summaryrefslogtreecommitdiff
path: root/ast_to_hir.cpp
diff options
context:
space:
mode:
authorIan Romanick <ian.d.romanick@intel.com>2010-02-22 18:43:08 -0800
committerIan Romanick <ian.d.romanick@intel.com>2010-02-22 18:43:08 -0800
commitd5f4f09e76504876e62d9a3510fbd1480716035d (patch)
treef2ff6c626343f26a39bd0dc6a1dcbe9c2c10f770 /ast_to_hir.cpp
parent53d2774ee397fc35fc0458d994d39dd3f27a5eb1 (diff)
Rename .cc files to .cpp
Diffstat (limited to 'ast_to_hir.cpp')
-rw-r--r--ast_to_hir.cpp1172
1 files changed, 1172 insertions, 0 deletions
diff --git a/ast_to_hir.cpp b/ast_to_hir.cpp
new file mode 100644
index 0000000000..8474a461ce
--- /dev/null
+++ b/ast_to_hir.cpp
@@ -0,0 +1,1172 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file ast_to_hir.c
+ * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
+ *
+ * During the conversion to HIR, the majority of the symantic checking is
+ * preformed on the program. This includes:
+ *
+ * * Symbol table management
+ * * Type checking
+ * * Function binding
+ *
+ * The majority of this work could be done during parsing, and the parser could
+ * probably generate HIR directly. However, this results in frequent changes
+ * to the parser code. Since we do not assume that every system this complier
+ * is built on will have Flex and Bison installed, we have to store the code
+ * generated by these tools in our version control system. In other parts of
+ * the system we've seen problems where a parser was changed but the generated
+ * code was not committed, merge conflicts where created because two developers
+ * had slightly different versions of Bison installed, etc.
+ *
+ * I have also noticed that running Bison generated parsers in GDB is very
+ * irritating. When you get a segfault on '$$ = $1->foo', you can't very
+ * well 'print $1' in GDB.
+ *
+ * As a result, my preference is to put as little C code as possible in the
+ * parser (and lexer) sources.
+ */
+#include <stdio.h>
+#include "main/imports.h"
+#include "symbol_table.h"
+#include "glsl_parser_extras.h"
+#include "ast.h"
+#include "glsl_types.h"
+#include "ir.h"
+
+void
+_mesa_generate_hir_from_ast(struct _mesa_glsl_parse_state *state)
+{
+ struct simple_node *ptr;
+
+ foreach (ptr, & state->translation_unit) {
+ if (1) {
+ }
+ }
+}
+
+
+static const struct glsl_type *
+arithmetic_result_type(const struct glsl_type *type_a,
+ const struct glsl_type *type_b,
+ bool multiply,
+ struct _mesa_glsl_parse_state *state)
+{
+ /* From GLSL 1.50 spec, page 56:
+ *
+ * "The arithmetic binary operators add (+), subtract (-),
+ * multiply (*), and divide (/) operate on integer and
+ * floating-point scalars, vectors, and matrices."
+ */
+ if (! is_numeric_base_type(type_a->base_type)
+ || ! is_numeric_base_type(type_b->base_type)) {
+ return glsl_error_type;
+ }
+
+
+ /* "If one operand is floating-point based and the other is
+ * not, then the conversions from Section 4.1.10 "Implicit
+ * Conversions" are applied to the non-floating-point-based operand."
+ *
+ * This conversion was added in GLSL 1.20. If the compilation mode is
+ * GLSL 1.10, the conversion is skipped.
+ */
+ if (state->language_version >= 120) {
+ if ((type_a->base_type == GLSL_TYPE_FLOAT)
+ && (type_b->base_type != GLSL_TYPE_FLOAT)) {
+ } else if ((type_a->base_type != GLSL_TYPE_FLOAT)
+ && (type_b->base_type == GLSL_TYPE_FLOAT)) {
+ }
+ }
+
+ /* "If the operands are integer types, they must both be signed or
+ * both be unsigned."
+ *
+ * From this rule and the preceeding conversion it can be inferred that
+ * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
+ * The is_numeric_base_type check above already filtered out the case
+ * where either type is not one of these, so now the base types need only
+ * be tested for equality.
+ */
+ if (type_a->base_type != type_b->base_type) {
+ return glsl_error_type;
+ }
+
+ /* "All arithmetic binary operators result in the same fundamental type
+ * (signed integer, unsigned integer, or floating-point) as the
+ * operands they operate on, after operand type conversion. After
+ * conversion, the following cases are valid
+ *
+ * * The two operands are scalars. In this case the operation is
+ * applied, resulting in a scalar."
+ */
+ if (is_glsl_type_scalar(type_a) && is_glsl_type_scalar(type_b))
+ return type_a;
+
+ /* "* One operand is a scalar, and the other is a vector or matrix.
+ * In this case, the scalar operation is applied independently to each
+ * component of the vector or matrix, resulting in the same size
+ * vector or matrix."
+ */
+ if (is_glsl_type_scalar(type_a)) {
+ if (!is_glsl_type_scalar(type_b))
+ return type_b;
+ } else if (is_glsl_type_scalar(type_b)) {
+ return type_a;
+ }
+
+ /* All of the combinations of <scalar, scalar>, <vector, scalar>,
+ * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
+ * handled.
+ */
+ assert(type_a->vector_elements > 1);
+ assert(type_b->vector_elements > 1);
+
+ /* "* The two operands are vectors of the same size. In this case, the
+ * operation is done component-wise resulting in the same size
+ * vector."
+ */
+ if (is_glsl_type_vector(type_a) && is_glsl_type_vector(type_b)) {
+ if (type_a->vector_elements == type_b->vector_elements)
+ return type_a;
+ else
+ return glsl_error_type;
+ }
+
+ /* All of the combinations of <scalar, scalar>, <vector, scalar>,
+ * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
+ * <vector, vector> have been handled. At least one of the operands must
+ * be matrix. Further, since there are no integer matrix types, the base
+ * type of both operands must be float.
+ */
+ assert((type_a->matrix_rows > 1) || (type_b->matrix_rows > 1));
+ assert(type_a->base_type == GLSL_TYPE_FLOAT);
+ assert(type_b->base_type == GLSL_TYPE_FLOAT);
+
+ /* "* The operator is add (+), subtract (-), or divide (/), and the
+ * operands are matrices with the same number of rows and the same
+ * number of columns. In this case, the operation is done component-
+ * wise resulting in the same size matrix."
+ * * The operator is multiply (*), where both operands are matrices or
+ * one operand is a vector and the other a matrix. A right vector
+ * operand is treated as a column vector and a left vector operand as a
+ * row vector. In all these cases, it is required that the number of
+ * columns of the left operand is equal to the number of rows of the
+ * right operand. Then, the multiply (*) operation does a linear
+ * algebraic multiply, yielding an object that has the same number of
+ * rows as the left operand and the same number of columns as the right
+ * operand. Section 5.10 "Vector and Matrix Operations" explains in
+ * more detail how vectors and matrices are operated on."
+ */
+ if (! multiply) {
+ if (is_glsl_type_matrix(type_a) && is_glsl_type_matrix(type_b)
+ && (type_a->vector_elements == type_b->vector_elements)
+ && (type_a->matrix_rows == type_b->matrix_rows))
+ return type_a;
+ else
+ return glsl_error_type;
+ } else {
+ if (is_glsl_type_matrix(type_a) && is_glsl_type_matrix(type_b)) {
+ if (type_a->vector_elements == type_b->matrix_rows) {
+ char type_name[7];
+ const struct glsl_type *t;
+
+ type_name[0] = 'm';
+ type_name[1] = 'a';
+ type_name[2] = 't';
+
+ if (type_a->matrix_rows == type_b->vector_elements) {
+ type_name[3] = '0' + type_a->matrix_rows;
+ type_name[4] = '\0';
+ } else {
+ type_name[3] = '0' + type_a->matrix_rows;
+ type_name[4] = 'x';
+ type_name[5] = '0' + type_b->vector_elements;
+ type_name[6] = '\0';
+ }
+
+ t = _mesa_symbol_table_find_symbol(state->symbols, 0, type_name);
+ return (t != NULL) ? t : glsl_error_type;
+ }
+ } else if (is_glsl_type_matrix(type_a)) {
+ /* A is a matrix and B is a column vector. Columns of A must match
+ * rows of B.
+ */
+ if (type_a->vector_elements == type_b->vector_elements)
+ return type_b;
+ } else {
+ assert(is_glsl_type_matrix(type_b));
+
+ /* A is a row vector and B is a matrix. Columns of A must match
+ * rows of B.
+ */
+ if (type_a->vector_elements == type_b->matrix_rows)
+ return type_a;
+ }
+ }
+
+
+ /* "All other cases are illegal."
+ */
+ return glsl_error_type;
+}
+
+
+static const struct glsl_type *
+unary_arithmetic_result_type(const struct glsl_type *type)
+{
+ /* From GLSL 1.50 spec, page 57:
+ *
+ * "The arithmetic unary operators negate (-), post- and pre-increment
+ * and decrement (-- and ++) operate on integer or floating-point
+ * values (including vectors and matrices). All unary operators work
+ * component-wise on their operands. These result with the same type
+ * they operated on."
+ */
+ if (!is_numeric_base_type(type->base_type))
+ return glsl_error_type;
+
+ return type;
+}
+
+
+static const struct glsl_type *
+modulus_result_type(const struct glsl_type *type_a,
+ const struct glsl_type *type_b)
+{
+ /* From GLSL 1.50 spec, page 56:
+ * "The operator modulus (%) operates on signed or unsigned integers or
+ * integer vectors. The operand types must both be signed or both be
+ * unsigned."
+ */
+ if (! is_integer_base_type(type_a->base_type)
+ || ! is_integer_base_type(type_b->base_type)
+ || (type_a->base_type != type_b->base_type)) {
+ return glsl_error_type;
+ }
+
+ /* "The operands cannot be vectors of differing size. If one operand is
+ * a scalar and the other vector, then the scalar is applied component-
+ * wise to the vector, resulting in the same type as the vector. If both
+ * are vectors of the same size, the result is computed component-wise."
+ */
+ if (is_glsl_type_vector(type_a)) {
+ if (!is_glsl_type_vector(type_b)
+ || (type_a->vector_elements == type_b->vector_elements))
+ return type_a;
+ } else
+ return type_b;
+
+ /* "The operator modulus (%) is not defined for any other data types
+ * (non-integer types)."
+ */
+ return glsl_error_type;
+}
+
+
+static const struct glsl_type *
+relational_result_type(const struct glsl_type *type_a,
+ const struct glsl_type *type_b,
+ struct _mesa_glsl_parse_state *state)
+{
+ /* From GLSL 1.50 spec, page 56:
+ * "The relational operators greater than (>), less than (<), greater
+ * than or equal (>=), and less than or equal (<=) operate only on
+ * scalar integer and scalar floating-point expressions."
+ */
+ if (! is_numeric_base_type(type_a->base_type)
+ || ! is_numeric_base_type(type_b->base_type)
+ || ! is_glsl_type_scalar(type_a)
+ || ! is_glsl_type_scalar(type_b))
+ return glsl_error_type;
+
+ /* "Either the operands' types must match, or the conversions from
+ * Section 4.1.10 "Implicit Conversions" will be applied to the integer
+ * operand, after which the types must match."
+ *
+ * This conversion was added in GLSL 1.20. If the compilation mode is
+ * GLSL 1.10, the conversion is skipped.
+ */
+ if (state->language_version >= 120) {
+ if ((type_a->base_type == GLSL_TYPE_FLOAT)
+ && (type_b->base_type != GLSL_TYPE_FLOAT)) {
+ /* FINISHME: Generate the implicit type conversion. */
+ } else if ((type_a->base_type != GLSL_TYPE_FLOAT)
+ && (type_b->base_type == GLSL_TYPE_FLOAT)) {
+ /* FINISHME: Generate the implicit type conversion. */
+ }
+ }
+
+ if (type_a->base_type != type_b->base_type)
+ return glsl_error_type;
+
+ /* "The result is scalar Boolean."
+ */
+ return glsl_bool_type;
+}
+
+
+struct ir_instruction *
+ast_expression_to_hir(const struct ast_node *ast,
+ struct simple_node *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const struct ast_expression *expr =
+ (struct ast_expression *) ast;
+ static const int operations[AST_NUM_OPERATORS] = {
+ -1, /* ast_assign doesn't convert to ir_expression. */
+ -1, /* ast_plus doesn't convert to ir_expression. */
+ ir_unop_neg,
+ ir_binop_add,
+ ir_binop_sub,
+ ir_binop_mul,
+ ir_binop_div,
+ ir_binop_mod,
+ ir_binop_lshift,
+ ir_binop_rshift,
+ ir_binop_less,
+ ir_binop_greater,
+ ir_binop_lequal,
+ ir_binop_gequal,
+ ir_binop_equal,
+ ir_binop_nequal,
+ ir_binop_bit_and,
+ ir_binop_bit_xor,
+ ir_binop_bit_or,
+ ir_unop_bit_not,
+ ir_binop_logic_and,
+ ir_binop_logic_xor,
+ ir_binop_logic_or,
+ ir_unop_logic_not,
+
+ /* Note: The following block of expression types actually convert
+ * to multiple IR instructions.
+ */
+ ir_binop_mul, /* ast_mul_assign */
+ ir_binop_div, /* ast_div_assign */
+ ir_binop_mod, /* ast_mod_assign */
+ ir_binop_add, /* ast_add_assign */
+ ir_binop_sub, /* ast_sub_assign */
+ ir_binop_lshift, /* ast_ls_assign */
+ ir_binop_rshift, /* ast_rs_assign */
+ ir_binop_bit_and, /* ast_and_assign */
+ ir_binop_bit_xor, /* ast_xor_assign */
+ ir_binop_bit_or, /* ast_or_assign */
+
+ -1, /* ast_conditional doesn't convert to ir_expression. */
+ -1, /* ast_pre_inc doesn't convert to ir_expression. */
+ -1, /* ast_pre_dec doesn't convert to ir_expression. */
+ -1, /* ast_post_inc doesn't convert to ir_expression. */
+ -1, /* ast_post_dec doesn't convert to ir_expression. */
+ -1, /* ast_field_selection doesn't conv to ir_expression. */
+ -1, /* ast_array_index doesn't convert to ir_expression. */
+ -1, /* ast_function_call doesn't conv to ir_expression. */
+ -1, /* ast_identifier doesn't convert to ir_expression. */
+ -1, /* ast_int_constant doesn't convert to ir_expression. */
+ -1, /* ast_uint_constant doesn't conv to ir_expression. */
+ -1, /* ast_float_constant doesn't conv to ir_expression. */
+ -1, /* ast_bool_constant doesn't conv to ir_expression. */
+ -1, /* ast_sequence doesn't convert to ir_expression. */
+ };
+ struct ir_instruction *result = NULL;
+ struct ir_instruction *op[2];
+ struct simple_node op_list;
+ const struct glsl_type *type = glsl_error_type;
+ bool error_emitted = false;
+ YYLTYPE loc;
+
+ loc = ast->get_location();
+ make_empty_list(& op_list);
+
+ switch (expr->oper) {
+ case ast_assign:
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+ op[1] = _mesa_ast_to_hir(expr->subexpressions[1], instructions, state);
+
+ error_emitted = ((op[0]->type == glsl_error_type)
+ || (op[1]->type == glsl_error_type));
+
+ type = op[0]->type;
+ if (!error_emitted) {
+ YYLTYPE loc;
+
+ /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
+ loc = expr->subexpressions[0]->get_location();
+ if (op[0]->mode != ir_op_dereference) {
+ _mesa_glsl_error(& loc, state, "invalid lvalue in assignment");
+ error_emitted = true;
+
+ type = glsl_error_type;
+ } else {
+ const struct ir_dereference *const ref =
+ (struct ir_dereference *) op[0];
+ const struct ir_variable *const var =
+ (struct ir_variable *) ref->var;
+
+ if ((var != NULL)
+ && (var->mode == ir_op_var_decl)
+ && (var->read_only)) {
+ _mesa_glsl_error(& loc, state, "cannot assign to read-only "
+ "variable `%s'", var->name);
+ error_emitted = true;
+
+ type = glsl_error_type;
+ }
+ }
+ }
+
+ /* FINISHME: Check that the LHS and RHS have matching types. */
+ /* FINISHME: For GLSL 1.10, check that the types are not arrays. */
+
+ result = new ir_assignment(op[0], op[1], NULL);
+ break;
+
+ case ast_plus:
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+
+ error_emitted = (op[0]->type == glsl_error_type);
+ if (type == glsl_error_type)
+ op[0]->type = type;
+
+ result = op[0];
+ break;
+
+ case ast_neg:
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+
+ type = unary_arithmetic_result_type(op[0]->type);
+
+ error_emitted = (op[0]->type == glsl_error_type);
+
+ result = new ir_expression(operations[expr->oper], type,
+ op[0], NULL);
+ break;
+
+ case ast_add:
+ case ast_sub:
+ case ast_mul:
+ case ast_div:
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+ op[1] = _mesa_ast_to_hir(expr->subexpressions[1], instructions, state);
+
+ type = arithmetic_result_type(op[0]->type, op[1]->type,
+ (expr->operr == ast_mul),
+ state);
+
+ result = new ir_expression(operations[expr->oper], type,
+ op[0], op[1]);
+ break;
+
+ case ast_mod:
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+ op[1] = _mesa_ast_to_hir(expr->subexpressions[1], instructions, state);
+
+ error_emitted = ((op[0]->type == glsl_error_type)
+ || (op[1]->type == glsl_error_type));
+
+ type = modulus_result_type(op[0]->type, op[1]->type);
+
+ assert(operations[expr->oper] == ir_binop_mod);
+
+ result = new ir_expression(operations[expr->oper], type,
+ op[0], op[1]);
+ break;
+
+ case ast_lshift:
+ case ast_rshift:
+ /* FINISHME: Implement bit-shift operators. */
+ break;
+
+ case ast_less:
+ case ast_greater:
+ case ast_lequal:
+ case ast_gequal:
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+ op[1] = _mesa_ast_to_hir(expr->subexpressions[1], instructions, state);
+
+ error_emitted = ((op[0]->type == glsl_error_type)
+ || (op[1]->type == glsl_error_type));
+
+ type = relational_result_type(op[0]->type, op[1]->type, state);
+
+ /* The relational operators must either generate an error or result
+ * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
+ */
+ assert((type == glsl_error_type)
+ || ((type->base_type == GLSL_TYPE_BOOL)
+ && is_glsl_type_scalar(type)));
+
+ result = new ir_expression(operations[expr->oper], type,
+ op[0], op[1]);
+ break;
+
+ case ast_nequal:
+ case ast_equal:
+ /* FINISHME: Implement equality operators. */
+ break;
+
+ case ast_bit_and:
+ case ast_bit_xor:
+ case ast_bit_or:
+ case ast_bit_not:
+ /* FINISHME: Implement bit-wise operators. */
+ break;
+
+ case ast_logic_and:
+ case ast_logic_xor:
+ case ast_logic_or:
+ case ast_logic_not:
+ /* FINISHME: Implement logical operators. */
+ break;
+
+ case ast_mul_assign:
+ case ast_div_assign:
+ case ast_add_assign:
+ case ast_sub_assign: {
+ struct ir_instruction *temp_rhs;
+
+ op[0] = _mesa_ast_to_hir(expr->subexpressions[0], instructions, state);
+ op[1] = _mesa_ast_to_hir(expr->subexpressions[1], instructions, state);
+
+ error_emitted = ((op[0]->type == glsl_error_type)
+ || (op[1]->type == glsl_error_type));
+
+ type = arithmetic_result_type(op[0]->type, op[1]->type,
+ (expr->oper == ast_mul_assign),
+ state);
+
+ temp_rhs = new ir_expression(operations[expr->oper], type,
+ op[0], op[1]);
+
+ /* FINISHME: Check that the LHS is assignable. */
+
+ /* We still have to test that the LHS and RHS have matching type. For
+ * example, the following GLSL code should generate a type error:
+ *
+ * mat4 m; vec4 v; m *= v;
+ *
+ * The type of (m*v) is a vec4, but the type of m is a mat4.
+ *
+ * FINISHME: Is multiplication between a matrix and a vector the only
+ * FINISHME: case that resuls in mismatched types?
+ */
+ /* FINISHME: Check that the LHS and RHS have matching types. */
+
+ /* GLSL 1.10 does not allow array assignment. However, we don't have to
+ * explicitly test for this because none of the binary expression
+ * operators allow array operands either.
+ */
+
+ /* FINISHME: This is wrong. The operation should assign to a new
+ * FINISHME: temporary. This assignment should then be added to the
+ * FINISHME: instruction list. Another assignment to the real
+ * FINISHME: destination should be generated. The temporary should then
+ * FINISHME: be returned as the r-value.
+ */
+ result = new ir_assignment(op[0], temp_rhs, NULL);
+ break;
+ }
+
+ case ast_mod_assign:
+
+ case ast_ls_assign:
+ case ast_rs_assign:
+
+ case ast_and_assign:
+ case ast_xor_assign:
+ case ast_or_assign:
+
+ case ast_conditional:
+
+ case ast_pre_inc:
+ case ast_pre_dec:
+
+ case ast_post_inc:
+ case ast_post_dec:
+ break;
+
+ case ast_field_selection:
+ result = _mesa_ast_field_selection_to_hir(expr, instructions, state);
+ type = result->type;
+ break;
+
+ case ast_array_index:
+ break;
+
+ case ast_function_call:
+ /* There are three sorts of function calls.
+ *
+ * 1. contstructors - The first subexpression is an ast_type_specifier.
+ * 2. methods - Only the .length() method of array types.
+ * 3. functions - Calls to regular old functions.
+ *
+ * Method calls are actually detected when the ast_field_selection
+ * expression is handled.
+ */
+ result = _mesa_ast_function_call_to_hir(expr->subexpressions[0],
+ expr->subexpressions[1],
+ state);
+ type = result->type;
+ break;
+
+ case ast_identifier: {
+ /* ast_identifier can appear several places in a full abstract syntax
+ * tree. This particular use must be at location specified in the grammar
+ * as 'variable_identifier'.
+ */
+ struct ir_variable *var =
+ _mesa_symbol_table_find_symbol(state->symbols, 0,
+ expr->primary_expression.identifier);
+
+ result = new ir_dereference(var);
+
+ if (var != NULL) {
+ type = result->type;
+ } else {
+ _mesa_glsl_error(& loc, NULL, "`%s' undeclared",
+ expr->primary_expression.identifier);
+
+ error_emitted = true;
+ }
+ break;
+ }
+
+ case ast_int_constant:
+ type = glsl_int_type;
+ result = new ir_constant(type, & expr->primary_expression);
+ break;
+
+ case ast_uint_constant:
+ type = glsl_uint_type;
+ result = new ir_constant(type, & expr->primary_expression);
+ break;
+
+ case ast_float_constant:
+ type = glsl_float_type;
+ result = new ir_constant(type, & expr->primary_expression);
+ break;
+
+ case ast_bool_constant:
+ type = glsl_bool_type;
+ result = new ir_constant(type, & expr->primary_expression);
+ break;
+
+ case ast_sequence: {
+ struct simple_node *ptr;
+
+ /* It should not be possible to generate a sequence in the AST without
+ * any expressions in it.
+ */
+ assert(!is_empty_list(&expr->expressions));
+
+ /* The r-value of a sequence is the last expression in the sequence. If
+ * the other expressions in the sequence do not have side-effects (and
+ * therefore add instructions to the instruction list), they get dropped
+ * on the floor.
+ */
+ foreach (ptr, &expr->expressions)
+ result = _mesa_ast_to_hir(ptr, instructions, state);
+
+ type = result->type;
+
+ /* Any errors should have already been emitted in the loop above.
+ */
+ error_emitted = true;
+ break;
+ }
+ }
+
+ if (is_error_type(type) && !error_emitted)
+ _mesa_glsl_error(& loc, NULL, "type mismatch");
+
+ return result;
+}
+
+
+struct ir_instruction *
+ast_expression_statement_to_hir(const struct ast_node *ast,
+ struct simple_node *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const struct ast_expression_statement *stmt =
+ (struct ast_expression_statement *) ast;
+
+ /* It is possible to have expression statements that don't have an
+ * expression. This is the solitary semicolon:
+ *
+ * for (i = 0; i < 5; i++)
+ * ;
+ *
+ * In this case the expression will be NULL. Test for NULL and don't do
+ * anything in that case.
+ */
+ if (stmt->expression != NULL)
+ _mesa_ast_to_hir(stmt->expression, instructions, state);
+
+ /* Statements do not have r-values.
+ */
+ return NULL;
+}
+
+
+struct ir_instruction *
+ast_compound_statement_to_hir(const struct ast_node *ast,
+ struct simple_node *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const struct ast_compound_statement *stmt =
+ (struct ast_compound_statement *) ast;
+ struct simple_node *ptr;
+
+
+ if (stmt->new_scope)
+ _mesa_symbol_table_push_scope(state->symbols);
+
+ foreach (ptr, &stmt->statements)
+ _mesa_ast_to_hir(ptr, instructions, state);
+
+ if (stmt->new_scope)
+ _mesa_symbol_table_pop_scope(state->symbols);
+
+ /* Compound statements do not have r-values.
+ */
+ return NULL;
+}
+
+
+static const struct glsl_type *
+type_specifier_to_glsl_type(const struct ast_type_specifier *spec,
+ const char **name,
+ struct _mesa_glsl_parse_state *state)
+{
+ static const char *const type_names[] = {
+ "void",
+ "float",
+ "int",
+ "uint",
+ "bool",
+ "vec2",
+ "vec3",
+ "vec4",
+ "bvec2",
+ "bvec3",
+ "bvec4",
+ "ivec2",
+ "ivec3",
+ "ivec4",
+ "uvec2",
+ "uvec3",
+ "uvec4",
+ "mat2",
+ "mat2x3",
+ "mat2x4",
+ "mat3x2",
+ "mat3",
+ "mat3x4",
+ "mat4x2",
+ "mat4x3",
+ "mat4",
+ "sampler1D",
+ "sampler2D",
+ "sampler3D",
+ "samplerCube",
+ "sampler1DShadow",
+ "sampler2DShadow",
+ "samplerCubeShadow",
+ "sampler1DArray",
+ "sampler2DArray",
+ "sampler1DArrayShadow",
+ "sampler2DArrayShadow",
+ "isampler1D",
+ "isampler2D",
+ "isampler3D",
+ "isamplerCube",
+ "isampler1DArray",
+ "isampler2DArray",
+ "usampler1D",
+ "usampler2D",
+ "usampler3D",
+ "usamplerCube",
+ "usampler1DArray",
+ "usampler2DArray",
+
+ NULL, /* ast_struct */
+ NULL /* ast_type_name */
+ };
+ struct glsl_type *type;
+ const char *type_name = NULL;
+
+ if (spec->type_specifier == ast_struct) {
+ /* FINISHME: Handle annonymous structures. */
+ type = NULL;
+ } else {
+ type_name = (spec->type_specifier == ast_type_name)
+ ? spec->type_name : type_names[spec->type_specifier];
+
+ type = _mesa_symbol_table_find_symbol(state->symbols, 0, type_name);
+ *name = type_name;
+
+ /* FINISHME: Handle array declarations. Note that this requires complete
+ * FINSIHME: handling of constant expressions.
+ */
+ }
+
+ return type;
+}
+
+
+static void
+apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
+ struct ir_variable *var,
+ struct _mesa_glsl_parse_state *state)
+{
+ if (qual->invariant)
+ var->invariant = 1;
+
+ /* FINISHME: Mark 'in' variables at global scope as read-only. */
+ if (qual->constant || qual->attribute || qual->uniform
+ || (qual->varying && (state->target == fragment_shader)))
+ var->read_only = 1;
+
+ if (qual->centroid)
+ var->centroid = 1;
+
+ if (qual->in && qual->out)
+ var->mode = ir_var_inout;
+ else if (qual->attribute || qual->in
+ || (qual->varying && (state->target == fragment_shader)))
+ var->mode = ir_var_in;
+ else if (qual->out)
+ var->mode = ir_var_out;
+ else if (qual->uniform)
+ var->mode = ir_var_uniform;
+ else
+ var->mode = ir_var_auto;
+
+ if (qual->flat)
+ var->interpolation = ir_var_flat;
+ else if (qual->noperspective)
+ var->interpolation = ir_var_noperspective;
+ else
+ var->interpolation = ir_var_smooth;
+}
+
+
+struct ir_instruction *
+ast_declarator_list_to_hir(const struct ast_node *ast,
+ struct simple_node *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const struct ast_declarator_list *dlist = (struct ast_declarator_list *) ast;
+ struct simple_node *ptr;
+ const struct glsl_type *decl_type;
+ const char *type_name = NULL;
+
+
+ /* FINISHME: Handle vertex shader "invariant" declarations that do not
+ * FINISHME: include a type. These re-declare built-in variables to be
+ * FINISHME: invariant.
+ */
+
+ decl_type = type_specifier_to_glsl_type(dlist->type->specifier,
+ & type_name, state);
+
+ foreach (ptr, &dlist->declarations) {
+ struct ast_declaration *const decl = (struct ast_declaration * )ptr;
+ const struct glsl_type *var_type;
+ struct ir_variable *var;
+
+
+ /* FINISHME: Emit a warning if a variable declaration shadows a
+ * FINISHME: declaration at a higher scope.
+ */
+
+ if (decl_type == NULL) {
+ YYLTYPE loc;
+
+ loc = ast->get_location();
+ if (type_name != NULL) {
+ _mesa_glsl_error(& loc, state,
+ "invalid type `%s' in declaration of `%s'",
+ type_name, decl->identifier);
+ } else {
+ _mesa_glsl_error(& loc, state,
+ "invalid type in declaration of `%s'",
+ decl->identifier);
+ }
+ continue;
+ }
+
+ if (decl->is_array) {
+ /* FINISHME: Handle array declarations. Note that this requires
+ * FINISHME: complete handling of constant expressions.
+ */
+
+ /* FINISHME: Reject delcarations of multidimensional arrays. */
+ } else {
+ var_type = decl_type;
+ }
+
+ var = new ir_variable(var_type, decl->identifier);
+
+ /* FINSIHME: Variables that are attribute, uniform, varying, in, or
+ * FINISHME: out varibles must be declared either at global scope or
+ * FINISHME: in a parameter list (in and out only).
+ */
+
+ apply_type_qualifier_to_variable(& dlist->type->qualifier, var, state);
+
+ /* Attempt to add the variable to the symbol table. If this fails, it
+ * means the variable has already been declared at this scope.
+ */
+ if (_mesa_symbol_table_add_symbol(state->symbols, 0, decl->identifier,
+ var) != 0) {
+ YYLTYPE loc = ast->get_location();
+
+ _mesa_glsl_error(& loc, state, "`%s' redeclared",
+ decl->identifier);
+ continue;
+ }
+
+ insert_at_tail(instructions, (struct simple_node *) var);
+
+ /* FINISHME: Process the declaration initializer. */
+ }
+
+ /* Variable declarations do not have r-values.
+ */
+ return NULL;
+}
+
+
+struct ir_instruction *
+ast_parameter_declarator_to_hir(const struct ast_node *ast,
+ struct simple_node *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const struct ast_parameter_declarator *decl =
+ (struct ast_parameter_declarator *) ast;
+ struct ir_variable *var;
+ const struct glsl_type *type;
+ const char *name = NULL;
+
+
+ type = type_specifier_to_glsl_type(decl->type->specifier, & name, state);
+
+ if (type == NULL) {
+ YYLTYPE loc = ast->get_location();
+ if (name != NULL) {
+ _mesa_glsl_error(& loc, state,
+ "invalid type `%s' in declaration of `%s'",
+ name, decl->identifier);
+ } else {
+ _mesa_glsl_error(& loc, state,
+ "invalid type in declaration of `%s'",
+ decl->identifier);
+ }
+
+ type = glsl_error_type;
+ }
+
+ var = new ir_variable(type, decl->identifier);
+
+ /* FINISHME: Handle array declarations. Note that this requires
+ * FINISHME: complete handling of constant expressions.
+ */
+
+ apply_type_qualifier_to_variable(& decl->type->qualifier, var, state);
+
+ insert_at_tail(instructions, var);
+
+ /* Parameter declarations do not have r-values.
+ */
+ return NULL;
+}
+
+
+static void
+ast_function_parameters_to_hir(struct simple_node *ast_parameters,
+ struct simple_node *ir_parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ struct simple_node *ptr;
+
+ foreach (ptr, ast_parameters) {
+ _mesa_ast_to_hir(ptr, ir_parameters, state);
+ }
+}
+
+
+static bool
+parameter_lists_match(struct simple_node *list_a, struct simple_node *list_b)
+{
+ struct simple_node *node_a;
+ struct simple_node *node_b;
+
+ node_b = first_elem(list_b);
+ foreach (node_a, list_a) {
+ /* If all of the parameters from the other parameter list have been
+ * exhausted, the lists have different length and, by definition,
+ * do not match.
+ */
+ if (at_end(list_b, node_b))
+ return false;
+
+ /* If the types of the parameters do not match, the parameters lists
+ * are different.
+ */
+ /* FINISHME */
+
+
+ node_b = next_elem(node_b);
+ }
+
+ return true;
+}
+
+
+struct ir_instruction *
+ast_function_definition_to_hir(const struct ast_node *ast,
+ struct simple_node *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const struct ast_function_definition *func =
+ (struct ast_function_definition *) ast;
+ struct ir_label *label;
+ struct simple_node *ptr;
+ struct simple_node *tmp;
+ struct ir_function_signature *signature = NULL;
+ struct ir_function *f = NULL;
+ struct simple_node parameters;
+
+
+ /* Convert the list of function parameters to HIR now so that they can be
+ * used below to compare this function's signature with previously seen
+ * signatures for functions with the same name.
+ */
+ make_empty_list(& parameters);
+ ast_function_parameters_to_hir(& func->prototype->parameters, & parameters,
+ state);
+
+
+ /* Verify that this function's signature either doesn't match a previously
+ * seen signature for a function with the same name, or, if a match is found,
+ * that the previously seen signature does not have an associated definition.
+ */
+ f = _mesa_symbol_table_find_symbol(state->symbols, 0,
+ func->prototype->identifier);
+ if (f != NULL) {
+ foreach (ptr, & f->signatures) {
+ signature = (struct ir_function_signature *) ptr;
+
+ /* Compare the parameter list of the function being defined to the
+ * existing function. If the parameter lists match, then the return
+ * type must also match and the existing function must not have a
+ * definition.
+ */
+ if (parameter_lists_match(& parameters, & signature->parameters)) {
+ /* FINISHME: Compare return types. */
+
+ if (signature->definition != NULL) {
+ YYLTYPE loc = ast->get_location();
+
+ _mesa_glsl_error(& loc, state, "function `%s' redefined",
+ func->prototype->identifier);
+ signature = NULL;
+ break;
+ }
+ }
+
+ signature = NULL;
+ }
+
+ } else {
+ f = new ir_function();
+ f->name = func->prototype->identifier;
+
+ _mesa_symbol_table_add_symbol(state->symbols, 0, f->name, f);
+ }
+
+
+ /* Finish storing the information about this new function in its signature.
+ */
+ if (signature == NULL) {
+ signature = new ir_function_signature();
+ insert_at_tail(& f->signatures, (struct simple_node *) signature);
+ } else {
+ /* Destroy all of the previous parameter information. The previous
+ * parameter information comes from the function prototype, and it can
+ * either include invalid parameter names or may not have names at all.
+ */
+ foreach_s(ptr, tmp, & signature->parameters) {
+ assert(((struct ir_instruction *)ptr)->mode == ir_op_var_decl);
+
+ remove_from_list(ptr);
+ free(ptr);
+ }
+ }
+
+
+ ast_function_parameters_to_hir(& func->prototype->parameters,
+ & signature->parameters,
+ state);
+ /* FINISHME: Set signature->return_type */
+
+ label = new ir_label(func->prototype->identifier);
+ if (signature->definition == NULL) {
+ signature->definition = label;
+ }
+ insert_at_tail(instructions, label);
+
+ /* Add the function parameters to the symbol table. During this step the
+ * parameter declarations are also moved from the temporary "parameters" list
+ * to the instruction list. There are other more efficient ways to do this,
+ * but they involve ugly linked-list gymnastics.
+ */
+ _mesa_symbol_table_push_scope(state->symbols);
+ foreach_s(ptr, tmp, & parameters) {
+ struct ir_variable *const var = (struct ir_variable *) ptr;
+
+ assert(var->mode == ir_op_var_decl);
+
+ remove_from_list(ptr);
+ insert_at_tail(instructions, ptr);
+
+ _mesa_symbol_table_add_symbol(state->symbols, 0, var->name, var);
+ }
+
+ /* Convert the body of the function to HIR, and append the resulting
+ * instructions to the list that currently consists of the function label
+ * and the function parameters.
+ */
+ _mesa_ast_to_hir(func->body, instructions, state);
+
+ _mesa_symbol_table_pop_scope(state->symbols);
+
+
+ /* Function definitions do not have r-values.
+ */
+ return NULL;
+}