/* mcookie.c -- Generates random numbers for xauth
 * Created: Fri Feb  3 10:42:48 1995 by faith@cs.unc.edu
 * Revised: Fri Mar 19 07:48:01 1999 by faith@acm.org
 * Public Domain 1995, 1999 Rickard E. Faith (faith@acm.org)
 * This program comes with ABSOLUTELY NO WARRANTY.
 * 
 * $Id: mcookie.c,v 1.5 1997/07/06 00:13:06 aebr Exp $
 *
 * This program gathers some random bits of data and used the MD5
 * message-digest algorithm to generate a 128-bit hexadecimal number for
 * use with xauth(1).
 *
 * NOTE: Unless /dev/random is available, this program does not actually
 * gather 128 bits of random information, so the magic cookie generated
 * will be considerably easier to guess than one might expect.
 *
 * 1999-02-22 Arkadiusz Mi�kiewicz <misiek@pld.ORG.PL>
 * - added Native Language Support
 * 1999-03-21 aeb: Added some fragments of code from Colin Plumb.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define BUFFERSIZE 4096


#ifndef MD5_H
#define MD5_H

#if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__)
typedef unsigned int uint32;
#else
typedef unsigned long uint32;
#endif

struct MD5Context {
	uint32 buf[4];
	uint32 bits[2];
	unsigned char in[64];
};

void MD5Init(struct MD5Context *context);
void MD5Update(struct MD5Context *context, unsigned char const *buf,
	       unsigned len);
void MD5Final(unsigned char digest[16], struct MD5Context *context);
void MD5Transform(uint32 buf[4], uint32 const in[16]);

/*
 * This is needed to make RSAREF happy on some MS-DOS compilers.
 */
typedef struct MD5Context MD5_CTX;

#endif /* !MD5_H */



/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */
#include <string.h>		/* for memcpy() */
#include <endian.h>

#if __BYTE_ORDER == __LITTLE_ENDIAN
#define byteReverse(buf, len)	/* Nothing */
#else
void byteReverse(unsigned char *buf, unsigned longs);

/*
 * Note: this code is harmless on little-endian machines.
 */
void byteReverse(unsigned char *buf, unsigned longs)
{
    uint32 t;
    do {
	t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
	    ((unsigned) buf[1] << 8 | buf[0]);
	*(uint32 *) buf = t;
	buf += 4;
    } while (--longs);
}
#endif

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(struct MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
{
    uint32 t;

    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
	ctx->bits[1]++;		/* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */

    if (t) {
	unsigned char *p = (unsigned char *) ctx->in + t;

	t = 64 - t;
	if (len < t) {
	    memcpy(p, buf, len);
	    return;
	}
	memcpy(p, buf, t);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += t;
	len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
	memcpy(ctx->in, buf, 64);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += 64;
	len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
    unsigned count;
    unsigned char *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
	/* Two lots of padding:  Pad the first block to 64 bytes */
	memset(p, 0, count);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);

	/* Now fill the next block with 56 bytes */
	memset(ctx->in, 0, 56);
    } else {
	/* Pad block to 56 bytes */
	memset(p, 0, count - 8);
    }
    byteReverse(ctx->in, 14);

    /* Append length in bits and transform */
    ((uint32 *) ctx->in)[14] = ctx->bits[0];
    ((uint32 *) ctx->in)[15] = ctx->bits[1];

    MD5Transform(ctx->buf, (uint32 *) ctx->in);
    byteReverse((unsigned char *) ctx->buf, 4);
    memcpy(digest, ctx->buf, 16);
    memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5Transform(uint32 buf[4], uint32 const in[16])
{
    register uint32 a, b, c, d;

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}




struct rngs {
   const char *path;
   int minlength, maxlength;
} rngs[] = {
   { "/dev/random",              16,  16 }, /* 16 bytes = 128 bits suffice */
   { "/proc/interrupts",          0,   0 },
   { "/proc/slabinfo",            0,   0 },
   { "/proc/stat",                0,   0 },
   { "/dev/urandom",             32,  64 },
};
#define RNGS (sizeof(rngs)/sizeof(struct rngs))

int Verbose = 0;

/* The basic function to hash a file */
static off_t
hash_file(struct MD5Context *ctx, int fd)
{
   off_t count = 0;
   ssize_t r;
   unsigned char buf[BUFFERSIZE];

   while ((r = read(fd, buf, sizeof(buf))) > 0) {
      MD5Update(ctx, buf, r);
      count += r;
   }
   /* Separate files with a null byte */
   buf[0] = 0;
   MD5Update(ctx, buf, 1);
   return count;
}

int main( int argc, char **argv )
{
   int               i;
   struct MD5Context ctx;
   unsigned char     digest[16];
   unsigned char     buf[BUFFERSIZE];
   int               fd;
   int               c;
   pid_t             pid;
   char              *file = NULL;
   int               r;
   struct timeval    tv;
   struct timezone   tz;

   while ((c = getopt( argc, argv, "vf:" )) != -1)
      switch (c) {
      case 'v': ++Verbose;     break;
      case 'f': file = optarg; break;
      }

   MD5Init( &ctx );
   
   gettimeofday( &tv, &tz );
   MD5Update( &ctx, (unsigned char *)&tv, sizeof( tv ) );
   pid = getppid();
   MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));
   pid = getpid();
   MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));

   if (file) {
      int count = 0;
      
      if (file[0] == '-' && !file[1])
	 fd = fileno(stdin);
      else
	 fd = open( file, O_RDONLY );

      if (fd < 0) {
	 fprintf( stderr, "Could not open %s\n", file );
      } else {
         count = hash_file( &ctx, fd );
	 if (Verbose)
	    fprintf( stderr, "Got %d bytes from %s\n", count, file );

	 if (file[0] != '-' || file[1]) close( fd );
      }
   }

   for (i = 0; i < RNGS; i++) {
      if ((fd = open( rngs[i].path, O_RDONLY|O_NONBLOCK )) >= 0) {
	 int count = sizeof(buf);

	 if (rngs[i].maxlength && count > rngs[i].maxlength)
	    count = rngs[i].maxlength;
	 r = read( fd, buf, count );
	 if (r > 0)
	    MD5Update( &ctx, buf, r );
	 else
	    r = 0;
	 close( fd );
	 if (Verbose)
	    fprintf( stderr, "Got %d bytes from %s\n", r, rngs[i].path );
	 if (rngs[i].minlength && r >= rngs[i].minlength)
	    break;
      } else if (Verbose)
	 fprintf( stderr, "Could not open %s\n", rngs[i].path );
   }

   MD5Final( digest, &ctx );
   for (i = 0; i < 16; i++) printf( "%02x", digest[i] );
   putchar ( '\n' );
   
   /*
    * The following is important for cases like disk full, so shell scripts
    * can bomb out properly rather than think they succeeded.
    */
   if (fflush(stdout) < 0 || fclose(stdout) < 0)
      return 1;

   return 0;
}