in one of these categories, then create your package 
    directory in these.</p>

    <h3 id="config-in-file"><code>Config.in</code> file</h3>

    <p>Then, create a file named <code>Config.in</code>. This file
    will contain the option descriptions related to our
    <code>libfoo</code> software that will be used and displayed in the
    configuration tool. It should basically contain :</p>

<pre>
config BR2_PACKAGE_LIBFOO
	bool "libfoo"
	help
	  This is a comment that explains what libfoo is.

	  http://foosoftware.org/libfoo/
</pre>

    <p>Of course, you can add other options to configure particular
    things in your software. You can look at examples in other
    packages. The syntax of the Config.in file is the same as the one
    for the kernel Kconfig file. The documentation for this syntax is
    available at 
    <a href="http://lxr.free-electrons.com/source/Documentation/kbuild/kconfig-language.txt">http://lxr.free-electrons.com/source/Documentation/kbuild/kconfig-language.txt</a>
    </p>

    <p>Finally you have to add your new <code>libfoo/Config.in</code> to
    <code>package/Config.in</code> (or in a category subdirectory if
    you decided to put your package in one of the existing
    categories). The files included there are <em>sorted
    alphabetically</em> per category and are <em>NOT</em> supposed to
    contain anything but the <em>bare</em> name of the package.</p>

<pre>
source "package/libfoo/Config.in"
</pre>

    <h3 id="mk-file">The <code>.mk</code> file</h3>

    <p>Finally, here's the hardest part. Create a file named
    <code>foo.mk</code>. It describes how the package should be
    downloaded, configured, built, installed, etc.</p>

    <p>Depending on the package type, the <code>.mk</code> file must be
    written in a different way, using different infrastructures:</p>

    <ul>
      <li>Makefiles for generic packages (not using autotools), based on an 
      infrastructure similar to the one used for autotools-based packages, 
      but which requires a little more work from the developer : specify 
      what should be done at for the configuration, compilation, installation 
      and cleanup of the package. This infrastructure must be used for all 
      packages that do not use the autotools as their build system. In the 
      future, other specialized infrastructures might be written for other 
      build systems.<br/>We cover them through a 
      <a href="#generic-tutorial">tutorial</a> and a 
      <a href="#generic-reference">reference</a>.</li>

      <li>Makefiles for autotools-based (autoconf, automake, etc.) software. 
      We provide a dedicated infrastructure for such packages, since 
      autotools is a very common build system. This infrastructure <i>must 
      </i> be used for new packages that rely on the autotools as their 
      build system.<br/>We cover them through a 
      <a href="#autotools-tutorial">tutorial</a> and a 
      <a href="#autotools-reference">reference</a>.</li>

      <li>Manual Makefiles. These are currently obsolete and no new manual 
      Makefiles should be added. However, since there are still many of them 
      in the tree and because the , we keep them documented in a
      <a href="#manual-tutorial">tutorial</a>.</li>
    </ul>

    <h4 id="generic-tutorial">Makefile for generic packages : tutorial</h4>

<pre>
<span style="color: #000000">01:</span><span style="font-style: italic; color: #9A1900"> #############################################################</span>
<span style="color: #000000">02:</span><span style="font-style: italic; color: #9A1900"> #</span>
<span style="color: #000000">03:</span><span style="font-style: italic; color: #9A1900"> # libfoo</span>
<span style="color: #000000">04:</span><span style="font-style: italic; color: #9A1900"> #</span>
<span style="color: #000000">05:</span><span style="font-style: italic; color: #9A1900"> #############################################################</span>
<span style="color: #000000">06:</span><span style="color: #009900"> LIBFOO_VERSION</span> = 1.0
<span style="color: #000000">07:</span><span style="color: #009900"> LIBFOO_SOURCE</span> = libfoo-<span style="color: #009900">$(LIBFOO_VERSION)</span>.tar.gz
<span style="color: #000000">08:</span><span style="color: #009900"> LIBFOO_SITE</span> = http://www.foosoftware.org/download
<span style="color: #000000">09:</span><span style="color: #009900"> LIBFOO_INSTALL_STAGING</span> = YES
<span style="color: #000000">10:</span><span style="color: #009900"> LIBFOO_DEPENDENCIES</span> = host-libaaa libbbb
<span style="color: #000000">11:</span> 
<span style="color: #000000">12:</span> define LIBFOO_BUILD_CMDS
<span style="color: #000000">13:</span> 	<span style="color: #009900">$(MAKE)</span> CC=<span style="color: #009900">$(TARGET_CC)</span> LD=<span style="color: #009900">$(TARGET_LD)</span> -C <span style="color: #009900">$(@D)</span> all
<span style="color: #000000">14:</span> endef
<span style="color: #000000">15:</span> 
<span style="color: #000000">16:</span> define LIBFOO_INSTALL_STAGING_CMDS
<span style="color: #000000">17:</span> 	<span style="color: #009900">$(INSTALL)</span> -D -m 0755 <span style="color: #009900">$(@D)</span>/libfoo.a <span style="color: #009900">$(STAGING_DIR)</span>/usr/lib/libfoo.a
<span style="color: #000000">18:</span> 	<span style="color: #009900">$(INSTALL)</span> -D -m 0644 <span style="color: #009900">$(@D)</span>/foo.h <span style="color: #009900">$(STAGING_DIR)</span>/usr/include/foo.h
<span style="color: #000000">19:</span> 	<span style="color: #009900">$(INSTALL)</span> -D -m 0755 <span style="color: #009900">$(@D)</span>/libfoo.so* <span style="color: #009900">$(STAGING_DIR)</span>/usr/lib
<span style="color: #000000">20:</span> endef
<span style="color: #000000">21:</span> 
<span style="color: #000000">22:</span> define LIBFOO_INSTALL_TARGET_CMDS
<span style="color: #000000">23:</span> 	<span style="color: #009900">$(INSTALL)</span> -D -m 0755 <span style="color: #009900">$(@D)</span>/libfoo.so* <span style="color: #009900">$(TARGET_DIR)</span>/usr/lib
<span style="color: #000000">24:</span> 	<span style="color: #009900">$(INSTALL)</span> -d -m 0755 <span style="color: #009900">$(TARGET_DIR)</span>/etc/foo.d
<span style="color: #000000">25:</span> endef
<span style="color: #000000">26:</span> 
<span style="color: #000000">27:</span><span style="color: #009900"> $(eval $(call GENTARGETS,package,libfoo))</span>
</pre>

    <p>The Makefile begins on line 6 to 8 by metadata informations: the 
    version of the package (<code>LIBFOO_VERSION</code>), the name of the 
    tarball containing the package (<code>LIBFOO_SOURCE</code>) and the 
    Internet location at which the tarball can be downloaded 
    (<code>LIBFOO_SITE</code>). All variables must start with the same prefix, 
    <code>LIBFOO_</code> in this case. This prefix is always the uppercased 
    version of the package name (see below to understand where the package 
    name is defined).</p>

    <p>On line 9, we specify that this package wants to install something to 
    the staging space. This is often needed for libraries since they must 
    install header files and other development files in the staging space. 
    This will ensure that the commands listed in the 
    <code>LIBFOO_INSTALL_STAGING_CMDS</code> variable will be executed.</p>

    <p>On line 10, we specify the list of dependencies this package relies 
    on. These dependencies are listed in terms of lower-case package names, 
    which can be packages for the target (without the <code>host-</code> 
    prefix) or packages for the host (with the <code>host-</code>) prefix). 
    Buildroot will ensure that all these packages are built and installed 
    <i>before</i> the current package starts its configuration.</p>

    <p>The rest of the Makefile defines what should be done at the different 
    steps of the package configuration, compilation and installation. 
    <code>LIBFOO_BUILD_CMDS</code> tells what steps should be performed to 
    build the package. <code>LIBFOO_INSTALL_STAGING_CMDS</code> tells what 
    steps should be performed to install the package in the staging space. 
    <code>LIBFOO_INSTALL_TARGET_CMDS</code> tells what steps should be 
    performed to install the package in the target space.</p>

    <p>All these steps rely on the <code>$(@D)</code> variable, which 
    contains the directory where the source code of the package has been 
    extracted.</p>

    <p>Finally, on line 27, we call the <code>GENTARGETS</code> which 
    generates, according to the variables defined previously, all the 
    Makefile code necessary to make your package working.</p>

    <h4 id="generic-reference">Makefile for generic packages : reference</h4>

    <p>The <code>GENTARGETS</code> macro takes three arguments:</p>

    <ul>
      <li>The first argument is the package directory prefix. If your 
      package is in <code>package/libfoo</code>, then the directory prefix 
      is <code>package</code>. If your package is in 
      <code>package/editors/foo</code>, then the directory prefix must be 
      <code>package/editors</code>.</li>

      <li>The second argument is the lower-cased package name. It must match 
      the prefix of the variables in the <code>.mk</code> file and must 
      match the configuration option name in the <code>Config.in</code> 
      file. For example, if the package name is <code>libfoo</code>, so the 
      variables in the <code>.mk</code> must start with 
      <code>LIBFOO_</code> and the configuration option in the 
      <code>Config.in</code> file must be <code>BR2_PACKAGE_LIBFOO</code>.</li>

      <li>The third argument is optional. It can be used to tell if the 
      package if a target package (cross-compiled for the target) or a host 
      package (natively compiled for the host). If unspecified, it is 
      assumed that it is a target package. See below for details.</li>
    </ul>

    <p>For a given package, in a single <code>.mk</code> file, it is 
    possible to call GENTARGETS twice, once to create the rules to generate 
    a target package and once to create the rules to generate a host package:
    </p>

<pre>
$(eval $(call GENTARGETS,package,libfoo))
$(eval $(call GENTARGETS,package,libfoo,host))
</pre>

    <p>This might be useful if the compilation of the target package 
    requires some tools to be installed on the host. If the package name is 
    <code>libfoo</code>, then the name of the package for the target is also 
    <code>libfoo</code>, while the name of the package for the host is 
    <code>host-libfoo</code>. These names should be used in the DEPENDENCIES 
    variables of other packages if they depend on <code>libfoo</code> or 
    <code>host-libfoo</code>.</p>

    <p>The call to the <code>GENTARGETS</code> macro <b>must</b> be at the 
    end of the <code>.mk</code> file, after all variable definitions.</p>

    <p>For the target package, the <code>GENTARGETS</code> uses the 
    variables defined by the .mk file and prefixed by the uppercased package 
    name: <code>LIBFOO_*</code>. For the host package, it uses the 
    <code>HOST_LIBFOO_*</code>. For <i>some</i> variables, if the 
    <code>HOST_LIBFOO_</code> prefixed variable doesn't exist, the package 
    infrastructure uses the corresponding variable prefixed by 
    <code>LIBFOO_</code>. This is done for variables that are likely to have 
    the same value for both the target and host packages. See below for 
    details.</p>

    <p>The list of variables that can be set in a <code>.mk</code> file to 
    give metadata informations is (assuming the package name is 
    <code>libfoo</code>) :</p>

    <ul>
      <li><code>LIBFOO_VERSION</code>, mandatory, must contain the version 
      of the package. Note that if <code>HOST_LIBFOO_VERSION</code> doesn't 
      exist, it is assumed to be the same as <code>LIBFOO_VERSION</code>.
      <br/>Example: <code>LIBFOO_VERSION=0.1.2</code></li>

      <li><code>LIBFOO_SOURCE</code> may contain the name of the tarball of 
      the package. If <code>HOST_LIBFOO_SOURCE</code> is not specified, it 
      defaults to <code>LIBFOO_VERSION</code>. If none are specified, then 
      the value is assumed to be 
      <code>packagename-$(LIBFOO_VERSION).tar.gz</code>.<br/>Example: 
      <code>LIBFOO_SOURCE = foobar-$(LIBFOO_VERSION).tar.bz2</code></li>

      <li><code>LIBFOO_PATCH</code> may contain the name of a patch, that 
      will be downloaded from the same location as the tarball indicated in 
      <code>LIBFOO_SOURCE</code>. If <code>HOST_LIBFOO_PATCH</code> is not 
      specified, it defaults to <code>LIBFOO_PATCH</code>. Also note that 
      another mechanism is available to patch a package: all files of the 
      form <code>packagename-packageversion-description.patch</code> present 
      in the package directory inside Buildroot will be applied to the 
      package after extraction.</li>

      <li><code>LIBFOO_SITE</code> may contain the Internet location of the 
      tarball of the package. If <code>HOST_LIBFOO_SITE</code> is not 
      specified, it defaults to <code>LIBFOO_SITE</code>. If none are 
      specified, then the location is assumed to be 
      <code>http://$$(BR2_SOURCEFORGE_MIRROR).dl.sourceforge.net/sourceforge/packagename</code>.
      <br/>Example: 
      <code>LIBFOO_SITE=http://www.foosoftware.org/libfoo</code>.</li>

      <li><code>LIBFOO_DEPENDENCIES</code> lists the dependencies (in terms 
      of package name) that are required for the current target package to 
      compile. These dependencies are guaranteed to be compiled and 
      installed before the configuration of the current package starts. In a 
      similar way, <code>HOST_LIBFOO_DEPENDENCIES</code> lists the 
      dependency for the current host package.</li>

      <li><code>LIBFOO_INSTALL_STAGING</code> can be set to <code>YES</code> 
      or <code>NO</code> (default). If set to <code>YES</code>, then the 
      commands in the <code>LIBFOO_INSTALL_STAGING_CMDS</code> variables are 
      executed to install the package into the staging directory.</li>

      <li><code>LIBFOO_INSTALL_TARGET</code> can be set to <code>YES</code> 
      (default) or <code>NO</code>. If set to <code>YES</code>, then the 
      commands in the <code>LIBFOO_INSTALL_TARGET_CMDS</code> variables are 
      executed to install the package into the target directory.</li> </ul>

    <p>The recommended way to define these variables is to use the following 
    syntax:</p>

<pre>
LIBFOO_VERSION=2.32
</pre>

    <p>Now, the variables that define what should be performed at the 
    different steps of the build process.</p>

    <ul>
      <li><code>LIBFOO_CONFIGURE_CMDS</code>, used to list the actions to be 
      performed to configure the package before its compilation</li>

      <li><code>LIBFOO_BUILD_CMDS</code>, used to list the actions to be 
      performed to compile the package</li>

      <li><code>HOST_LIBFOO_INSTALL_CMDS</code>, used to list the actions to 
      be performed to install the package, when the package is a host 
      package. The package must install its files to the directory given by 
      <code>$(HOST_DIR)</code>. All files, including development files such 
      as headers should be installed, since other packages might be compiled 
      on top of this package.</li>

      <li><code>LIBFOO_INSTALL_TARGET_CMDS</code>, used to list the actions 
      to be performed to install the package to the target directory, when 
      the package is a target package. The package must install its files to 
      the directory given by <code>$(TARGET_DIR)</code>. Only the files 
      required for <i>execution</i> of the package 
      should be installed. Header files and documentation should not be 
      installed.</li>

      <li><code>LIBFOO_INSTALL_STAGING_CMDS</code>, used to list the actions 
      to be performed to install the package to the staging directory, when 
      the package is a target package. The package must install its files to 
      the directory given by <code>$(STAGING_DIR)</code>. All development 
      files should be installed, since they might be needed to compile other 
      packages.</li>

      <li><code>LIBFOO_CLEAN_CMDS</code>, used to list the actions to 
      perform to clean up the build directory of the package.</li>

      <li><code>LIBFOO_UNINSTALL_TARGET_CMDS</code>, used to list the actions 
      to uninstall the package from the target directory
      <code>$(TARGET_DIR)</code></li>

      <li><code>LIBFOO_UNINSTALL_STAGING_CMDS</code>, used to list the 
      actions to uninstall the package from the staging directory 
      <code>$(STAGING_DIR)</code>.</li>
    </ul>

    <p>The preferred way to define these variables is:</p>

<pre>
define LIBFOO_CONFIGURE_CMDS
	action 1
	action 2
	action 3
endef
</pre>

    <p>In the action definitions, you can use the following variables:</p>

    <ul>
      <li><code>$(@D)</code>, which contains the directory in which the 
      package source code has been uncompressed.</li>

      <li><code>$(TARGET_CC)</code>, <code>$(TARGET_LD)</code>, etc. to get 
      the target cross-compilation utilities</li>

      <li><code>$(TARGET_CROSS)</code> to get the cross-compilation 
      toolchain prefix</li>

      <li>Of course the <code>$(HOST_DIR)</code>, <code>$(STAGING_DIR)</code>
      and <code>$(TARGET_DIR)</code> variables to install the packages 
      properly.</li>
    </ul>

    <p>The last feature of the generic infrastructure is the ability to add 
    hook more actions after existing steps. These hooks aren't really useful 
    for generic packages, since the <code>.mk</code> file already has full 
    control over the actions performed in each step of the package 
    construction. The hooks are more useful for packages using the autotools 
    infrastructure described below. But since they are provided by the 
    generic infrastructure, they are documented here.</p>

    <p>The following hook points are available:</p>

    <ul>
      <li><code>LIBFOO_POST_PATCH_HOOKS</code></li>
      <li><code>LIBFOO_POST_CONFIGURE_HOOKS</code></li>
      <li><code>LIBFOO_POST_BUILD_HOOKS</code></li>
      <li><code>LIBFOO_POST_INSTALL_HOOKS</code> (for host packages only)</li>
      <li><code>LIBFOO_POST_INSTALL_STAGING_HOOKS</code> (for target packages only)</li>
      <li><code>LIBFOO_POST_INSTALL_TARGET_HOOKS</code> (for target packages only)</li>
    </ul>

    <p>This variables are <i>lists</i> of variable names containing actions 
    to be performed at this hook point. This allows several hooks to be 
    registered at a given hook point. Here is an example:</p>

<pre>
define LIBFOO_POST_PATCH_FIXUP
	action1
	action2
endef

LIBFOO_POST_PATCH_HOOKS += LIBFOO_POST_PATCH_FIXUP
</pre>

   <h4 id="autotools-tutorial">Makefile for autotools-based packages : tutorial</h4>

   <p>First, let's see how to write a <code>.mk</code> file for an 
   autotools-based package, with an example :</p>

<pre>
<span style="color: #000000">01:</span><span style="font-style: italic; color: #9A1900"> #############################################################</span>
<span style="color: #000000">02:</span><span style="font-style: italic; color: #9A1900"> #</span>
<span style="color: #000000">03:</span><span style="font-style: italic; color: #9A1900"> # libfoo</span>
<span style="color: #000000">04:</span><span style="font-style: italic; color: #9A1900"> #</span>
<span style="color: #000000">05:</span><span style="font-style: italic; color: #9A1900"> #############################################################</span>
<span style="color: #000000">06:</span><span style="color: #009900"> LIBFOO_VERSION</span> = 1.0
<span style="color: #000000">07:</span><span style="color: #009900"> LIBFOO_SOURCE</span> = libfoo-<span style="color: #009900">$(LIBFOO_VERSION)</span>.tar.gz
<span style="color: #000000">08:</span><span style="color: #009900"> LIBFOO_SITE</span> = http://www.foosoftware.org/download
<span style="color: #000000">09:</span><span style="color: #009900"> LIBFOO_INSTALL_STAGING</span> = YES
<span style="color: #000000">10:</span><span style="color: #009900"> LIBFOO_INSTALL_TARGET</span> = YES
<span style="color: #000000">11:</span><span style="color: #009900"> LIBFOO_CONF_OPT</span> = --enable-shared
<span style="color: #000000">12:</span><span style="color: #009900"> LIBFOO_DEPENDENCIES</span> = libglib2 host-pkg-config
<span style="color: #000000">13:</span>
<span style="color: #000000">14:</span><span style="color: #009900"> $(eval $(call AUTOTARGETS,package,libfoo))</span>
</pre>

    <p>On line 6, we declare the version of the package.</p>
    
    <p>On line 7 and 8, we declare the name of the tarball and the location 
    of the tarball on the Web. Buildroot will automatically download the 
    tarball from this location.</p>

    <p>On line 9, we tell Buildroot to install the package to the staging 
    directory. The staging directory, located in <code>output/staging/</code>
    is the directory where all the packages are installed, including their 
    development files, etc. By default, packages are not installed to the 
    staging directory, since usually, only libraries need to be installed in 
    the staging directory: their development files are needed to compile 
    other libraries or applications depending on them. Also by default, when 
    staging installation is enabled, packages are installed in this location 
    using the <code>make install</code> command.</p>

    <p>On line 10, we tell Buildroot to also install the package to the 
    target directory. This directory contains what will become the root 
    filesystem running on the target. Usually, we try not to install header 
    files and to install stripped versions of the binary. By default, target 
    installation is enabled, so in fact, this line is not strictly 
    necessary. Also by default, packages are installed in this location 
    using the <code>make install</code> command.</p>

    <p>On line 11, we tell Buildroot to pass a custom configure option, that 
    will be passed to the <code>./configure</code> script before configuring 
    and building the package.</p>

    <p>On line 12, we declare our dependencies, so that they are built 
    before the build process of our package starts.</p>

    <p>Finally, on line line 14, we invoke the <code>AUTOTARGETS</code> 
    macro that generates all the Makefile rules that actually allows the 
    package to be built.</p>

    <h4 id="autotools-reference">Makefile for autotools packages : reference</h4>

    <p>The main macro of the autotools package infrastructure is 
    <code>AUTOTARGETS</code>. It has the same number of arguments and the 
    same semantic as the <code>GENTARGETS</code> macro, which is the main 
    macro of the generic package infrastructure. For autotools packages, the 
    ability to have target and host packages is also available (and is 
    actually widely used).</p>

    <p>Just like the generic infrastructure, the autotools infrastructure 
    works by defining a number of variables before calling the 
    <code>AUTOTARGETS</code> macro.</p>

    <p>First, all the package meta-information variables that exist in the 
    generic infrastructure also exist in the autotools infrastructure: 
    <code>LIBFOO_VERSION</code>, <code>LIBFOO_SOURCE</code>, 
    <code>LIBFOO_PATCH</code>, <code>LIBFOO_SITE</code>, 
    <code>LIBFOO_SUBDIR</code>, <code>LIBFOO_DEPENDENCIES</code>, 
    <code>LIBFOO_INSTALL_STAGING</code>, <code>LIBFOO_INSTALL_TARGET</code>.</p>

    <p>A few additional variables, specific to the autotools infrastructure, 
    can also be defined. Many of them are only useful in very specific 
    cases, typical packages will therefore only use a few of them.</p>

    <ul>
      <li><code>LIBFOO_SUBDIR</code> may contain the name of a subdirectory 
      inside the package that contains the configure script. This is useful, 
      if for example, the main configure script is not at the root of the 
      tree extracted by the tarball. If <code>HOST_LIBFOO_SUBDIR</code> is 
      not specified, it defaults to <code>LIBFOO_SUBDIR</code>.</li>

      <li><code>LIBFOO_CONF_ENV</code>, to specify additional environment 
      variables to pass to the configure script. By default, empty.</li>

      <li><code>LIBFOO_CONF_OPT</code>, to specify additional configure 
      options to pass to the configure script. By default, empty.</li>

      <li><code>LIBFOO_MAKE</code>, to specify an alternate <code>make</code>
      command. This is typically useful when parallel make it enabled in 
      the configuration (using <code>BR2_JLEVEL</code>) but that this 
      feature should be disabled for the given package, for one reason or 
      another. By default, set to <code>$(MAKE)</code>. If parallel building 
      is not supported by the package, then it should do 
      <code>LIBFOO_MAKE=$(MAKE1)</code>.</li>

      <li><code>LIBFOO_MAKE_ENV</code>, to specify additional environment 
      variables to pass to make in the build step. These are passed before 
      the <code>make</code> command. By default, empty.</li>

      <li><code>LIBFOO_MAKE_OPT</code>, to specify additional variables to 
      pass to make in the build step. These are passed after the 
      <code>make</code> command. By default, empty.</li>

      <li><code>LIBFOO_AUTORECONF</code>, tells whether the package should 
      be autoreconfigured or not (i.e, if the configure script and 
      Makefile.in files should be re-generated by re-running autoconf, 
      automake, libtool, etc.). Valid values are <code>YES</code> and 
      <code>NO</code>. By default, the value is <code>NO</code></li>

      <li><code>LIBFOO_AUTORECONF_OPT</code> to specify additional options 
      passed to the <i>autoreconf</i> program if 
      <code>LIBFOO_AUTORECONF=YES</code>. By default, empty.</li>

      <li><code>LIBFOO_LIBTOOL_PATCH</code> tells whether the Buildroot 
      patch to fix libtool cross-compilation issues should be applied or 
      not. Valid values are <code>YES</code> and <code>NO</code>. By 
      default, the value is <code>YES</code></li>

      <li><code>LIBFOO_USE_CONFIG_CACHE</code> tells whether the configure 
      script should really on a cache file that caches test results from 
      previous configure script. Usually, this variable should be left to 
      its default value. Only for specific packages having issues with the 
      configure cache can set this variable to the <code>NO</code> value 
      (but this is more a work-around than a really fix)</li>

      <li><code>LIBFOO_INSTALL_STAGING_OPT</code> contains the make options 
      used to install the package to the staging directory. By default, the 
      value is <code>DESTDIR=$$(STAGING_DIR) install</code>, which is 
      correct for most autotools packages. It is still possible to override 
      it.</li>

      <li><code>LIBFOO_INSTALL_TARGET_OPT</code> contains the make options 
      used to install the package to the target directory. By default, the 
      value is <code>DESTDIR=$$(TARGET_DIR) install-strip</code> if 
      <code>BR2_ENABLE_DEBUG</code> is not set, and 
      <code>DESTDIR=$$(TARGET_DIR) install-exec</code> if 
      <code>BR2_ENABLE_DEBUG</code> is set. These default values are correct 
      for most autotools packages, but it is still possible to override them 
      if needed.</li>

      <li><code>LIBFOO_CLEAN_OPT</code> contains the make options used to 
      clean the package. By default, the value is <code>clean</code>.</li>

      <li><code>LIBFOO_UNINSTALL_STAGING_OPT</code>, contains the make 
      options used to uninstall the package from the staging directory. By 
      default, the value is <code>DESTDIR=$$(STAGING_DIR) uninstall</code>.</li>

      <li><code>LIBFOO_UNINSTALL_TARGET_OPT</code>, contains the make 
      options used to uninstall the package from the target directory. By 
      default, the value is <code>DESTDIR=$$(TARGET_DIR) uninstall</code>.</li>
    </ul>

    <p>With the autotools infrastructure, all the steps required to build 
    and install the packages are already defined, and they generally work 
    well for most autotools-based packages. However, when required, it is 
    still possible to customize what is done in particular step:</p>

    <ul>
      <li>By adding a post-operation hook (after extract, patch, configure, 
      build or install). See the reference documentation of the generic 
      infrastructure for details.</li>

      <li>By overriding one of the steps. For example, even if the autotools 
      infrastructure is used, if the package <code>.mk</code> defines its 
      own <code>LIBFOO_CONFIGURE_CMDS</code> variable, it will be used 
      instead of the default autotools one. However, using this method 
      should be restricted to very specific cases. Do not use it in the 
      general case.</li>
    </ul>

    <h4 id ="manual-tutorial">Manual Makefile : tutorial</h4>

    <p><b>NOTE: new manual makefiles should not be created, and existing 
    manual makefiles should be converted either to the generic 
    infrastructure or the autotools infrastructure. This section is only 
    kept to document the existing manual makefiles and help understanding 
    how they work.</b></p>

<pre>
01: #############################################################
02: #
03: # libfoo
04: #
05: #############################################################
<span id="ex2line6">06: LIBFOO_VERSION:=1.0</span>
07: LIBFOO_SOURCE:=libfoo-$(LIBFOO_VERSION).tar.gz
08: LIBFOO_SITE:=http://www.foosoftware.org/downloads
09: LIBFOO_DIR:=$(BUILD_DIR)/foo-$(FOO_VERSION)
10: LIBFOO_BINARY:=foo
11: LIBFOO_TARGET_BINARY:=usr/bin/foo
12:
<span id="ex2line13">13: $(DL_DIR)/$(LIBFOO_SOURCE):</span>
14: 	$(call DOWNLOAD,$(LIBFOO_SITE),$(LIBFOO_SOURCE))
15:
<span id="ex2line16">16: $(LIBFOO_DIR)/.source: $(DL_DIR)/$(LIBFOO_SOURCE)</span>
17: 	$(ZCAT) $(DL_DIR)/$(LIBFOO_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) -
18: 	touch $@
19:
<span id="ex2line20">20: $(LIBFOO_DIR)/.configured: $(LIBFOO_DIR)/.source</span>
21: 	(cd $(LIBFOO_DIR); rm -rf config.cache; \
22: 		$(TARGET_CONFIGURE_OPTS) \
23: 		$(TARGET_CONFIGURE_ARGS) \
24: 		./configure \
25: 		--target=$(GNU_TARGET_NAME) \
26: 		--host=$(GNU_TARGET_NAME) \
27: 		--build=$(GNU_HOST_NAME) \
28: 		--prefix=/usr \
29: 		--sysconfdir=/etc \
30: 	)
31: 	touch $@
32:
<span id="ex2line33">33: $(LIBFOO_DIR)/$(LIBFOO_BINARY): $(LIBFOO_DIR)/.configured</span>
34: 	$(MAKE) CC=$(TARGET_CC) -C $(LIBFOO_DIR)
35:
<span id="ex2line36">36: $(TARGET_DIR)/$(LIBFOO_TARGET_BINARY): $(LIBFOO_DIR)/$(LIBFOO_BINARY)</span>
37: 	$(MAKE) DESTDIR=$(TARGET_DIR) -C $(LIBFOO_DIR) install-strip
38: 	rm -Rf $(TARGET_DIR)/usr/man
39:
<span id="ex2line40">40: libfoo: uclibc ncurses $(TARGET_DIR)/$(LIBFOO_TARGET_BINARY)</span>
41:
<span id="ex2line42">42: libfoo-source: $(DL_DIR)/$(LIBFOO_SOURCE)</span>
43:
<span id="ex2line44">44: libfoo-clean:</span>
45: 	$(MAKE) prefix=$(TARGET_DIR)/usr -C $(LIBFOO_DIR) uninstall
46: 	-$(MAKE) -C $(LIBFOO_DIR) clean
47:
<span id="ex2line48">48: libfoo-dirclean:</span>
49: 	rm -rf $(LIBFOO_DIR)
50:
<span id="ex2line51">51: #############################################################</span>
52: #
53: # Toplevel Makefile options
54: #
55: #############################################################
56: ifeq ($(BR2_PACKAGE_LIBFOO),y)
57: TARGETS+=libfoo
58: endif
</pre>

    <p>First of all, this Makefile example works for a package which 
    comprises a single binary executable. For other software, such as 
    libraries or more complex stuff with multiple binaries, it must be 
    adapted. For examples look at the other <code>*.mk</code> files in the 
    <code>package</code> directory.</p>

    <p>At lines <a href="#ex2line6">6-11</a>, a couple of useful variables are
    defined:</p>

    <ul>
      <li><code>LIBFOO_VERSION</code>: The version of <i>libfoo</i> that 
      should be downloaded.</li>

      <li><code>LIBFOO_SOURCE</code>: The name of the tarball of <i>libfoo</i> 
      on the download website or FTP site. As you can see 
      <code>LIBFOO_VERSION</code> is used.</li>

      <li><code>LIBFOO_SITE</code>: The HTTP or FTP site from which 
      <i>libfoo</i> archive is downloaded. It must include the complete path to 
      the directory where <code>LIBFOO_SOURCE</code> can be found.</li>

      <li><code>LIBFOO_DIR</code>: The directory into which the software will 
      be configured and compiled. Basically, it's a subdirectory of 
      <code>BUILD_DIR</code> which is created upon decompression of the tarball.
      </li>

      <li><code>LIBFOO_BINARY</code>: Software binary name. As said previously, 
      this is an example for a package with a single binary.</li>

      <li><code>LIBFOO_TARGET_BINARY</code>: The full path of the binary inside 
      the target filesystem.</li> </ul>

    <p>Lines <a href="#ex2line13">13-14</a> define a target that downloads 
    the tarball from the remote site to the download directory 
    (<code>DL_DIR</code>).</p>

    <p>Lines <a href="#ex2line16">16-18</a> define a target and associated 
    rules that uncompress the downloaded tarball. As you can see, this 
    target depends on the tarball file so that the previous target (lines <a 
    href="#ex2line13">13-14</a>) is called before executing the rules of the 
    current target. Uncompressing is followed by <i>touching</i> a hidden 
    file to mark the software as having been uncompressed. This trick is 
    used everywhere in a Buildroot Makefile to split steps (download, 
    uncompress, configure, compile, install) while still having correct 
    dependencies.</p>

    <p>Lines <a href="#ex2line20">20-31</a> define a target and associated 
    rules that configure the software. It depends on the previous target 
    (the hidden <code>.source</code> file) so that we are sure the software 
    has been uncompressed. In order to configure the package, it basically 
    runs the well-known <code>./configure</code> script. As we may be doing 
    cross-compilation, <code>target</code>, <code>host</code> and 
    <code>build</code> arguments are given. The prefix is also set to 
    <code>/usr</code>, not because the software will be installed in 
    <code>/usr</code> on your host system, but because the software will bin 
    installed in <code> /usr</code> on the target filesystem. Finally it 
    creates a <code>.configured</code> file to mark the software as 
    configured.</p>

    <p>Lines <a href="#ex2line33">33-34</a> define a target and a rule that 
    compile the software. This target will create the binary file in the 
    compilation directory and depends on the software being already 
    configured (hence the reference to the <code>.configured</code> file). 
    It basically runs <code>make</code> inside the source directory.</p>

    <p>Lines <a href="#ex2line36">36-38</a> define a target and associated 
    rules that install the software inside the target filesystem. They 
    depend on the binary file in the source directory to make sure the 
    software has been compiled. They use the <code>install-strip</code> 
    target of the software <code>Makefile</code> by passing a 
    <code>DESTDIR</code> argument so that the <code>Makefile</code> doesn't 
    try to install the software in the host <code>/usr</code> but rather in 
    the target <code>/usr</code>. After the installation, the 
    <code>/usr/man </code> directory inside the target filesystem is removed 
    to save space. </p>

    <p>Line <a href="#ex2line40">40</a> defines the main target of the 
    software &mdash; the one that will be eventually be used by the top level 
    <code>Makefile</code> to download, compile, and then install this 
    package. This target should first of all depend on all needed 
    dependencies of the software (in our example, <i>uclibc</i> and 
    <i>ncurses</i>) and also depend on the final binary. This last dependency 
    will call all previous dependencies in the correct order.</p>

    <p>Line <a href="#ex2line42">42</a> defines a simple target that only 
    downloads the code source. This is not used during normal operation of 
    Buildroot, but is needed if you intend to download all required sources 
    at once for later offline build. Note that if you add a new package 
    providing a <code>libfoo-source</code> target is <i>mandatory</i> to 
    support users that wish to do offline-builds. Furthermore it eases 
    checking if all package-sources are downloadable.</p>

    <p>Lines <a href="#ex2line44">44-46</a> define a simple target to clean 
    the software build by calling the Makefiles with the appropriate option. 
    The <code>-clean</code> target should run <code>make clean</code> on 
    $(BUILD_DIR)/package-version and MUST uninstall all files of the package 
    from $(STAGING_DIR) and from $(TARGET_DIR).</p>

    <p>Lines <a href="#ex2line48">48-49</a> define a simple target to 
    completely remove the directory in which the software was uncompressed, 
    configured and compiled. The <code>-dirclean</code> target MUST 
    completely rm $(BUILD_DIR)/ package-version.</p>

    <p>Lines <a href="#ex2line51">51-58</a> add the target <code>libfoo</code> 
    to the list of targets to be compiled by Buildroot by first checking if 
    the configuration option for this package has been enabled using the 
    configuration tool. If so, it then &quot;subscribes&quot; this package 
    to be compiled by adding the package to the TARGETS global variable.  
    The name added to the TARGETS global variable is the name of this 
    package's target, as defined on line <a href="#ex2line40">40</a>, which 
    is used by Buildroot to download, compile, and then install this package.
    </p>

    <h3 id="gettext-integration">Gettext integration and interaction with packages</h3>

    <p>Many packages that support internationalization use the gettext 
    library. Dependency on this library are fairly complicated and therefore 
    deserves a few explanations.</p>

    <p>The <i>uClibc</i> C library doesn't implement gettext functionality, 
    therefore with this C library, a separate gettext must be compiled. On 
    the other hand, the <i>glibc</i> C library does integrate its own 
    gettext, and in this case, the separate gettext library should not be 
    compiled, because it creates various kind of build failures.</p>

    <p>Additionally, some packages (such as libglib2) do require gettext 
    unconditionally, while other packages (those who support 
    <code>--disable-nls</code> in general) only require gettext when locale 
    support is enabled.</p>

    <p>Therefore, Buildroot defines two configuration options:</p>

    <ul>
      <li><code>BR2_NEEDS_GETTEXT</code>, which is true as soon as the
      toolchain doesn't provide its own gettext implementation</li>

      <li><code>BR2_NEEDS_GETTEXT_IF_LOCALE</code>, which is true if the 
      toolchain doesn't provide its own gettext implementation and if locale 
      support is enabled</li> </ul>

    <p>Therefore, packages that unconditionally need gettext should:</p>

    <ol>
      <li>Use <code>select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT</code> 
      and possibly <code>select BR2_PACKAGE_LIBINTL if BR2_NEEDS_GETTEXT</code> 
      if libintl is also needed</li>

      <li>Use <code>$(if $(BR2_NEEDS_GETTEXT),gettext)</code> in the package 
      <code>DEPENDENCIES</code> variable</li>
    </ol>

    <p>Packages that need gettext only when locale support is enabled should:
    </p>

    <ol>
      <li>Use 
      <code>select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT_IF_LOCALE</code> 
      and possibly 
      <code>select BR2_PACKAGE_LIBINTL if BR2_NEEDS_GETTEXT_IF_LOCALE</code> 
      if libintl is also needed</li>

      <li>Use <code>$(if $(BR2_NEEDS_GETTEXT_IF_LOCALE),gettext)</code> in 
      the package <code>DEPENDENCIES</code> variable</li>
    </ol>

    <h3>Conclusion</h3>

    <p>As you can see, adding a software package to Buildroot is simply a 
    matter of writing a Makefile using an  existing example and modifying it 
    according to the compilation process required by the package.</p>

    <p>If you package software that might be useful for other people, don't 
    forget to send a patch to Buildroot developers!</p>

    <h2 id="links">Resources</h2>

    <p>To learn more about Buildroot you can visit these websites:</p>

    <ul>
      <li><a href="http://www.uclibc.org/">http://www.uclibc.org/</a></li>
      <li><a href="http://www.busybox.net/">http://www.busybox.net/</a></li>
    </ul>
  </div>
</body>
</html>