//============================================================================= // // Glagen : a planet sized landscape generator // Copyright (C) 2002 Julien Guertault, Hugues Hiegel, Meng-Tih Lam // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // //============================================================================= // // Glagen : GPL LAndscape GENerator // // perlin.cc for Glagen : made by Zavie (Julien Guertault) // // www.glagen.org // //============================================================================= // Original implementation fo Perlin noice. // It can be found on : // http://mrl.nyu.edu/~perlin/doc/oscar.html#noise // // The 4th dimension noise has been added for our needs // coherent noise function over 1, 2 or 3 dimensions // (copyright Ken Perlin) #include #include #include "data_glagen.hh" #define B 0x100 #define BM 0xff #define N 0x1000 #define NP 12 /* 2^N */ #define NM 0xfff static int p[B + B + 2]; static float g4[B + B + 2][4]; static float g3[B + B + 2][3]; static float g2[B + B + 2][2]; static float g1[B + B + 2]; #define s_curve(t) ( t * t * (3. - 2. * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) #define setup(i,b0,b1,r0,r1)\ t = vec[i] + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.; float GLG_Perlin_noise_1D (float arg) { int bx0, bx1; float rx0, rx1; float sx; float t, u, v; float vec[1]; vec[0] = arg; setup(0, bx0,bx1, rx0,rx1); sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return lerp(sx, u, v); } float GLG_Perlin_noise_2D (float vec[2]) { int bx0, bx1; int by0, by1; int b00, b10, b01, b11; float rx0, rx1; float ry0, ry1; float *q, sx, sy; float a, b; float t, u, v; register int i, j; setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; sx = s_curve(rx0); sy = s_curve(ry0); #define at2(rx,ry) ( rx * q[0] + ry * q[1] ) q = g2[ b00 ] ; u = at2(rx0,ry0); q = g2[ b10 ] ; v = at2(rx1,ry0); a = lerp(sx, u, v); q = g2[ b01 ] ; u = at2(rx0,ry1); q = g2[ b11 ] ; v = at2(rx1,ry1); b = lerp(sx, u, v); return lerp(sy, a, b); } float GLG_Perlin_noise_3D (float vec[3]) { int bx0, bx1; int by0, by1; int bz0, bz1; int b00, b10, b01, b11; float rx0, rx1; float ry0, ry1; float rz0, rz1; float *q, sy, sz; float a, b, c, d; float t, u, v; register int i, j; setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); return lerp(sz, c, d); } float GLG_Perlin_noise_4D (float vec[4]) { int bx0, bx1; int by0, by1; int bz0, bz1; int bt0, bt1; register int a0, a1; int b00, b10, b01, b11; int c000, c001, c010, c011, c100, c101, c110, c111; float rx0, rx1; float ry0, ry1; float rz0, rz1; float rt0, rt1; float *q, sx, sy, sz, st; float a, b, c, d, e, f; float t, u, v; setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); setup(3, bt0,bt1, rt0,rt1); a0 = p[ bx0 ]; a1 = p[ bx1 ]; b00 = p[ a0 + by0 ]; b10 = p[ a1 + by0 ]; b01 = p[ a0 + by1 ]; b11 = p[ a1 + by1 ]; c000 = p[ b00 + bz0 ]; c100 = p[ b10 + bz0 ]; c010 = p[ b01 + bz0 ]; c110 = p[ b11 + bz0 ]; c001 = p[ b00 + bz1 ]; c101 = p[ b10 + bz1 ]; c011 = p[ b01 + bz1 ]; c111 = p[ b11 + bz1 ]; sx = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); st = s_curve(rt0); #define at4(rx, ry, rz, rt) ( rx * q[0] + ry * q[1] + rz * q[2] + rt * q[3]) q = g4[c000 + bt0]; u = at4(rx0, ry0, rz0, rt0); q = g4[c100 + bt0]; v = at4(rx1, ry0, rz0, rt0); a = lerp(sx, u, v); q = g4[c010 + bt0]; u = at4(rx0, ry1, rz0, rt0); q = g4[c110 + bt0]; v = at4(rx1, ry1, rz0, rt0); b = lerp(sx, u, v); c = lerp (sy, a, b); q = g4[c001 + bt0]; u = at4(rx0, ry0, rz1, rt0); q = g4[c101 + bt0]; v = at4(rx1, ry0, rz1, rt0); a = lerp(sx, u, v); q = g4[c011 + bt0]; u = at4(rx0, ry1, rz1, rt0); q = g4[c111 + bt0]; v = at4(rx1, ry1, rz1, rt0); b = lerp(sx, u, v); d = lerp (sy, a, b); e = lerp (sz, c, d); q = g4[c000 + bt1]; u = at4(rx0, ry0, rz0, rt1); q = g4[c100 + bt1]; v = at4(rx1, ry0, rz0, rt1); a = lerp(sx, u, v); q = g4[c010 + bt1]; u = at4(rx0, ry1, rz0, rt1); q = g4[c110 + bt1]; v = at4(rx1, ry1, rz0, rt1); b = lerp(sx, u, v); c = lerp (sy, a, b); q = g4[c001 + bt1]; u = at4(rx0, ry0, rz1, rt1); q = g4[c101 + bt1]; v = at4(rx1, ry0, rz1, rt1); a = lerp(sx, u, v); q = g4[c011 + bt1]; u = at4(rx0, ry1, rz1, rt1); q = g4[c111 + bt1]; v = at4(rx1, ry1, rz1, rt1); b = lerp(sx, u, v); d = lerp (sy, a, b); f = lerp (sz, c, d); return lerp (st, e, f); } static void normalize2 (float v[2]) { float s; s = sqrtf(v[0] * v[0] + v[1] * v[1]); v[0] = v[0] / s; v[1] = v[1] / s; } static void normalize3 (float v[3]) { float s; s = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] = v[0] / s; v[1] = v[1] / s; v[2] = v[2] / s; } static void normalize4 (float v[4]) { float s; s = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3]); v[0] = v[0] / s; v[1] = v[1] / s; v[2] = v[2] / s; v[3] = v[3] / s; } void Perlin_init () { int i, j, k; for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (float)((rand() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (float)((rand() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (float)((rand() % (B + B)) - B) / B; normalize3(g3[i]); for (j = 0 ; j < 4 ; j++) g4[i][j] = (float)((rand() % (B + B)) - B) / B; normalize4(g4[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; } }