diff options
| author | Brian Paul <brian.paul@tungstengraphics.com> | 2001-03-08 17:17:28 +0000 | 
|---|---|---|
| committer | Brian Paul <brian.paul@tungstengraphics.com> | 2001-03-08 17:17:28 +0000 | 
| commit | 896e8bd2d7eb1385ca89e71b7eac146577320e00 (patch) | |
| tree | 6687e353985dc9ddbfabe31836616b42ce4aa4ff | |
| parent | 417ed16a88bd6c695e9792c2023e3f1737ee1e64 (diff) | |
processed by indent to improve readability
| -rw-r--r-- | src/mesa/math/m_eval.c | 361 | 
1 files changed, 161 insertions, 200 deletions
| diff --git a/src/mesa/math/m_eval.c b/src/mesa/math/m_eval.c index adf5b19fec..9316625d97 100644 --- a/src/mesa/math/m_eval.c +++ b/src/mesa/math/m_eval.c @@ -1,4 +1,4 @@ -/* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */ +/* $Id: m_eval.c,v 1.4 2001/03/08 17:17:28 brianp Exp $ */  /*   * Mesa 3-D graphics library @@ -72,32 +72,31 @@ static GLfloat inv_tab[MAX_EVAL_ORDER];  void -_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, +_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t,  			  GLuint dim, GLuint order)  {     GLfloat s, powert, bincoeff;     GLuint i, k; -   if(order >= 2) -   { +   if (order >= 2) {        bincoeff = (GLfloat) (order - 1); -      s = 1.0-t; +      s = 1.0 - t; -      for(k=0; k<dim; k++) -	 out[k] = s*cp[k] + bincoeff*t*cp[dim+k]; +      for (k = 0; k < dim; k++) +	 out[k] = s * cp[k] + bincoeff * t * cp[dim + k]; -      for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim) -      { +      for (i = 2, cp += 2 * dim, powert = t * t; i < order; +	   i++, powert *= t, cp += dim) {  	 bincoeff *= (GLfloat) (order - i);  	 bincoeff *= inv_tab[i]; -	 for(k=0; k<dim; k++) -	    out[k] = s*out[k] + bincoeff*powert*cp[k]; +	 for (k = 0; k < dim; k++) +	    out[k] = s * out[k] + bincoeff * powert * cp[k];        }     } -   else /* order=1 -> constant curve */ -   { -      for(k=0; k<dim; k++) +   else {			/* order=1 -> constant curve */ + +      for (k = 0; k < dim; k++)  	 out[k] = cp[k];     }  } @@ -117,69 +116,64 @@ _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,   */  void -_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, +_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v,  			 GLuint dim, GLuint uorder, GLuint vorder)  { -   GLfloat *cp = cn + uorder*vorder*dim; -   GLuint i, uinc = vorder*dim; +   GLfloat *cp = cn + uorder * vorder * dim; +   GLuint i, uinc = vorder * dim; -   if(vorder > uorder) -   { -      if(uorder >= 2) -      { +   if (vorder > uorder) { +      if (uorder >= 2) {  	 GLfloat s, poweru, bincoeff;  	 GLuint j, k;  	 /* Compute the control polygon for the surface-curve in u-direction */ -	 for(j=0; j<vorder; j++) -	 { -	    GLfloat *ucp = &cn[j*dim]; +	 for (j = 0; j < vorder; j++) { +	    GLfloat *ucp = &cn[j * dim];  	    /* Each control point is the point for parameter u on a */  	    /* curve defined by the control polygons in u-direction */  	    bincoeff = (GLfloat) (uorder - 1); -	    s = 1.0-u; +	    s = 1.0 - u; -	    for(k=0; k<dim; k++) -	       cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k]; +	    for (k = 0; k < dim; k++) +	       cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k]; -	    for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; -		i++, poweru*=u, ucp +=uinc) -	    { +	    for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder; +		 i++, poweru *= u, ucp += uinc) {  	       bincoeff *= (GLfloat) (uorder - i);  	       bincoeff *= inv_tab[i]; -	       for(k=0; k<dim; k++) -		  cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k]; +	       for (k = 0; k < dim; k++) +		  cp[j * dim + k] = +		     s * cp[j * dim + k] + bincoeff * poweru * ucp[k];  	    }  	 }  	 /* Evaluate curve point in v */  	 _math_horner_bezier_curve(cp, out, v, dim, vorder);        } -      else /* uorder=1 -> cn defines a curve in v */ +      else			/* uorder=1 -> cn defines a curve in v */  	 _math_horner_bezier_curve(cn, out, v, dim, vorder);     } -   else /* vorder <= uorder */ -   { -      if(vorder > 1) -      { +   else {			/* vorder <= uorder */ + +      if (vorder > 1) {  	 GLuint i;  	 /* Compute the control polygon for the surface-curve in u-direction */ -	 for(i=0; i<uorder; i++, cn += uinc) -	 { +	 for (i = 0; i < uorder; i++, cn += uinc) {  	    /* For constant i all cn[i][j] (j=0..vorder) are located */  	    /* on consecutive memory locations, so we can use        */  	    /* horner_bezier_curve to compute the control points     */ -	    _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder); +	    _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder);  	 }  	 /* Evaluate curve point in u */  	 _math_horner_bezier_curve(cp, out, u, dim, uorder);        } -      else  /* vorder=1 -> cn defines a curve in u */ +      else			/* vorder=1 -> cn defines a curve in u */  	 _math_horner_bezier_curve(cn, out, u, dim, uorder);     }  } @@ -199,15 +193,15 @@ _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,   */  void -_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, -			GLfloat u, GLfloat v, GLuint dim, +_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du, +			GLfloat * dv, GLfloat u, GLfloat v, GLuint dim,  			GLuint uorder, GLuint vorder)  { -   GLfloat *dcn = cn + uorder*vorder*dim; -   GLfloat us = 1.0-u, vs = 1.0-v; +   GLfloat *dcn = cn + uorder * vorder * dim; +   GLfloat us = 1.0 - u, vs = 1.0 - v;     GLuint h, i, j, k;     GLuint minorder = uorder < vorder ? uorder : vorder; -   GLuint uinc = vorder*dim; +   GLuint uinc = vorder * dim;     GLuint dcuinc = vorder;     /* Each component is evaluated separately to save buffer space  */ @@ -218,267 +212,234 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,  #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]  #define DCN(I, J) dcn[(I)*dcuinc+(J)] -   if(minorder < 3) -   { -      if(uorder==vorder) -      { -	 for(k=0; k<dim; k++) -	 { +   if (minorder < 3) { +      if (uorder == vorder) { +	 for (k = 0; k < dim; k++) {  	    /* Derivative direction in u */ -	    du[k] = vs*(CN(1,0,k) - CN(0,0,k)) + -	       v*(CN(1,1,k) - CN(0,1,k)); +	    du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) + +	       v * (CN(1, 1, k) - CN(0, 1, k));  	    /* Derivative direction in v */ -	    dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + -	       u*(CN(1,1,k) - CN(1,0,k)); +	    dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) + +	       u * (CN(1, 1, k) - CN(1, 0, k));  	    /* bilinear de Casteljau step */ -	    out[k] =  us*(vs*CN(0,0,k) + v*CN(0,1,k)) + -	       u*(vs*CN(1,0,k) + v*CN(1,1,k)); +	    out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) + +	       u * (vs * CN(1, 0, k) + v * CN(1, 1, k));  	 }        } -      else if(minorder == uorder) -      { -	 for(k=0; k<dim; k++) -	 { +      else if (minorder == uorder) { +	 for (k = 0; k < dim; k++) {  	    /* bilinear de Casteljau step */ -	    DCN(1,0) =    CN(1,0,k) -   CN(0,0,k); -	    DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k); +	    DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k); +	    DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k); -	    for(j=0; j<vorder-1; j++) -	    { +	    for (j = 0; j < vorder - 1; j++) {  	       /* for the derivative in u */ -	       DCN(1,j+1) =    CN(1,j+1,k) -   CN(0,j+1,k); -	       DCN(1,j)   = vs*DCN(1,j)    + v*DCN(1,j+1); +	       DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k); +	       DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);  	       /* for the `point' */ -	       DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k); -	       DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1); +	       DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k); +	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);  	    }  	    /* remaining linear de Casteljau steps until the second last step */ -	    for(h=minorder; h<vorder-1; h++) -	       for(j=0; j<vorder-h; j++) -	       { +	    for (h = minorder; h < vorder - 1; h++) +	       for (j = 0; j < vorder - h; j++) {  		  /* for the derivative in u */ -		  DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); +		  DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);  		  /* for the `point' */ -		  DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); +		  DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);  	       }  	    /* derivative direction in v */ -	    dv[k] = DCN(0,1) - DCN(0,0); +	    dv[k] = DCN(0, 1) - DCN(0, 0);  	    /* derivative direction in u */ -	    du[k] =   vs*DCN(1,0) + v*DCN(1,1); +	    du[k] = vs * DCN(1, 0) + v * DCN(1, 1);  	    /* last linear de Casteljau step */ -	    out[k] =  vs*DCN(0,0) + v*DCN(0,1); +	    out[k] = vs * DCN(0, 0) + v * DCN(0, 1);  	 }        } -      else /* minorder == vorder */ -      { -	 for(k=0; k<dim; k++) -	 { +      else {			/* minorder == vorder */ + +	 for (k = 0; k < dim; k++) {  	    /* bilinear de Casteljau step */ -	    DCN(0,1) =    CN(0,1,k) -   CN(0,0,k); -	    DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k); -	    for(i=0; i<uorder-1; i++) -	    { +	    DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k); +	    DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k); +	    for (i = 0; i < uorder - 1; i++) {  	       /* for the derivative in v */ -	       DCN(i+1,1) =    CN(i+1,1,k) -   CN(i+1,0,k); -	       DCN(i,1)   = us*DCN(i,1)    + u*DCN(i+1,1); +	       DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k); +	       DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);  	       /* for the `point' */ -	       DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k); -	       DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0); +	       DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k); +	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);  	    }  	    /* remaining linear de Casteljau steps until the second last step */ -	    for(h=minorder; h<uorder-1; h++) -	       for(i=0; i<uorder-h; i++) -	       { +	    for (h = minorder; h < uorder - 1; h++) +	       for (i = 0; i < uorder - h; i++) {  		  /* for the derivative in v */ -		  DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); +		  DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);  		  /* for the `point' */ -		  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); +		  DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);  	       }  	    /* derivative direction in u */ -	    du[k] = DCN(1,0) - DCN(0,0); +	    du[k] = DCN(1, 0) - DCN(0, 0);  	    /* derivative direction in v */ -	    dv[k] =   us*DCN(0,1) + u*DCN(1,1); +	    dv[k] = us * DCN(0, 1) + u * DCN(1, 1);  	    /* last linear de Casteljau step */ -	    out[k] =  us*DCN(0,0) + u*DCN(1,0); +	    out[k] = us * DCN(0, 0) + u * DCN(1, 0);  	 }        }     } -   else if(uorder == vorder) -   { -      for(k=0; k<dim; k++) -      { +   else if (uorder == vorder) { +      for (k = 0; k < dim; k++) {  	 /* first bilinear de Casteljau step */ -	 for(i=0; i<uorder-1; i++) -	 { -	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); -	    for(j=0; j<vorder-1; j++) -	    { -	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); -	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1); +	 for (i = 0; i < uorder - 1; i++) { +	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); +	    for (j = 0; j < vorder - 1; j++) { +	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); +	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);  	    }  	 }  	 /* remaining bilinear de Casteljau steps until the second last step */ -	 for(h=2; h<minorder-1; h++) -	    for(i=0; i<uorder-h; i++) -	    { -	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); -	       for(j=0; j<vorder-h; j++) -	       { -		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); -		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1); +	 for (h = 2; h < minorder - 1; h++) +	    for (i = 0; i < uorder - h; i++) { +	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); +	       for (j = 0; j < vorder - h; j++) { +		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); +		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);  	       }  	    }  	 /* derivative direction in u */ -	 du[k] = vs*(DCN(1,0) - DCN(0,0)) + -	    v*(DCN(1,1) - DCN(0,1)); +	 du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1));  	 /* derivative direction in v */ -	 dv[k] = us*(DCN(0,1) - DCN(0,0)) + -	    u*(DCN(1,1) - DCN(1,0)); +	 dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0));  	 /* last bilinear de Casteljau step */ -	 out[k] =  us*(vs*DCN(0,0) + v*DCN(0,1)) + -	    u*(vs*DCN(1,0) + v*DCN(1,1)); +	 out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) + +	    u * (vs * DCN(1, 0) + v * DCN(1, 1));        }     } -   else if(minorder == uorder) -   { -      for(k=0; k<dim; k++) -      { +   else if (minorder == uorder) { +      for (k = 0; k < dim; k++) {  	 /* first bilinear de Casteljau step */ -	 for(i=0; i<uorder-1; i++) -	 { -	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); -	    for(j=0; j<vorder-1; j++) -	    { -	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); -	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1); +	 for (i = 0; i < uorder - 1; i++) { +	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); +	    for (j = 0; j < vorder - 1; j++) { +	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); +	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);  	    }  	 }  	 /* remaining bilinear de Casteljau steps until the second last step */ -	 for(h=2; h<minorder-1; h++) -	    for(i=0; i<uorder-h; i++) -	    { -	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); -	       for(j=0; j<vorder-h; j++) -	       { -		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); -		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1); +	 for (h = 2; h < minorder - 1; h++) +	    for (i = 0; i < uorder - h; i++) { +	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); +	       for (j = 0; j < vorder - h; j++) { +		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); +		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);  	       }  	    }  	 /* last bilinear de Casteljau step */ -	 DCN(2,0) =    DCN(1,0) -   DCN(0,0); -	 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0); -	 for(j=0; j<vorder-1; j++) -	 { +	 DCN(2, 0) = DCN(1, 0) - DCN(0, 0); +	 DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0); +	 for (j = 0; j < vorder - 1; j++) {  	    /* for the derivative in u */ -	    DCN(2,j+1) =    DCN(1,j+1) -    DCN(0,j+1); -	    DCN(2,j)   = vs*DCN(2,j)    + v*DCN(2,j+1); -	 +	    DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1); +	    DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); +  	    /* for the `point' */ -	    DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1); -	    DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1); +	    DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1); +	    DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);  	 }  	 /* remaining linear de Casteljau steps until the second last step */ -	 for(h=minorder; h<vorder-1; h++) -	    for(j=0; j<vorder-h; j++) -	    { +	 for (h = minorder; h < vorder - 1; h++) +	    for (j = 0; j < vorder - h; j++) {  	       /* for the derivative in u */ -	       DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); -	 +	       DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); +  	       /* for the `point' */ -	       DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); +	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);  	    }  	 /* derivative direction in v */ -	 dv[k] = DCN(0,1) - DCN(0,0); +	 dv[k] = DCN(0, 1) - DCN(0, 0);  	 /* derivative direction in u */ -	 du[k] =   vs*DCN(2,0) + v*DCN(2,1); +	 du[k] = vs * DCN(2, 0) + v * DCN(2, 1);  	 /* last linear de Casteljau step */ -	 out[k] =  vs*DCN(0,0) + v*DCN(0,1); +	 out[k] = vs * DCN(0, 0) + v * DCN(0, 1);        }     } -   else /* minorder == vorder */ -   { -      for(k=0; k<dim; k++) -      { +   else {			/* minorder == vorder */ + +      for (k = 0; k < dim; k++) {  	 /* first bilinear de Casteljau step */ -	 for(i=0; i<uorder-1; i++) -	 { -	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); -	    for(j=0; j<vorder-1; j++) -	    { -	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); -	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1); +	 for (i = 0; i < uorder - 1; i++) { +	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); +	    for (j = 0; j < vorder - 1; j++) { +	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); +	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);  	    }  	 }  	 /* remaining bilinear de Casteljau steps until the second last step */ -	 for(h=2; h<minorder-1; h++) -	    for(i=0; i<uorder-h; i++) -	    { -	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); -	       for(j=0; j<vorder-h; j++) -	       { -		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); -		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1); +	 for (h = 2; h < minorder - 1; h++) +	    for (i = 0; i < uorder - h; i++) { +	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); +	       for (j = 0; j < vorder - h; j++) { +		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); +		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);  	       }  	    }  	 /* last bilinear de Casteljau step */ -	 DCN(0,2) =    DCN(0,1) -   DCN(0,0); -	 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1); -	 for(i=0; i<uorder-1; i++) -	 { +	 DCN(0, 2) = DCN(0, 1) - DCN(0, 0); +	 DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1); +	 for (i = 0; i < uorder - 1; i++) {  	    /* for the derivative in v */ -	    DCN(i+1,2) =    DCN(i+1,1)  -   DCN(i+1,0); -	    DCN(i,2)   = us*DCN(i,2)    + u*DCN(i+1,2); -	 +	    DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0); +	    DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); +  	    /* for the `point' */ -	    DCN(i+1,0) = vs*DCN(i+1,0)  + v*DCN(i+1,1); -	    DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0); +	    DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1); +	    DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);  	 }  	 /* remaining linear de Casteljau steps until the second last step */ -	 for(h=minorder; h<uorder-1; h++) -	    for(i=0; i<uorder-h; i++) -	    { +	 for (h = minorder; h < uorder - 1; h++) +	    for (i = 0; i < uorder - h; i++) {  	       /* for the derivative in v */ -	       DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); -	 +	       DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); +  	       /* for the `point' */ -	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); +	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);  	    }  	 /* derivative direction in u */ -	 du[k] = DCN(1,0) - DCN(0,0); +	 du[k] = DCN(1, 0) - DCN(0, 0);  	 /* derivative direction in v */ -	 dv[k] =   us*DCN(0,2) + u*DCN(1,2); +	 dv[k] = us * DCN(0, 2) + u * DCN(1, 2);  	 /* last linear de Casteljau step */ -	 out[k] =  us*DCN(0,0) + u*DCN(1,0); +	 out[k] = us * DCN(0, 0) + u * DCN(1, 0);        }     }  #undef DCN @@ -489,13 +450,13 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,  /*   * Do one-time initialization for evaluators.   */ -void _math_init_eval( void ) +void +_math_init_eval(void)  {     GLuint i;     /* KW: precompute 1/x for useful x.      */ -   for (i = 1 ; i < MAX_EVAL_ORDER ; i++) +   for (i = 1; i < MAX_EVAL_ORDER; i++)        inv_tab[i] = 1.0 / i;  } - | 
