summaryrefslogtreecommitdiff
path: root/src/glsl/ast_function.cpp
diff options
context:
space:
mode:
authorEric Anholt <eric@anholt.net>2010-06-24 15:32:15 -0700
committerEric Anholt <eric@anholt.net>2010-06-24 15:36:00 -0700
commit29285882676388aacff123e8bdf025904abf8ea9 (patch)
treea830f72e7a5273d8fd1a7781ce7da7ae91b613ab /src/glsl/ast_function.cpp
parent0ee7d80269bfab14683623b0c8fc12da43db8d78 (diff)
glsl2: Move the compiler to the subdirectory it will live in in Mesa.
Diffstat (limited to 'src/glsl/ast_function.cpp')
-rw-r--r--src/glsl/ast_function.cpp751
1 files changed, 751 insertions, 0 deletions
diff --git a/src/glsl/ast_function.cpp b/src/glsl/ast_function.cpp
new file mode 100644
index 0000000000..761af00b95
--- /dev/null
+++ b/src/glsl/ast_function.cpp
@@ -0,0 +1,751 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "glsl_symbol_table.h"
+#include "ast.h"
+#include "glsl_types.h"
+#include "ir.h"
+
+static unsigned
+process_parameters(exec_list *instructions, exec_list *actual_parameters,
+ exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ unsigned count = 0;
+
+ foreach_list (n, parameters) {
+ ast_node *const ast = exec_node_data(ast_node, n, link);
+ ir_rvalue *result = ast->hir(instructions, state);
+
+ ir_constant *const constant = result->constant_expression_value();
+ if (constant != NULL)
+ result = constant;
+
+ actual_parameters->push_tail(result);
+ count++;
+ }
+
+ return count;
+}
+
+
+static ir_rvalue *
+process_call(exec_list *instructions, ir_function *f,
+ YYLTYPE *loc, exec_list *actual_parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = talloc_parent(state);
+
+ const ir_function_signature *sig =
+ f->matching_signature(actual_parameters);
+
+ /* The instructions param will be used when the FINISHMEs below are done */
+ (void) instructions;
+
+ if (sig != NULL) {
+ /* Verify that 'out' and 'inout' actual parameters are lvalues. This
+ * isn't done in ir_function::matching_signature because that function
+ * cannot generate the necessary diagnostics.
+ */
+ exec_list_iterator actual_iter = actual_parameters->iterator();
+ exec_list_iterator formal_iter = sig->parameters.iterator();
+
+ while (actual_iter.has_next()) {
+ ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
+ ir_variable *formal = (ir_variable *) formal_iter.get();
+
+ assert(actual != NULL);
+ assert(formal != NULL);
+
+ if ((formal->mode == ir_var_out)
+ || (formal->mode == ir_var_inout)) {
+ if (! actual->is_lvalue()) {
+ /* FINISHME: Log a better diagnostic here. There is no way
+ * FINISHME: to tell the user which parameter is invalid.
+ */
+ _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
+ (formal->mode == ir_var_out) ? "out" : "inout");
+ }
+ }
+
+ actual_iter.next();
+ formal_iter.next();
+ }
+
+ /* FINISHME: The list of actual parameters needs to be modified to
+ * FINISHME: include any necessary conversions.
+ */
+ return new(ctx) ir_call(sig, actual_parameters);
+ } else {
+ /* FINISHME: Log a better error message here. G++ will show the types
+ * FINISHME: of the actual parameters and the set of candidate
+ * FINISHME: functions. A different error should also be logged when
+ * FINISHME: multiple functions match.
+ */
+ _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
+ f->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+}
+
+
+static ir_rvalue *
+match_function_by_name(exec_list *instructions, const char *name,
+ YYLTYPE *loc, exec_list *actual_parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = talloc_parent(state);
+ ir_function *f = state->symbols->get_function(name);
+
+ if (f == NULL) {
+ _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* Once we've determined that the function being called might exist, try
+ * to find an overload of the function that matches the parameters.
+ */
+ return process_call(instructions, f, loc, actual_parameters, state);
+}
+
+
+/**
+ * Perform automatic type conversion of constructor parameters
+ */
+static ir_rvalue *
+convert_component(ir_rvalue *src, const glsl_type *desired_type)
+{
+ void *ctx = talloc_parent(src);
+ const unsigned a = desired_type->base_type;
+ const unsigned b = src->type->base_type;
+ ir_expression *result = NULL;
+
+ if (src->type->is_error())
+ return src;
+
+ assert(a <= GLSL_TYPE_BOOL);
+ assert(b <= GLSL_TYPE_BOOL);
+
+ if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
+ return src;
+
+ switch (a) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ if (b == GLSL_TYPE_FLOAT)
+ result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
+ else {
+ assert(b == GLSL_TYPE_BOOL);
+ result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ switch (b) {
+ case GLSL_TYPE_UINT:
+ result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_BOOL:
+ result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
+ break;
+ }
+ break;
+ case GLSL_TYPE_BOOL: {
+ ir_constant *zero = NULL;
+
+ switch (b) {
+ case GLSL_TYPE_UINT: zero = new(ctx) ir_constant(unsigned(0)); break;
+ case GLSL_TYPE_INT: zero = new(ctx) ir_constant(int(0)); break;
+ case GLSL_TYPE_FLOAT: zero = new(ctx) ir_constant(0.0f); break;
+ }
+
+ result = new(ctx) ir_expression(ir_binop_nequal, desired_type, src, zero);
+ }
+ }
+
+ assert(result != NULL);
+
+ ir_constant *const constant = result->constant_expression_value();
+ return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
+}
+
+
+/**
+ * Dereference a specific component from a scalar, vector, or matrix
+ */
+static ir_rvalue *
+dereference_component(ir_rvalue *src, unsigned component)
+{
+ void *ctx = talloc_parent(src);
+ assert(component < src->type->components());
+
+ /* If the source is a constant, just create a new constant instead of a
+ * dereference of the existing constant.
+ */
+ ir_constant *constant = src->as_constant();
+ if (constant)
+ return new(ctx) ir_constant(constant, component);
+
+ if (src->type->is_scalar()) {
+ return src;
+ } else if (src->type->is_vector()) {
+ return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
+ } else {
+ assert(src->type->is_matrix());
+
+ /* Dereference a row of the matrix, then call this function again to get
+ * a specific element from that row.
+ */
+ const int c = component / src->type->column_type()->vector_elements;
+ const int r = component % src->type->column_type()->vector_elements;
+ ir_constant *const col_index = new(ctx) ir_constant(c);
+ ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
+
+ col->type = src->type->column_type();
+
+ return dereference_component(col, r);
+ }
+
+ assert(!"Should not get here.");
+ return NULL;
+}
+
+
+static ir_rvalue *
+process_array_constructor(exec_list *instructions,
+ const glsl_type *constructor_type,
+ YYLTYPE *loc, exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = talloc_parent(state);
+ /* Array constructors come in two forms: sized and unsized. Sized array
+ * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
+ * variables. In this case the number of parameters must exactly match the
+ * specified size of the array.
+ *
+ * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
+ * are vec4 variables. In this case the size of the array being constructed
+ * is determined by the number of parameters.
+ *
+ * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "There must be exactly the same number of arguments as the size of
+ * the array being constructed. If no size is present in the
+ * constructor, then the array is explicitly sized to the number of
+ * arguments provided. The arguments are assigned in order, starting at
+ * element 0, to the elements of the constructed array. Each argument
+ * must be the same type as the element type of the array, or be a type
+ * that can be converted to the element type of the array according to
+ * Section 4.1.10 "Implicit Conversions.""
+ */
+ exec_list actual_parameters;
+ const unsigned parameter_count =
+ process_parameters(instructions, &actual_parameters, parameters, state);
+
+ if ((parameter_count == 0)
+ || ((constructor_type->length != 0)
+ && (constructor_type->length != parameter_count))) {
+ const unsigned min_param = (constructor_type->length == 0)
+ ? 1 : constructor_type->length;
+
+ _mesa_glsl_error(loc, state, "array constructor must have %s %u "
+ "parameter%s",
+ (constructor_type->length != 0) ? "at least" : "exactly",
+ min_param, (min_param <= 1) ? "" : "s");
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (constructor_type->length == 0) {
+ constructor_type =
+ glsl_type::get_array_instance(state,
+ constructor_type->element_type(),
+ parameter_count);
+ assert(constructor_type != NULL);
+ assert(constructor_type->length == parameter_count);
+ }
+
+ ir_function *f = state->symbols->get_function(constructor_type->name);
+
+ /* If the constructor for this type of array does not exist, generate the
+ * prototype and add it to the symbol table.
+ */
+ if (f == NULL) {
+ f = constructor_type->generate_constructor(state->symbols);
+ }
+
+ ir_rvalue *const r =
+ process_call(instructions, f, loc, &actual_parameters, state);
+
+ assert(r != NULL);
+ assert(r->type->is_error() || (r->type == constructor_type));
+
+ return r;
+}
+
+
+/**
+ * Try to convert a record constructor to a constant expression
+ */
+static ir_constant *
+constant_record_constructor(const glsl_type *constructor_type,
+ YYLTYPE *loc, exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = talloc_parent(state);
+ bool all_parameters_are_constant = true;
+
+ exec_node *node = parameters->head;
+ for (unsigned i = 0; i < constructor_type->length; i++) {
+ ir_instruction *ir = (ir_instruction *) node;
+
+ if (node->is_tail_sentinal()) {
+ _mesa_glsl_error(loc, state,
+ "insufficient parameters to constructor for `%s'",
+ constructor_type->name);
+ return NULL;
+ }
+
+ if (ir->type != constructor_type->fields.structure[i].type) {
+ _mesa_glsl_error(loc, state,
+ "parameter type mismatch in constructor for `%s' "
+ " (%s vs %s)",
+ constructor_type->name,
+ ir->type->name,
+ constructor_type->fields.structure[i].type->name);
+ return NULL;
+ }
+
+ if (ir->as_constant() == NULL)
+ all_parameters_are_constant = false;
+
+ node = node->next;
+ }
+
+ if (!all_parameters_are_constant)
+ return NULL;
+
+ return new(ctx) ir_constant(constructor_type, parameters);
+}
+
+
+/**
+ * Generate data for a constant matrix constructor w/a single scalar parameter
+ *
+ * Matrix constructors in GLSL can be passed a single scalar of the
+ * approriate type. In these cases, the resulting matrix is the identity
+ * matrix multipled by the specified scalar. This function generates data for
+ * that matrix.
+ *
+ * \param type Type of the desired matrix.
+ * \param initializer Scalar value used to initialize the matrix diagonal.
+ * \param data Location to store the resulting matrix.
+ */
+void
+generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
+ ir_constant_data *data)
+{
+ switch (type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ for (unsigned i = 0; i < type->components(); i++)
+ data->u[i] = 0;
+
+ for (unsigned i = 0; i < type->matrix_columns; i++) {
+ /* The array offset of the ith row and column of the matrix.
+ */
+ const unsigned idx = (i * type->vector_elements) + i;
+
+ data->u[idx] = initializer->value.u[0];
+ }
+ break;
+
+ case GLSL_TYPE_FLOAT:
+ for (unsigned i = 0; i < type->components(); i++)
+ data->f[i] = 0;
+
+ for (unsigned i = 0; i < type->matrix_columns; i++) {
+ /* The array offset of the ith row and column of the matrix.
+ */
+ const unsigned idx = (i * type->vector_elements) + i;
+
+ data->f[idx] = initializer->value.f[0];
+ }
+
+ break;
+
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+}
+
+
+/**
+ * Generate data for a constant vector constructor w/a single scalar parameter
+ *
+ * Vector constructors in GLSL can be passed a single scalar of the
+ * approriate type. In these cases, the resulting vector contains the specified
+ * value in all components. This function generates data for that vector.
+ *
+ * \param type Type of the desired vector.
+ * \param initializer Scalar value used to initialize the vector.
+ * \param data Location to store the resulting vector data.
+ */
+void
+generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
+ ir_constant_data *data)
+{
+ switch (type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ for (unsigned i = 0; i < type->components(); i++)
+ data->u[i] = initializer->value.u[0];
+
+ break;
+
+ case GLSL_TYPE_FLOAT:
+ for (unsigned i = 0; i < type->components(); i++)
+ data->f[i] = initializer->value.f[0];
+
+ break;
+
+ case GLSL_TYPE_BOOL:
+ for (unsigned i = 0; i < type->components(); i++)
+ data->b[i] = initializer->value.b[0];
+
+ break;
+
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+}
+
+
+ir_rvalue *
+ast_function_expression::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = talloc_parent(state);
+ /* There are three sorts of function calls.
+ *
+ * 1. contstructors - The first subexpression is an ast_type_specifier.
+ * 2. methods - Only the .length() method of array types.
+ * 3. functions - Calls to regular old functions.
+ *
+ * Method calls are actually detected when the ast_field_selection
+ * expression is handled.
+ */
+ if (is_constructor()) {
+ const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
+ YYLTYPE loc = type->get_location();
+ const char *name;
+
+ const glsl_type *const constructor_type = type->glsl_type(& name, state);
+
+
+ /* Constructors for samplers are illegal.
+ */
+ if (constructor_type->is_sampler()) {
+ _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (constructor_type->is_array()) {
+ if (state->language_version <= 110) {
+ _mesa_glsl_error(& loc, state,
+ "array constructors forbidden in GLSL 1.10");
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ return process_array_constructor(instructions, constructor_type,
+ & loc, &this->expressions, state);
+ }
+
+ /* There are two kinds of constructor call. Constructors for built-in
+ * language types, such as mat4 and vec2, are free form. The only
+ * requirement is that the parameters must provide enough values of the
+ * correct scalar type. Constructors for arrays and structures must
+ * have the exact number of parameters with matching types in the
+ * correct order. These constructors follow essentially the same type
+ * matching rules as functions.
+ */
+ if (constructor_type->is_numeric() || constructor_type->is_boolean()) {
+ /* Constructing a numeric type has a couple steps. First all values
+ * passed to the constructor are broken into individual parameters
+ * and type converted to the base type of the thing being constructed.
+ *
+ * At that point we have some number of values that match the base
+ * type of the thing being constructed. Now the constructor can be
+ * treated like a function call. Each numeric type has a small set
+ * of constructor functions. The set of new parameters will either
+ * match one of those functions or the original constructor is
+ * invalid.
+ */
+ const glsl_type *const base_type = constructor_type->get_base_type();
+
+ /* Total number of components of the type being constructed.
+ */
+ const unsigned type_components = constructor_type->components();
+
+ /* Number of components from parameters that have actually been
+ * consumed. This is used to perform several kinds of error checking.
+ */
+ unsigned components_used = 0;
+
+ unsigned matrix_parameters = 0;
+ unsigned nonmatrix_parameters = 0;
+ exec_list actual_parameters;
+
+ bool all_parameters_are_constant = true;
+
+ /* This handles invalid constructor calls such as 'vec4 v = vec4();'
+ */
+ if (this->expressions.is_empty()) {
+ _mesa_glsl_error(& loc, state, "too few components to construct "
+ "`%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ foreach_list (n, &this->expressions) {
+ ast_node *ast = exec_node_data(ast_node, n, link);
+ ir_rvalue *result =
+ ast->hir(instructions, state)->as_rvalue();
+ ir_variable *result_var = NULL;
+
+ /* Attempt to convert the parameter to a constant valued expression.
+ * After doing so, track whether or not all the parameters to the
+ * constructor are trivially constant valued expressions.
+ */
+ ir_rvalue *const constant =
+ result->constant_expression_value();
+
+ if (constant != NULL)
+ result = constant;
+ else
+ all_parameters_are_constant = false;
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "It is an error to provide extra arguments beyond this
+ * last used argument."
+ */
+ if (components_used >= type_components) {
+ _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
+ "constructor",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ if (!result->type->is_numeric() && !result->type->is_boolean()) {
+ _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
+ "non-numeric data type",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* Count the number of matrix and nonmatrix parameters. This
+ * is used below to enforce some of the constructor rules.
+ */
+ if (result->type->is_matrix())
+ matrix_parameters++;
+ else
+ nonmatrix_parameters++;
+
+ /* We can't use the same instruction node in the multiple
+ * swizzle dereferences that happen, so assign it to a
+ * variable and deref that. Plus it saves computation for
+ * complicated expressions and handles
+ * glsl-vs-constructor-call.shader_test.
+ */
+ if (result->type->components() >= 1 && !result->as_constant()) {
+ result_var = new(ctx) ir_variable(result->type,
+ "constructor_tmp");
+ ir_dereference_variable *lhs;
+
+ lhs = new(ctx) ir_dereference_variable(result_var);
+ instructions->push_tail(new(ctx) ir_assignment(lhs,
+ result, NULL));
+ }
+
+ /* Process each of the components of the parameter. Dereference
+ * each component individually, perform any type conversions, and
+ * add it to the parameter list for the constructor.
+ */
+ for (unsigned i = 0; i < result->type->components(); i++) {
+ if (components_used >= type_components)
+ break;
+
+ ir_rvalue *component;
+
+ if (result_var) {
+ ir_dereference *d = new(ctx) ir_dereference_variable(result_var);
+ component = dereference_component(d, i);
+ } else {
+ component = dereference_component(result, i);
+ }
+ component = convert_component(component, base_type);
+
+ /* All cases that could result in component->type being the
+ * error type should have already been caught above.
+ */
+ assert(component->type == base_type);
+
+ if (component->as_constant() == NULL)
+ all_parameters_are_constant = false;
+
+ /* Don't actually generate constructor calls for scalars.
+ * Instead, do the usual component selection and conversion,
+ * and return the single component.
+ */
+ if (constructor_type->is_scalar())
+ return component;
+
+ actual_parameters.push_tail(component);
+ components_used++;
+ }
+ }
+
+ /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "It is an error to construct matrices from other matrices. This
+ * is reserved for future use."
+ */
+ if ((state->language_version <= 110) && (matrix_parameters > 0)
+ && constructor_type->is_matrix()) {
+ _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
+ "matrix in GLSL 1.10",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "If a matrix argument is given to a matrix constructor, it is
+ * an error to have any other arguments."
+ */
+ if ((matrix_parameters > 0)
+ && ((matrix_parameters + nonmatrix_parameters) > 1)
+ && constructor_type->is_matrix()) {
+ _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
+ "matrix must be only parameter",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "In these cases, there must be enough components provided in the
+ * arguments to provide an initializer for every component in the
+ * constructed value."
+ */
+ if ((components_used < type_components) && (components_used != 1)) {
+ _mesa_glsl_error(& loc, state, "too few components to construct "
+ "`%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ ir_function *f = state->symbols->get_function(constructor_type->name);
+ if (f == NULL) {
+ _mesa_glsl_error(& loc, state, "no constructor for type `%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+
+ const ir_function_signature *sig =
+ f->matching_signature(& actual_parameters);
+ if (sig != NULL) {
+ /* If all of the parameters are trivially constant, create a
+ * constant representing the complete collection of parameters.
+ */
+ if (all_parameters_are_constant) {
+ if (components_used >= type_components)
+ return new(ctx) ir_constant(sig->return_type,
+ & actual_parameters);
+
+ assert(sig->return_type->is_vector()
+ || sig->return_type->is_matrix());
+
+ /* Constructors with exactly one component are special for
+ * vectors and matrices. For vectors it causes all elements of
+ * the vector to be filled with the value. For matrices it
+ * causes the matrix to be filled with 0 and the diagonal to be
+ * filled with the value.
+ */
+ ir_constant_data data;
+ ir_constant *const initializer =
+ (ir_constant *) actual_parameters.head;
+ if (sig->return_type->is_matrix())
+ generate_constructor_matrix(sig->return_type, initializer,
+ &data);
+ else
+ generate_constructor_vector(sig->return_type, initializer,
+ &data);
+
+ return new(ctx) ir_constant(sig->return_type, &data);
+ } else
+ return new(ctx) ir_call(sig, & actual_parameters);
+ } else {
+ /* FINISHME: Log a better error message here. G++ will show the
+ * FINSIHME: types of the actual parameters and the set of
+ * FINSIHME: candidate functions. A different error should also be
+ * FINSIHME: logged when multiple functions match.
+ */
+ _mesa_glsl_error(& loc, state, "no matching constructor for `%s'",
+ constructor_type->name);
+ return ir_call::get_error_instruction(ctx);
+ }
+ }
+
+ return ir_call::get_error_instruction(ctx);
+ } else {
+ const ast_expression *id = subexpressions[0];
+ YYLTYPE loc = id->get_location();
+ exec_list actual_parameters;
+
+ process_parameters(instructions, &actual_parameters, &this->expressions,
+ state);
+
+ const glsl_type *const type =
+ state->symbols->get_type(id->primary_expression.identifier);
+
+ if ((type != NULL) && type->is_record()) {
+ ir_constant *constant =
+ constant_record_constructor(type, &loc, &actual_parameters, state);
+
+ if (constant != NULL)
+ return constant;
+ }
+
+ return match_function_by_name(instructions,
+ id->primary_expression.identifier, & loc,
+ &actual_parameters, state);
+ }
+
+ return ir_call::get_error_instruction(ctx);
+}