diff -urpN busybox-1.18.0/libbb/pw_encrypt_sha.c busybox-1.18.0-sha/libbb/pw_encrypt_sha.c --- busybox-1.18.0/libbb/pw_encrypt_sha.c 2010-11-22 21:43:22.000000000 +0100 +++ busybox-1.18.0-sha/libbb/pw_encrypt_sha.c 2010-12-01 13:56:24.372704380 +0100 @@ -3,7 +3,7 @@ */ /* Prefix for optional rounds specification. */ -static const char str_rounds[] = "rounds=%u$"; +static const char str_rounds[] ALIGN1 = "rounds=%u$"; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 @@ -19,8 +19,8 @@ NOINLINE sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data) { void (*sha_begin)(void *ctx) FAST_FUNC; - void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC; - void (*sha_end)(void *resbuf, void *ctx) FAST_FUNC; + void (*sha_hash)(void *ctx, const void *buffer, size_t len) FAST_FUNC; + void (*sha_end)(void *ctx, void *resbuf) FAST_FUNC; int _32or64; char *result, *resptr; @@ -103,40 +103,40 @@ sha_crypt(/*const*/ char *key_data, /*co /* Add KEY, SALT. */ sha_begin(&ctx); - sha_hash(key_data, key_len, &ctx); - sha_hash(salt_data, salt_len, &ctx); + sha_hash(&ctx, key_data, key_len); + sha_hash(&ctx, salt_data, salt_len); /* Compute alternate SHA sum with input KEY, SALT, and KEY. The final result will be added to the first context. */ sha_begin(&alt_ctx); - sha_hash(key_data, key_len, &alt_ctx); - sha_hash(salt_data, salt_len, &alt_ctx); - sha_hash(key_data, key_len, &alt_ctx); - sha_end(alt_result, &alt_ctx); + sha_hash(&alt_ctx, key_data, key_len); + sha_hash(&alt_ctx, salt_data, salt_len); + sha_hash(&alt_ctx, key_data, key_len); + sha_end(&alt_ctx, alt_result); /* Add result of this to the other context. */ /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > _32or64; cnt -= _32or64) - sha_hash(alt_result, _32or64, &ctx); - sha_hash(alt_result, cnt, &ctx); + sha_hash(&ctx, alt_result, _32or64); + sha_hash(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt != 0; cnt >>= 1) if ((cnt & 1) != 0) - sha_hash(alt_result, _32or64, &ctx); + sha_hash(&ctx, alt_result, _32or64); else - sha_hash(key_data, key_len, &ctx); + sha_hash(&ctx, key_data, key_len); /* Create intermediate result. */ - sha_end(alt_result, &ctx); + sha_end(&ctx, alt_result); /* Start computation of P byte sequence. */ /* For every character in the password add the entire password. */ sha_begin(&alt_ctx); for (cnt = 0; cnt < key_len; ++cnt) - sha_hash(key_data, key_len, &alt_ctx); - sha_end(temp_result, &alt_ctx); + sha_hash(&alt_ctx, key_data, key_len); + sha_end(&alt_ctx, temp_result); /* NB: past this point, raw key_data is not used anymore */ @@ -153,8 +153,8 @@ sha_crypt(/*const*/ char *key_data, /*co /* For every character in the password add the entire password. */ sha_begin(&alt_ctx); for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) - sha_hash(salt_data, salt_len, &alt_ctx); - sha_end(temp_result, &alt_ctx); + sha_hash(&alt_ctx, salt_data, salt_len); + sha_end(&alt_ctx, temp_result); /* NB: past this point, raw salt_data is not used anymore */ @@ -174,22 +174,22 @@ sha_crypt(/*const*/ char *key_data, /*co /* Add key or last result. */ if ((cnt & 1) != 0) - sha_hash(p_bytes, key_len, &ctx); + sha_hash(&ctx, p_bytes, key_len); else - sha_hash(alt_result, _32or64, &ctx); + sha_hash(&ctx, alt_result, _32or64); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) - sha_hash(s_bytes, salt_len, &ctx); + sha_hash(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) - sha_hash(p_bytes, key_len, &ctx); + sha_hash(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) - sha_hash(alt_result, _32or64, &ctx); + sha_hash(&ctx, alt_result, _32or64); else - sha_hash(p_bytes, key_len, &ctx); + sha_hash(&ctx, p_bytes, key_len); - sha_end(alt_result, &ctx); + sha_end(&ctx, alt_result); } /* Append encrypted password to result buffer */