summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/llvmpipe/lp_setup_tri.c
diff options
context:
space:
mode:
authorKeith Whitwell <keithw@vmware.com>2010-06-17 21:19:09 +0100
committerJosé Fonseca <jfonseca@vmware.com>2010-07-13 17:23:49 +0100
commitd4b64167b56f780d0dea73193c345622888fbc16 (patch)
treec2039d6e06eb248c2da9660e95b9cb9e62b97423 /src/gallium/drivers/llvmpipe/lp_setup_tri.c
parent3bd9aedbac79eec16bfe6f5fc6f6a021eebe769a (diff)
llvmpipe: pass mask into fragment shader
Move this code back out to C for now, will generate separately. Shader now takes a mask parameter instead of C0/C1/C2/etc. Shader does not currently use that parameter and rasterizes whole pixel stamps always.
Diffstat (limited to 'src/gallium/drivers/llvmpipe/lp_setup_tri.c')
-rw-r--r--src/gallium/drivers/llvmpipe/lp_setup_tri.c609
1 files changed, 379 insertions, 230 deletions
diff --git a/src/gallium/drivers/llvmpipe/lp_setup_tri.c b/src/gallium/drivers/llvmpipe/lp_setup_tri.c
index 4e2e17f77b..036b5497fa 100644
--- a/src/gallium/drivers/llvmpipe/lp_setup_tri.c
+++ b/src/gallium/drivers/llvmpipe/lp_setup_tri.c
@@ -38,12 +38,78 @@
#define NUM_CHANNELS 4
+struct tri_info {
+
+ float pixel_offset;
+
+ /* fixed point vertex coordinates */
+ int x[3];
+ int y[3];
+
+ /* float x,y deltas - all from the original coordinates
+ */
+ float dy01, dy20;
+ float dx01, dx20;
+ float oneoverarea;
+
+ const float (*v0)[4];
+ const float (*v1)[4];
+ const float (*v2)[4];
+
+ boolean frontfacing;
+};
+
+
+
+static const int step_scissor_minx[16] = {
+ 0, 1, 0, 1,
+ 2, 3, 2, 3,
+ 0, 1, 0, 1,
+ 2, 3, 2, 3
+};
+
+static const int step_scissor_maxx[16] = {
+ 0, -1, 0, -1,
+ -2, -3, -2, -3,
+ 0, -1, 0, -1,
+ -2, -3, -2, -3
+};
+
+static const int step_scissor_miny[16] = {
+ 0, 0, 1, 1,
+ 0, 0, 1, 1,
+ 2, 2, 3, 3,
+ 2, 2, 3, 3
+};
+
+static const int step_scissor_maxy[16] = {
+ 0, 0, -1, -1,
+ 0, 0, -1, -1,
+ -2, -2, -3, -3,
+ -2, -2, -3, -3
+};
+
+
+
+
+static INLINE int
+subpixel_snap(float a)
+{
+ return util_iround(FIXED_ONE * a);
+}
+
+static INLINE float
+fixed_to_float(int a)
+{
+ return a * (1.0 / FIXED_ONE);
+}
+
+
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
*/
-static void constant_coef( struct lp_setup_context *setup,
- struct lp_rast_triangle *tri,
+static void constant_coef( struct lp_rast_triangle *tri,
unsigned slot,
const float value,
unsigned i )
@@ -54,28 +120,21 @@ static void constant_coef( struct lp_setup_context *setup,
}
-/**
- * Compute a0, dadx and dady for a linearly interpolated coefficient,
- * for a triangle.
- */
-static void linear_coef( struct lp_setup_context *setup,
- struct lp_rast_triangle *tri,
- float oneoverarea,
+
+static void linear_coef( struct lp_rast_triangle *tri,
+ const struct tri_info *info,
unsigned slot,
- const float (*v1)[4],
- const float (*v2)[4],
- const float (*v3)[4],
unsigned vert_attr,
unsigned i)
{
- float a1 = v1[vert_attr][i];
- float a2 = v2[vert_attr][i];
- float a3 = v3[vert_attr][i];
+ float a0 = info->v0[vert_attr][i];
+ float a1 = info->v1[vert_attr][i];
+ float a2 = info->v2[vert_attr][i];
- float da12 = a1 - a2;
- float da31 = a3 - a1;
- float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
- float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
+ float da01 = a0 - a1;
+ float da20 = a2 - a0;
+ float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
+ float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
@@ -92,9 +151,9 @@ static void linear_coef( struct lp_setup_context *setup,
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
- tri->inputs.a0[slot][i] = (a1 -
- (dadx * (v1[0][0] - setup->pixel_offset) +
- dady * (v1[0][1] - setup->pixel_offset)));
+ tri->inputs.a0[slot][i] = (a0 -
+ (dadx * (info->v0[0][0] - info->pixel_offset) +
+ dady * (info->v0[0][1] - info->pixel_offset)));
}
@@ -106,31 +165,27 @@ static void linear_coef( struct lp_setup_context *setup,
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
-static void perspective_coef( struct lp_setup_context *setup,
- struct lp_rast_triangle *tri,
- float oneoverarea,
+static void perspective_coef( struct lp_rast_triangle *tri,
+ const struct tri_info *info,
unsigned slot,
- const float (*v1)[4],
- const float (*v2)[4],
- const float (*v3)[4],
unsigned vert_attr,
unsigned i)
{
/* premultiply by 1/w (v[0][3] is always 1/w):
*/
- float a1 = v1[vert_attr][i] * v1[0][3];
- float a2 = v2[vert_attr][i] * v2[0][3];
- float a3 = v3[vert_attr][i] * v3[0][3];
- float da12 = a1 - a2;
- float da31 = a3 - a1;
- float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
- float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
+ float a0 = info->v0[vert_attr][i] * info->v0[0][3];
+ float a1 = info->v1[vert_attr][i] * info->v1[0][3];
+ float a2 = info->v2[vert_attr][i] * info->v2[0][3];
+ float da01 = a0 - a1;
+ float da20 = a2 - a0;
+ float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
+ float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
- tri->inputs.a0[slot][i] = (a1 -
- (dadx * (v1[0][0] - setup->pixel_offset) +
- dady * (v1[0][1] - setup->pixel_offset)));
+ tri->inputs.a0[slot][i] = (a0 -
+ (dadx * (info->v0[0][0] - info->pixel_offset) +
+ dady * (info->v0[0][1] - info->pixel_offset)));
}
@@ -141,13 +196,9 @@ static void perspective_coef( struct lp_setup_context *setup,
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
*/
static void
-setup_fragcoord_coef(struct lp_setup_context *setup,
- struct lp_rast_triangle *tri,
- float oneoverarea,
+setup_fragcoord_coef(struct lp_rast_triangle *tri,
+ const struct tri_info *info,
unsigned slot,
- const float (*v1)[4],
- const float (*v2)[4],
- const float (*v3)[4],
unsigned usage_mask)
{
/*X*/
@@ -166,12 +217,12 @@ setup_fragcoord_coef(struct lp_setup_context *setup,
/*Z*/
if (usage_mask & TGSI_WRITEMASK_Z) {
- linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 2);
+ linear_coef(tri, info, slot, 0, 2);
}
/*W*/
if (usage_mask & TGSI_WRITEMASK_W) {
- linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 3);
+ linear_coef(tri, info, slot, 0, 3);
}
}
@@ -180,24 +231,23 @@ setup_fragcoord_coef(struct lp_setup_context *setup,
* Setup the fragment input attribute with the front-facing value.
* \param frontface is the triangle front facing?
*/
-static void setup_facing_coef( struct lp_setup_context *setup,
- struct lp_rast_triangle *tri,
+static void setup_facing_coef( struct lp_rast_triangle *tri,
unsigned slot,
boolean frontface,
unsigned usage_mask)
{
/* convert TRUE to 1.0 and FALSE to -1.0 */
if (usage_mask & TGSI_WRITEMASK_X)
- constant_coef( setup, tri, slot, 2.0f * frontface - 1.0f, 0 );
+ constant_coef( tri, slot, 2.0f * frontface - 1.0f, 0 );
if (usage_mask & TGSI_WRITEMASK_Y)
- constant_coef( setup, tri, slot, 0.0f, 1 ); /* wasted */
+ constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
if (usage_mask & TGSI_WRITEMASK_Z)
- constant_coef( setup, tri, slot, 0.0f, 2 ); /* wasted */
+ constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
if (usage_mask & TGSI_WRITEMASK_W)
- constant_coef( setup, tri, slot, 0.0f, 3 ); /* wasted */
+ constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
}
@@ -206,11 +256,7 @@ static void setup_facing_coef( struct lp_setup_context *setup,
*/
static void setup_tri_coefficients( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
- float oneoverarea,
- const float (*v1)[4],
- const float (*v2)[4],
- const float (*v3)[4],
- boolean frontface)
+ const struct tri_info *info)
{
unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
unsigned slot;
@@ -227,25 +273,25 @@ static void setup_tri_coefficients( struct lp_setup_context *setup,
if (setup->flatshade_first) {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
- constant_coef(setup, tri, slot+1, v1[vert_attr][i], i);
+ constant_coef(tri, slot+1, info->v0[vert_attr][i], i);
}
else {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
- constant_coef(setup, tri, slot+1, v3[vert_attr][i], i);
+ constant_coef(tri, slot+1, info->v2[vert_attr][i], i);
}
break;
case LP_INTERP_LINEAR:
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
- linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
+ linear_coef(tri, info, slot+1, vert_attr, i);
break;
case LP_INTERP_PERSPECTIVE:
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
- perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
+ perspective_coef(tri, info, slot+1, vert_attr, i);
fragcoord_usage_mask |= TGSI_WRITEMASK_W;
break;
@@ -259,7 +305,7 @@ static void setup_tri_coefficients( struct lp_setup_context *setup,
break;
case LP_INTERP_FACING:
- setup_facing_coef(setup, tri, slot+1, frontface, usage_mask);
+ setup_facing_coef(tri, slot+1, info->frontfacing, usage_mask);
break;
default:
@@ -269,16 +315,11 @@ static void setup_tri_coefficients( struct lp_setup_context *setup,
/* The internal position input is in slot zero:
*/
- setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v3,
- fragcoord_usage_mask);
+ setup_fragcoord_coef(tri, info, 0, fragcoord_usage_mask);
}
-static INLINE int subpixel_snap( float a )
-{
- return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
-}
@@ -291,21 +332,25 @@ static INLINE int subpixel_snap( float a )
* \return pointer to triangle space
*/
static INLINE struct lp_rast_triangle *
-alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
+alloc_triangle(struct lp_scene *scene,
+ unsigned nr_inputs,
+ unsigned nr_planes,
+ unsigned *tri_size)
{
unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
struct lp_rast_triangle *tri;
- unsigned bytes;
+ unsigned tri_bytes, bytes;
char *inputs;
assert(sizeof(*tri) % 16 == 0);
- bytes = sizeof(*tri) + (3 * input_array_sz);
+ tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
+ bytes = tri_bytes + (3 * input_array_sz);
tri = lp_scene_alloc_aligned( scene, bytes, 16 );
if (tri) {
- inputs = (char *) (tri + 1);
+ inputs = ((char *)tri) + tri_bytes;
tri->inputs.a0 = (float (*)[4]) inputs;
tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
@@ -329,52 +374,71 @@ print_triangle(struct lp_setup_context *setup,
uint i;
debug_printf("llvmpipe triangle\n");
- for (i = 0; i < setup->fs.nr_inputs; i++) {
+ for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v1[%d]: %f %f %f %f\n", i,
v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
}
- for (i = 0; i < setup->fs.nr_inputs; i++) {
+ for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v2[%d]: %f %f %f %f\n", i,
v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
}
- for (i = 0; i < setup->fs.nr_inputs; i++) {
+ for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v3[%d]: %f %f %f %f\n", i,
v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
}
}
+lp_rast_cmd lp_rast_tri_tab[8] = {
+ NULL, /* should be impossible */
+ lp_rast_triangle_1,
+ lp_rast_triangle_2,
+ lp_rast_triangle_3,
+ lp_rast_triangle_4,
+ lp_rast_triangle_5,
+ lp_rast_triangle_6,
+ lp_rast_triangle_7
+};
+
/**
* Do basic setup for triangle rasterization and determine which
* framebuffer tiles are touched. Put the triangle in the scene's
* bins for the tiles which we overlap.
*/
-static void
+static void
do_triangle_ccw(struct lp_setup_context *setup,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
boolean frontfacing )
{
- /* x/y positions in fixed point */
- const int x1 = subpixel_snap(v1[0][0] + 0.5 - setup->pixel_offset);
- const int x2 = subpixel_snap(v2[0][0] + 0.5 - setup->pixel_offset);
- const int x3 = subpixel_snap(v3[0][0] + 0.5 - setup->pixel_offset);
- const int y1 = subpixel_snap(v1[0][1] + 0.5 - setup->pixel_offset);
- const int y2 = subpixel_snap(v2[0][1] + 0.5 - setup->pixel_offset);
- const int y3 = subpixel_snap(v3[0][1] + 0.5 - setup->pixel_offset);
struct lp_scene *scene = lp_setup_get_current_scene(setup);
+ struct lp_fragment_shader_variant *variant = setup->fs.current.variant;
struct lp_rast_triangle *tri;
+ struct tri_info info;
int area;
- float oneoverarea;
int minx, maxx, miny, maxy;
+ int ix0, ix1, iy0, iy1;
unsigned tri_bytes;
-
+ int i;
+ int nr_planes = 3;
+
if (0)
print_triangle(setup, v1, v2, v3);
- tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
+ if (setup->scissor_test) {
+ nr_planes = 7;
+ }
+ else {
+ nr_planes = 3;
+ }
+
+
+ tri = alloc_triangle(scene,
+ setup->fs.nr_inputs,
+ nr_planes,
+ &tri_bytes);
if (!tri)
return;
@@ -387,15 +451,24 @@ do_triangle_ccw(struct lp_setup_context *setup,
tri->v[2][1] = v3[0][1];
#endif
- tri->dx12 = x1 - x2;
- tri->dx23 = x2 - x3;
- tri->dx31 = x3 - x1;
+ /* x/y positions in fixed point */
+ info.x[0] = subpixel_snap(v1[0][0] - setup->pixel_offset);
+ info.x[1] = subpixel_snap(v2[0][0] - setup->pixel_offset);
+ info.x[2] = subpixel_snap(v3[0][0] - setup->pixel_offset);
+ info.y[0] = subpixel_snap(v1[0][1] - setup->pixel_offset);
+ info.y[1] = subpixel_snap(v2[0][1] - setup->pixel_offset);
+ info.y[2] = subpixel_snap(v3[0][1] - setup->pixel_offset);
+
+ tri->plane[0].dcdy = info.x[0] - info.x[1];
+ tri->plane[1].dcdy = info.x[1] - info.x[2];
+ tri->plane[2].dcdy = info.x[2] - info.x[0];
- tri->dy12 = y1 - y2;
- tri->dy23 = y2 - y3;
- tri->dy31 = y3 - y1;
+ tri->plane[0].dcdx = info.y[0] - info.y[1];
+ tri->plane[1].dcdx = info.y[1] - info.y[2];
+ tri->plane[2].dcdx = info.y[2] - info.y[0];
- area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
+ area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
+ tri->plane[2].dcdy * tri->plane[0].dcdx);
LP_COUNT(nr_tris);
@@ -410,20 +483,35 @@ do_triangle_ccw(struct lp_setup_context *setup,
}
/* Bounding rectangle (in pixels) */
- minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
- maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
- miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
- maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
-
+ {
+ /* Yes this is necessary to accurately calculate bounding boxes
+ * with the two fill-conventions we support. GL (normally) ends
+ * up needing a bottom-left fill convention, which requires
+ * slightly different rounding.
+ */
+ int adj = (setup->pixel_offset != 0) ? 1 : 0;
+
+ minx = (MIN3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
+ maxx = (MAX3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
+ miny = (MIN3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
+ maxy = (MAX3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
+ }
+
if (setup->scissor_test) {
minx = MAX2(minx, setup->scissor.current.minx);
maxx = MIN2(maxx, setup->scissor.current.maxx);
miny = MAX2(miny, setup->scissor.current.miny);
maxy = MIN2(maxy, setup->scissor.current.maxy);
}
+ else {
+ minx = MAX2(minx, 0);
+ miny = MAX2(miny, 0);
+ maxx = MIN2(maxx, scene->fb.width);
+ maxy = MIN2(maxy, scene->fb.height);
+ }
+
- if (miny == maxy ||
- minx == maxx) {
+ if (miny >= maxy || minx >= maxx) {
lp_scene_putback_data( scene, tri_bytes );
LP_COUNT(nr_culled_tris);
return;
@@ -431,75 +519,87 @@ do_triangle_ccw(struct lp_setup_context *setup,
/*
*/
- oneoverarea = ((float)FIXED_ONE) / (float)area;
+ info.pixel_offset = setup->pixel_offset;
+ info.v0 = v1;
+ info.v1 = v2;
+ info.v2 = v3;
+ info.dx01 = info.v0[0][0] - info.v1[0][0];
+ info.dx20 = info.v2[0][0] - info.v0[0][0];
+ info.dy01 = info.v0[0][1] - info.v1[0][1];
+ info.dy20 = info.v2[0][1] - info.v0[0][1];
+ info.oneoverarea = 1.0 / (info.dx01 * info.dy20 - info.dx20 * info.dy01);
+ info.frontfacing = frontfacing;
/* Setup parameter interpolants:
*/
- setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
+ setup_tri_coefficients( setup, tri, &info );
tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
- /* half-edge constants, will be interated over the whole render target.
- */
- tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
- tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
- tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
- /* correct for top-left fill convention:
- */
- if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
- if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
- if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
-
- tri->dy12 *= FIXED_ONE;
- tri->dy23 *= FIXED_ONE;
- tri->dy31 *= FIXED_ONE;
-
- tri->dx12 *= FIXED_ONE;
- tri->dx23 *= FIXED_ONE;
- tri->dx31 *= FIXED_ONE;
-
- /* find trivial reject offsets for each edge for a single-pixel
- * sized block. These will be scaled up at each recursive level to
- * match the active blocksize. Scaling in this way works best if
- * the blocks are square.
- */
- tri->eo1 = 0;
- if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
- if (tri->dx12 > 0) tri->eo1 += tri->dx12;
+
+ for (i = 0; i < 3; i++) {
+ struct lp_rast_plane *plane = &tri->plane[i];
- tri->eo2 = 0;
- if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
- if (tri->dx23 > 0) tri->eo2 += tri->dx23;
+ /* half-edge constants, will be interated over the whole render
+ * target.
+ */
+ plane->c = plane->dcdx * info.x[i] - plane->dcdy * info.y[i];
+
+ /* correct for top-left vs. bottom-left fill convention.
+ *
+ * note that we're overloading gl_rasterization_rules to mean
+ * both (0.5,0.5) pixel centers *and* bottom-left filling
+ * convention.
+ *
+ * GL actually has a top-left filling convention, but GL's
+ * notion of "top" differs from gallium's...
+ *
+ * Also, sometimes (in FBO cases) GL will render upside down
+ * to its usual method, in which case it will probably want
+ * to use the opposite, top-left convention.
+ */
+ if (plane->dcdx < 0) {
+ /* both fill conventions want this - adjust for left edges */
+ plane->c++;
+ }
+ else if (plane->dcdx == 0) {
+ if (setup->pixel_offset == 0) {
+ /* correct for top-left fill convention:
+ */
+ if (plane->dcdy > 0) plane->c++;
+ }
+ else {
+ /* correct for bottom-left fill convention:
+ */
+ if (plane->dcdy < 0) plane->c++;
+ }
+ }
- tri->eo3 = 0;
- if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
- if (tri->dx31 > 0) tri->eo3 += tri->dx31;
+ plane->dcdx *= FIXED_ONE;
+ plane->dcdy *= FIXED_ONE;
- /* Calculate trivial accept offsets from the above.
- */
- tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
- tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
- tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
+ /* find trivial reject offsets for each edge for a single-pixel
+ * sized block. These will be scaled up at each recursive level to
+ * match the active blocksize. Scaling in this way works best if
+ * the blocks are square.
+ */
+ plane->eo = 0;
+ if (plane->dcdx < 0) plane->eo -= plane->dcdx;
+ if (plane->dcdy > 0) plane->eo += plane->dcdy;
- /* Fill in the inputs.step[][] arrays.
- * We've manually unrolled some loops here.
- */
- {
- const int xstep1 = -tri->dy12;
- const int xstep2 = -tri->dy23;
- const int xstep3 = -tri->dy31;
- const int ystep1 = tri->dx12;
- const int ystep2 = tri->dx23;
- const int ystep3 = tri->dx31;
-
-#define SETUP_STEP(i, x, y) \
- do { \
- tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
- tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
- tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
- } while (0)
+ /* Calculate trivial accept offsets from the above.
+ */
+ plane->ei = plane->dcdy - plane->dcdx - plane->eo;
+ plane->step = tri->step[i];
+
+ /* Fill in the inputs.step[][] arrays.
+ * We've manually unrolled some loops here.
+ */
+#define SETUP_STEP(j, x, y) \
+ tri->step[i][j] = y * plane->dcdy - x * plane->dcdx
+
SETUP_STEP(0, 0, 0);
SETUP_STEP(1, 1, 0);
SETUP_STEP(2, 0, 1);
@@ -522,63 +622,106 @@ do_triangle_ccw(struct lp_setup_context *setup,
#undef STEP
}
+
+ /*
+ * When rasterizing scissored tris, use the intersection of the
+ * triangle bounding box and the scissor rect to generate the
+ * scissor planes.
+ *
+ * This permits us to cut off the triangle "tails" that are present
+ * in the intermediate recursive levels caused when two of the
+ * triangles edges don't diverge quickly enough to trivially reject
+ * exterior blocks from the triangle.
+ *
+ * It's not really clear if it's worth worrying about these tails,
+ * but since we generate the planes for each scissored tri, it's
+ * free to trim them in this case.
+ *
+ * Note that otherwise, the scissor planes only vary in 'C' value,
+ * and even then only on state-changes. Could alternatively store
+ * these planes elsewhere.
+ */
+ if (nr_planes == 7) {
+ tri->plane[3].step = step_scissor_minx;
+ tri->plane[3].dcdx = -1;
+ tri->plane[3].dcdy = 0;
+ tri->plane[3].c = 1-minx;
+ tri->plane[3].ei = 0;
+ tri->plane[3].eo = 1;
+
+ tri->plane[4].step = step_scissor_maxx;
+ tri->plane[4].dcdx = 1;
+ tri->plane[4].dcdy = 0;
+ tri->plane[4].c = maxx;
+ tri->plane[4].ei = -1;
+ tri->plane[4].eo = 0;
+
+ tri->plane[5].step = step_scissor_miny;
+ tri->plane[5].dcdx = 0;
+ tri->plane[5].dcdy = 1;
+ tri->plane[5].c = 1-miny;
+ tri->plane[5].ei = 0;
+ tri->plane[5].eo = 1;
+
+ tri->plane[6].step = step_scissor_maxy;
+ tri->plane[6].dcdx = 0;
+ tri->plane[6].dcdy = -1;
+ tri->plane[6].c = maxy;
+ tri->plane[6].ei = -1;
+ tri->plane[6].eo = 0;
+ }
+
+
/*
* All fields of 'tri' are now set. The remaining code here is
* concerned with binning.
*/
- /* Convert to tile coordinates:
+ /* Convert to tile coordinates, and inclusive ranges:
*/
- minx = minx / TILE_SIZE;
- miny = miny / TILE_SIZE;
- maxx = maxx / TILE_SIZE;
- maxy = maxy / TILE_SIZE;
+ ix0 = minx / TILE_SIZE;
+ iy0 = miny / TILE_SIZE;
+ ix1 = (maxx-1) / TILE_SIZE;
+ iy1 = (maxy-1) / TILE_SIZE;
/*
* Clamp to framebuffer size
*/
- minx = MAX2(minx, 0);
- miny = MAX2(miny, 0);
- maxx = MIN2(maxx, scene->tiles_x - 1);
- maxy = MIN2(maxy, scene->tiles_y - 1);
+ assert(ix0 == MAX2(ix0, 0));
+ assert(iy0 == MAX2(iy0, 0));
+ assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
+ assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
/* Determine which tile(s) intersect the triangle's bounding box
*/
- if (miny == maxy && minx == maxx)
+ if (iy0 == iy1 && ix0 == ix1)
{
/* Triangle is contained in a single tile:
*/
- lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
- lp_rast_arg_triangle(tri) );
+ lp_scene_bin_command( scene, ix0, iy0,
+ lp_rast_tri_tab[nr_planes],
+ lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
}
- else
+ else
{
- int c1 = (tri->c1 +
- tri->dx12 * miny * TILE_SIZE -
- tri->dy12 * minx * TILE_SIZE);
- int c2 = (tri->c2 +
- tri->dx23 * miny * TILE_SIZE -
- tri->dy23 * minx * TILE_SIZE);
- int c3 = (tri->c3 +
- tri->dx31 * miny * TILE_SIZE -
- tri->dy31 * minx * TILE_SIZE);
-
- int ei1 = tri->ei1 << TILE_ORDER;
- int ei2 = tri->ei2 << TILE_ORDER;
- int ei3 = tri->ei3 << TILE_ORDER;
-
- int eo1 = tri->eo1 << TILE_ORDER;
- int eo2 = tri->eo2 << TILE_ORDER;
- int eo3 = tri->eo3 << TILE_ORDER;
-
- int xstep1 = -(tri->dy12 << TILE_ORDER);
- int xstep2 = -(tri->dy23 << TILE_ORDER);
- int xstep3 = -(tri->dy31 << TILE_ORDER);
-
- int ystep1 = tri->dx12 << TILE_ORDER;
- int ystep2 = tri->dx23 << TILE_ORDER;
- int ystep3 = tri->dx31 << TILE_ORDER;
+ int c[7];
+ int ei[7];
+ int eo[7];
+ int xstep[7];
+ int ystep[7];
int x, y;
+
+ for (i = 0; i < nr_planes; i++) {
+ c[i] = (tri->plane[i].c +
+ tri->plane[i].dcdy * iy0 * TILE_SIZE -
+ tri->plane[i].dcdx * ix0 * TILE_SIZE);
+
+ ei[i] = tri->plane[i].ei << TILE_ORDER;
+ eo[i] = tri->plane[i].eo << TILE_ORDER;
+ xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
+ ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
+ }
+
/* Test tile-sized blocks against the triangle.
@@ -586,32 +729,49 @@ do_triangle_ccw(struct lp_setup_context *setup,
* contained inside the tri, bin an lp_rast_shade_tile command.
* Else, bin a lp_rast_triangle command.
*/
- for (y = miny; y <= maxy; y++)
+ for (y = iy0; y <= iy1; y++)
{
- int cx1 = c1;
- int cx2 = c2;
- int cx3 = c3;
boolean in = FALSE; /* are we inside the triangle? */
+ int cx[7];
+
+ for (i = 0; i < nr_planes; i++)
+ cx[i] = c[i];
- for (x = minx; x <= maxx; x++)
+ for (x = ix0; x <= ix1; x++)
{
- if (cx1 + eo1 < 0 ||
- cx2 + eo2 < 0 ||
- cx3 + eo3 < 0)
- {
- /* do nothing */
+ int out = 0;
+ int partial = 0;
+
+ for (i = 0; i < nr_planes; i++) {
+ int planeout = cx[i] + eo[i];
+ int planepartial = cx[i] + ei[i] - 1;
+ out |= (planeout >> 31);
+ partial |= (planepartial >> 31) & (1<<i);
+ }
+
+ if (out) {
+ /* do nothing */
+ if (in)
+ break; /* exiting triangle, all done with this row */
LP_COUNT(nr_empty_64);
- if (in)
- break; /* exiting triangle, all done with this row */
- }
- else if (cx1 + ei1 > 0 &&
- cx2 + ei2 > 0 &&
- cx3 + ei3 > 0)
- {
+ }
+ else if (partial) {
+ /* Not trivially accepted by at least one plane -
+ * rasterize/shade partial tile
+ */
+ int count = util_bitcount(partial);
+ in = TRUE;
+ lp_scene_bin_command( scene, x, y,
+ lp_rast_tri_tab[count],
+ lp_rast_arg_triangle(tri, partial) );
+
+ LP_COUNT(nr_partially_covered_64);
+ }
+ else {
/* triangle covers the whole tile- shade whole tile */
LP_COUNT(nr_fully_covered_64);
- in = TRUE;
- if (setup->fs.current.variant->opaque &&
+ in = TRUE;
+ if (variant->opaque &&
!setup->fb.zsbuf) {
lp_scene_bin_reset( scene, x, y );
lp_scene_bin_command( scene, x, y,
@@ -621,29 +781,18 @@ do_triangle_ccw(struct lp_setup_context *setup,
lp_scene_bin_command( scene, x, y,
lp_rast_shade_tile,
lp_rast_arg_inputs(&tri->inputs) );
- }
- else
- {
- /* rasterizer/shade partial tile */
- LP_COUNT(nr_partially_covered_64);
- in = TRUE;
- lp_scene_bin_command( scene, x, y,
- lp_rast_triangle,
- lp_rast_arg_triangle(tri) );
- }
+ }
/* Iterate cx values across the region:
*/
- cx1 += xstep1;
- cx2 += xstep2;
- cx3 += xstep3;
+ for (i = 0; i < nr_planes; i++)
+ cx[i] += xstep[i];
}
/* Iterate c values down the region:
*/
- c1 += ystep1;
- c2 += ystep2;
- c3 += ystep3;
+ for (i = 0; i < nr_planes; i++)
+ c[i] += ystep[i];
}
}
}