summaryrefslogtreecommitdiff
path: root/src/mesa/main/eval.c
diff options
context:
space:
mode:
authorjtg <jtg>1999-08-19 00:55:39 +0000
committerjtg <jtg>1999-08-19 00:55:39 +0000
commitafb833d4e89c312460a4ab9ed6a7a8ca4ebbfe1c (patch)
tree59d65b4da12fb5379224cf5f6b808fde91523c7f /src/mesa/main/eval.c
parentf2544d4920ce168bec9cd94d774b7ea5103a3d74 (diff)
Initial revision
Diffstat (limited to 'src/mesa/main/eval.c')
-rw-r--r--src/mesa/main/eval.c2725
1 files changed, 2725 insertions, 0 deletions
diff --git a/src/mesa/main/eval.c b/src/mesa/main/eval.c
new file mode 100644
index 0000000000..74604a21c4
--- /dev/null
+++ b/src/mesa/main/eval.c
@@ -0,0 +1,2725 @@
+/* $Id: eval.c,v 1.1 1999/08/19 00:55:41 jtg Exp $ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version: 3.1
+ *
+ * Copyright (C) 1999 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+
+
+
+/*
+ * eval.c was written by
+ * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
+ * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
+ *
+ * My original implementation of evaluators was simplistic and didn't
+ * compute surface normal vectors properly. Bernd and Volker applied
+ * used more sophisticated methods to get better results.
+ *
+ * Thanks guys!
+ */
+
+
+#ifdef PC_HEADER
+#include "all.h"
+#else
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include "context.h"
+#include "eval.h"
+#include "macros.h"
+#include "mmath.h"
+#include "types.h"
+#include "vbcull.h"
+#include "vbfill.h"
+#include "vbxform.h"
+#ifdef XFree86Server
+#include "GL/xf86glx.h"
+#endif
+#endif
+
+
+static GLfloat inv_tab[MAX_EVAL_ORDER];
+
+/*
+ * Do one-time initialization for evaluators.
+ */
+void gl_init_eval( void )
+{
+ static int init_flag = 0;
+ GLuint i;
+
+ /* Compute a table of nCr (combination) values used by the
+ * Bernstein polynomial generator.
+ */
+
+ /* KW: precompute 1/x for useful x.
+ */
+ if (init_flag==0)
+ {
+ for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
+ inv_tab[i] = 1.0 / i;
+ }
+
+ init_flag = 1;
+}
+
+
+
+/*
+ * Horner scheme for Bezier curves
+ *
+ * Bezier curves can be computed via a Horner scheme.
+ * Horner is numerically less stable than the de Casteljau
+ * algorithm, but it is faster. For curves of degree n
+ * the complexity of Horner is O(n) and de Casteljau is O(n^2).
+ * Since stability is not important for displaying curve
+ * points I decided to use the Horner scheme.
+ *
+ * A cubic Bezier curve with control points b0, b1, b2, b3 can be
+ * written as
+ *
+ * (([3] [3] ) [3] ) [3]
+ * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
+ *
+ * [n]
+ * where s=1-t and the binomial coefficients [i]. These can
+ * be computed iteratively using the identity:
+ *
+ * [n] [n ] [n]
+ * [i] = (n-i+1)/i * [i-1] and [0] = 1
+ */
+
+
+static void
+horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
+ GLuint dim, GLuint order)
+{
+ GLfloat s, powert;
+ GLuint i, k, bincoeff;
+
+ if(order >= 2)
+ {
+ bincoeff = order-1;
+ s = 1.0-t;
+
+ for(k=0; k<dim; k++)
+ out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
+
+ for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
+ {
+ bincoeff *= order-i;
+ bincoeff *= inv_tab[i];
+
+ for(k=0; k<dim; k++)
+ out[k] = s*out[k] + bincoeff*powert*cp[k];
+ }
+ }
+ else /* order=1 -> constant curve */
+ {
+ for(k=0; k<dim; k++)
+ out[k] = cp[k];
+ }
+}
+
+/*
+ * Tensor product Bezier surfaces
+ *
+ * Again the Horner scheme is used to compute a point on a
+ * TP Bezier surface. First a control polygon for a curve
+ * on the surface in one parameter direction is computed,
+ * then the point on the curve for the other parameter
+ * direction is evaluated.
+ *
+ * To store the curve control polygon additional storage
+ * for max(uorder,vorder) points is needed in the
+ * control net cn.
+ */
+
+static void
+horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
+ GLuint dim, GLuint uorder, GLuint vorder)
+{
+ GLfloat *cp = cn + uorder*vorder*dim;
+ GLuint i, uinc = vorder*dim;
+
+ if(vorder > uorder)
+ {
+ if(uorder >= 2)
+ {
+ GLfloat s, poweru;
+ GLuint j, k, bincoeff;
+
+ /* Compute the control polygon for the surface-curve in u-direction */
+ for(j=0; j<vorder; j++)
+ {
+ GLfloat *ucp = &cn[j*dim];
+
+ /* Each control point is the point for parameter u on a */
+ /* curve defined by the control polygons in u-direction */
+ bincoeff = uorder-1;
+ s = 1.0-u;
+
+ for(k=0; k<dim; k++)
+ cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
+
+ for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
+ i++, poweru*=u, ucp +=uinc)
+ {
+ bincoeff *= uorder-i;
+ bincoeff *= inv_tab[i];
+
+ for(k=0; k<dim; k++)
+ cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
+ }
+ }
+
+ /* Evaluate curve point in v */
+ horner_bezier_curve(cp, out, v, dim, vorder);
+ }
+ else /* uorder=1 -> cn defines a curve in v */
+ horner_bezier_curve(cn, out, v, dim, vorder);
+ }
+ else /* vorder <= uorder */
+ {
+ if(vorder > 1)
+ {
+ GLuint i;
+
+ /* Compute the control polygon for the surface-curve in u-direction */
+ for(i=0; i<uorder; i++, cn += uinc)
+ {
+ /* For constant i all cn[i][j] (j=0..vorder) are located */
+ /* on consecutive memory locations, so we can use */
+ /* horner_bezier_curve to compute the control points */
+
+ horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
+ }
+
+ /* Evaluate curve point in u */
+ horner_bezier_curve(cp, out, u, dim, uorder);
+ }
+ else /* vorder=1 -> cn defines a curve in u */
+ horner_bezier_curve(cn, out, u, dim, uorder);
+ }
+}
+
+/*
+ * The direct de Casteljau algorithm is used when a point on the
+ * surface and the tangent directions spanning the tangent plane
+ * should be computed (this is needed to compute normals to the
+ * surface). In this case the de Casteljau algorithm approach is
+ * nicer because a point and the partial derivatives can be computed
+ * at the same time. To get the correct tangent length du and dv
+ * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
+ * Since only the directions are needed, this scaling step is omitted.
+ *
+ * De Casteljau needs additional storage for uorder*vorder
+ * values in the control net cn.
+ */
+
+static void
+de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
+ GLfloat u, GLfloat v, GLuint dim,
+ GLuint uorder, GLuint vorder)
+{
+ GLfloat *dcn = cn + uorder*vorder*dim;
+ GLfloat us = 1.0-u, vs = 1.0-v;
+ GLuint h, i, j, k;
+ GLuint minorder = uorder < vorder ? uorder : vorder;
+ GLuint uinc = vorder*dim;
+ GLuint dcuinc = vorder;
+
+ /* Each component is evaluated separately to save buffer space */
+ /* This does not drasticaly decrease the performance of the */
+ /* algorithm. If additional storage for (uorder-1)*(vorder-1) */
+ /* points would be available, the components could be accessed */
+ /* in the innermost loop which could lead to less cache misses. */
+
+#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
+#define DCN(I, J) dcn[(I)*dcuinc+(J)]
+ if(minorder < 3)
+ {
+ if(uorder==vorder)
+ {
+ for(k=0; k<dim; k++)
+ {
+ /* Derivative direction in u */
+ du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
+ v*(CN(1,1,k) - CN(0,1,k));
+
+ /* Derivative direction in v */
+ dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
+ u*(CN(1,1,k) - CN(1,0,k));
+
+ /* bilinear de Casteljau step */
+ out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
+ u*(vs*CN(1,0,k) + v*CN(1,1,k));
+ }
+ }
+ else if(minorder == uorder)
+ {
+ for(k=0; k<dim; k++)
+ {
+ /* bilinear de Casteljau step */
+ DCN(1,0) = CN(1,0,k) - CN(0,0,k);
+ DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
+
+ for(j=0; j<vorder-1; j++)
+ {
+ /* for the derivative in u */
+ DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
+ DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
+
+ /* for the `point' */
+ DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
+ DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+ }
+
+ /* remaining linear de Casteljau steps until the second last step */
+ for(h=minorder; h<vorder-1; h++)
+ for(j=0; j<vorder-h; j++)
+ {
+ /* for the derivative in u */
+ DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
+
+ /* for the `point' */
+ DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+ }
+
+ /* derivative direction in v */
+ dv[k] = DCN(0,1) - DCN(0,0);
+
+ /* derivative direction in u */
+ du[k] = vs*DCN(1,0) + v*DCN(1,1);
+
+ /* last linear de Casteljau step */
+ out[k] = vs*DCN(0,0) + v*DCN(0,1);
+ }
+ }
+ else /* minorder == vorder */
+ {
+ for(k=0; k<dim; k++)
+ {
+ /* bilinear de Casteljau step */
+ DCN(0,1) = CN(0,1,k) - CN(0,0,k);
+ DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
+ for(i=0; i<uorder-1; i++)
+ {
+ /* for the derivative in v */
+ DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
+ DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
+
+ /* for the `point' */
+ DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ }
+
+ /* remaining linear de Casteljau steps until the second last step */
+ for(h=minorder; h<uorder-1; h++)
+ for(i=0; i<uorder-h; i++)
+ {
+ /* for the derivative in v */
+ DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
+
+ /* for the `point' */
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ }
+
+ /* derivative direction in u */
+ du[k] = DCN(1,0) - DCN(0,0);
+
+ /* derivative direction in v */
+ dv[k] = us*DCN(0,1) + u*DCN(1,1);
+
+ /* last linear de Casteljau step */
+ out[k] = us*DCN(0,0) + u*DCN(1,0);
+ }
+ }
+ }
+ else if(uorder == vorder)
+ {
+ for(k=0; k<dim; k++)
+ {
+ /* first bilinear de Casteljau step */
+ for(i=0; i<uorder-1; i++)
+ {
+ DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
+ for(j=0; j<vorder-1; j++)
+ {
+ DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
+ DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
+ }
+ }
+
+ /* remaining bilinear de Casteljau steps until the second last step */
+ for(h=2; h<minorder-1; h++)
+ for(i=0; i<uorder-h; i++)
+ {
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ for(j=0; j<vorder-h; j++)
+ {
+ DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
+ DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
+ }
+ }
+
+ /* derivative direction in u */
+ du[k] = vs*(DCN(1,0) - DCN(0,0)) +
+ v*(DCN(1,1) - DCN(0,1));
+
+ /* derivative direction in v */
+ dv[k] = us*(DCN(0,1) - DCN(0,0)) +
+ u*(DCN(1,1) - DCN(1,0));
+
+ /* last bilinear de Casteljau step */
+ out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
+ u*(vs*DCN(1,0) + v*DCN(1,1));
+ }
+ }
+ else if(minorder == uorder)
+ {
+ for(k=0; k<dim; k++)
+ {
+ /* first bilinear de Casteljau step */
+ for(i=0; i<uorder-1; i++)
+ {
+ DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
+ for(j=0; j<vorder-1; j++)
+ {
+ DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
+ DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
+ }
+ }
+
+ /* remaining bilinear de Casteljau steps until the second last step */
+ for(h=2; h<minorder-1; h++)
+ for(i=0; i<uorder-h; i++)
+ {
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ for(j=0; j<vorder-h; j++)
+ {
+ DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
+ DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
+ }
+ }
+
+ /* last bilinear de Casteljau step */
+ DCN(2,0) = DCN(1,0) - DCN(0,0);
+ DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
+ for(j=0; j<vorder-1; j++)
+ {
+ /* for the derivative in u */
+ DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
+ DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
+
+ /* for the `point' */
+ DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
+ DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+ }
+
+ /* remaining linear de Casteljau steps until the second last step */
+ for(h=minorder; h<vorder-1; h++)
+ for(j=0; j<vorder-h; j++)
+ {
+ /* for the derivative in u */
+ DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
+
+ /* for the `point' */
+ DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+ }
+
+ /* derivative direction in v */
+ dv[k] = DCN(0,1) - DCN(0,0);
+
+ /* derivative direction in u */
+ du[k] = vs*DCN(2,0) + v*DCN(2,1);
+
+ /* last linear de Casteljau step */
+ out[k] = vs*DCN(0,0) + v*DCN(0,1);
+ }
+ }
+ else /* minorder == vorder */
+ {
+ for(k=0; k<dim; k++)
+ {
+ /* first bilinear de Casteljau step */
+ for(i=0; i<uorder-1; i++)
+ {
+ DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
+ for(j=0; j<vorder-1; j++)
+ {
+ DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
+ DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
+ }
+ }
+
+ /* remaining bilinear de Casteljau steps until the second last step */
+ for(h=2; h<minorder-1; h++)
+ for(i=0; i<uorder-h; i++)
+ {
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ for(j=0; j<vorder-h; j++)
+ {
+ DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
+ DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
+ }
+ }
+
+ /* last bilinear de Casteljau step */
+ DCN(0,2) = DCN(0,1) - DCN(0,0);
+ DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
+ for(i=0; i<uorder-1; i++)
+ {
+ /* for the derivative in v */
+ DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
+ DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
+
+ /* for the `point' */
+ DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ }
+
+ /* remaining linear de Casteljau steps until the second last step */
+ for(h=minorder; h<uorder-1; h++)
+ for(i=0; i<uorder-h; i++)
+ {
+ /* for the derivative in v */
+ DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
+
+ /* for the `point' */
+ DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+ }
+
+ /* derivative direction in u */
+ du[k] = DCN(1,0) - DCN(0,0);
+
+ /* derivative direction in v */
+ dv[k] = us*DCN(0,2) + u*DCN(1,2);
+
+ /* last linear de Casteljau step */
+ out[k] = us*DCN(0,0) + u*DCN(1,0);
+ }
+ }
+#undef DCN
+#undef CN
+}
+
+/*
+ * Return the number of components per control point for any type of
+ * evaluator. Return 0 if bad target.
+ */
+
+static GLint components( GLenum target )
+{
+ switch (target) {
+ case GL_MAP1_VERTEX_3: return 3;
+ case GL_MAP1_VERTEX_4: return 4;
+ case GL_MAP1_INDEX: return 1;
+ case GL_MAP1_COLOR_4: return 4;
+ case GL_MAP1_NORMAL: return 3;
+ case GL_MAP1_TEXTURE_COORD_1: return 1;
+ case GL_MAP1_TEXTURE_COORD_2: return 2;
+ case GL_MAP1_TEXTURE_COORD_3: return 3;
+ case GL_MAP1_TEXTURE_COORD_4: return 4;
+ case GL_MAP2_VERTEX_3: return 3;
+ case GL_MAP2_VERTEX_4: return 4;
+ case GL_MAP2_INDEX: return 1;
+ case GL_MAP2_COLOR_4: return 4;
+ case GL_MAP2_NORMAL: return 3;
+ case GL_MAP2_TEXTURE_COORD_1: return 1;
+ case GL_MAP2_TEXTURE_COORD_2: return 2;
+ case GL_MAP2_TEXTURE_COORD_3: return 3;
+ case GL_MAP2_TEXTURE_COORD_4: return 4;
+ default: return 0;
+ }
+}
+
+
+/**********************************************************************/
+/*** Copy and deallocate control points ***/
+/**********************************************************************/
+
+
+/*
+ * Copy 1-parametric evaluator control points from user-specified
+ * memory space to a buffer of contiguous control points.
+ * Input: see glMap1f for details
+ * Return: pointer to buffer of contiguous control points or NULL if out
+ * of memory.
+ */
+GLfloat *gl_copy_map_points1f( GLenum target,
+ GLint ustride, GLint uorder,
+ const GLfloat *points )
+{
+ GLfloat *buffer, *p;
+ GLint i, k, size = components(target);
+
+ if (!points || size==0) {
+ return NULL;
+ }
+
+ buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
+
+ if(buffer)
+ for(i=0, p=buffer; i<uorder; i++, points+=ustride)
+ for(k=0; k<size; k++)
+ *p++ = points[k];
+
+ return buffer;
+}
+
+
+
+/*
+ * Same as above but convert doubles to floats.
+ */
+GLfloat *gl_copy_map_points1d( GLenum target,
+ GLint ustride, GLint uorder,
+ const GLdouble *points )
+{
+ GLfloat *buffer, *p;
+ GLint i, k, size = components(target);
+
+ if (!points || size==0) {
+ return NULL;
+ }
+
+ buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
+
+ if(buffer)
+ for(i=0, p=buffer; i<uorder; i++, points+=ustride)
+ for(k=0; k<size; k++)
+ *p++ = (GLfloat) points[k];
+
+ return buffer;
+}
+
+
+
+/*
+ * Copy 2-parametric evaluator control points from user-specified
+ * memory space to a buffer of contiguous control points.
+ * Additional memory is allocated to be used by the horner and
+ * de Casteljau evaluation schemes.
+ *
+ * Input: see glMap2f for details
+ * Return: pointer to buffer of contiguous control points or NULL if out
+ * of memory.
+ */
+GLfloat *gl_copy_map_points2f( GLenum target,
+ GLint ustride, GLint uorder,
+ GLint vstride, GLint vorder,
+ const GLfloat *points )
+{
+ GLfloat *buffer, *p;
+ GLint i, j, k, size, dsize, hsize;
+ GLint uinc;
+
+ size = components(target);
+
+ if (!points || size==0) {
+ return NULL;
+ }
+
+ /* max(uorder, vorder) additional points are used in */
+ /* horner evaluation and uorder*vorder additional */
+ /* values are needed for de Casteljau */
+ dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
+ hsize = (uorder > vorder ? uorder : vorder)*size;
+
+ if(hsize>dsize)
+ buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
+ else
+ buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
+
+ /* compute the increment value for the u-loop */
+ uinc = ustride - vorder*vstride;
+
+ if (buffer)
+ for (i=0, p=buffer; i<uorder; i++, points += uinc)
+ for (j=0; j<vorder; j++, points += vstride)
+ for (k=0; k<size; k++)
+ *p++ = points[k];
+
+ return buffer;
+}
+
+
+
+/*
+ * Same as above but convert doubles to floats.
+ */
+GLfloat *gl_copy_map_points2d(GLenum target,
+ GLint ustride, GLint uorder,
+ GLint vstride, GLint vorder,
+ const GLdouble *points )
+{
+ GLfloat *buffer, *p;
+ GLint i, j, k, size, hsize, dsize;
+ GLint uinc;
+
+ size = components(target);
+
+ if (!points || size==0) {
+ return NULL;
+ }
+
+ /* max(uorder, vorder) additional points are used in */
+ /* horner evaluation and uorder*vorder additional */
+ /* values are needed for de Casteljau */
+ dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
+ hsize = (uorder > vorder ? uorder : vorder)*size;
+
+ if(hsize>dsize)
+ buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
+ else
+ buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
+
+ /* compute the increment value for the u-loop */
+ uinc = ustride - vorder*vstride;
+
+ if (buffer)
+ for (i=0, p=buffer; i<uorder; i++, points += uinc)
+ for (j=0; j<vorder; j++, points += vstride)
+ for (k=0; k<size; k++)
+ *p++ = (GLfloat) points[k];
+
+ return buffer;
+}
+
+
+/*
+ * This function is called by the display list deallocator function to
+ * specify that a given set of control points are no longer needed.
+ */
+void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
+{
+ struct gl_1d_map *map1 = NULL;
+ struct gl_2d_map *map2 = NULL;
+
+ switch (target) {
+ case GL_MAP1_VERTEX_3:
+ map1 = &ctx->EvalMap.Map1Vertex3;
+ break;
+ case GL_MAP1_VERTEX_4:
+ map1 = &ctx->EvalMap.Map1Vertex4;
+ break;
+ case GL_MAP1_INDEX:
+ map1 = &ctx->EvalMap.Map1Index;
+ break;
+ case GL_MAP1_COLOR_4:
+ map1 = &ctx->EvalMap.Map1Color4;
+ break;
+ case GL_MAP1_NORMAL:
+ map1 = &ctx->EvalMap.Map1Normal;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ map1 = &ctx->EvalMap.Map1Texture1;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ map1 = &ctx->EvalMap.Map1Texture2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ map1 = &ctx->EvalMap.Map1Texture3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ map1 = &ctx->EvalMap.Map1Texture4;
+ break;
+ case GL_MAP2_VERTEX_3:
+ map2 = &ctx->EvalMap.Map2Vertex3;
+ break;
+ case GL_MAP2_VERTEX_4:
+ map2 = &ctx->EvalMap.Map2Vertex4;
+ break;
+ case GL_MAP2_INDEX:
+ map2 = &ctx->EvalMap.Map2Index;
+ break;
+ case GL_MAP2_COLOR_4:
+ map2 = &ctx->EvalMap.Map2Color4;
+ break;
+ case GL_MAP2_NORMAL:
+ map2 = &ctx->EvalMap.Map2Normal;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ map2 = &ctx->EvalMap.Map2Texture1;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ map2 = &ctx->EvalMap.Map2Texture2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ map2 = &ctx->EvalMap.Map2Texture3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ map2 = &ctx->EvalMap.Map2Texture4;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
+ return;
+ }
+
+ if (map1) {
+ if (data==map1->Points) {
+ /* The control points in the display list are currently */
+ /* being used so we can mark them as discard-able. */
+ map1->Retain = GL_FALSE;
+ }
+ else {
+ /* The control points in the display list are not currently */
+ /* being used. */
+ free( data );
+ }
+ }
+ if (map2) {
+ if (data==map2->Points) {
+ /* The control points in the display list are currently */
+ /* being used so we can mark them as discard-able. */
+ map2->Retain = GL_FALSE;
+ }
+ else {
+ /* The control points in the display list are not currently */
+ /* being used. */
+ free( data );
+ }
+ }
+
+}
+
+
+
+/**********************************************************************/
+/*** API entry points ***/
+/**********************************************************************/
+
+
+/*
+ * Note that the array of control points must be 'unpacked' at this time.
+ * Input: retain - if TRUE, this control point data is also in a display
+ * list and can't be freed until the list is freed.
+ */
+void gl_Map1f( GLcontext* ctx, GLenum target,
+ GLfloat u1, GLfloat u2, GLint stride,
+ GLint order, const GLfloat *points, GLboolean retain )
+{
+ GLint k;
+
+ if (!points) {
+ gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
+ return;
+ }
+
+ /* may be a new stride after copying control points */
+ stride = components( target );
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
+
+ if (u1==u2) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
+ return;
+ }
+
+ if (order<1 || order>MAX_EVAL_ORDER) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
+ return;
+ }
+
+ k = components( target );
+ if (k==0) {
+ gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
+ }
+
+ if (stride < k) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
+ return;
+ }
+
+ switch (target) {
+ case GL_MAP1_VERTEX_3:
+ ctx->EvalMap.Map1Vertex3.Order = order;
+ ctx->EvalMap.Map1Vertex3.u1 = u1;
+ ctx->EvalMap.Map1Vertex3.u2 = u2;
+ ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Vertex3.Points
+ && !ctx->EvalMap.Map1Vertex3.Retain) {
+ free( ctx->EvalMap.Map1Vertex3.Points );
+ }
+ ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Vertex3.Retain = retain;
+ break;
+ case GL_MAP1_VERTEX_4:
+ ctx->EvalMap.Map1Vertex4.Order = order;
+ ctx->EvalMap.Map1Vertex4.u1 = u1;
+ ctx->EvalMap.Map1Vertex4.u2 = u2;
+ ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Vertex4.Points
+ && !ctx->EvalMap.Map1Vertex4.Retain) {
+ free( ctx->EvalMap.Map1Vertex4.Points );
+ }
+ ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Vertex4.Retain = retain;
+ break;
+ case GL_MAP1_INDEX:
+ ctx->EvalMap.Map1Index.Order = order;
+ ctx->EvalMap.Map1Index.u1 = u1;
+ ctx->EvalMap.Map1Index.u2 = u2;
+ ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Index.Points
+ && !ctx->EvalMap.Map1Index.Retain) {
+ free( ctx->EvalMap.Map1Index.Points );
+ }
+ ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Index.Retain = retain;
+ break;
+ case GL_MAP1_COLOR_4:
+ ctx->EvalMap.Map1Color4.Order = order;
+ ctx->EvalMap.Map1Color4.u1 = u1;
+ ctx->EvalMap.Map1Color4.u2 = u2;
+ ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Color4.Points
+ && !ctx->EvalMap.Map1Color4.Retain) {
+ free( ctx->EvalMap.Map1Color4.Points );
+ }
+ ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Color4.Retain = retain;
+ break;
+ case GL_MAP1_NORMAL:
+ ctx->EvalMap.Map1Normal.Order = order;
+ ctx->EvalMap.Map1Normal.u1 = u1;
+ ctx->EvalMap.Map1Normal.u2 = u2;
+ ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Normal.Points
+ && !ctx->EvalMap.Map1Normal.Retain) {
+ free( ctx->EvalMap.Map1Normal.Points );
+ }
+ ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Normal.Retain = retain;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ ctx->EvalMap.Map1Texture1.Order = order;
+ ctx->EvalMap.Map1Texture1.u1 = u1;
+ ctx->EvalMap.Map1Texture1.u2 = u2;
+ ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Texture1.Points
+ && !ctx->EvalMap.Map1Texture1.Retain) {
+ free( ctx->EvalMap.Map1Texture1.Points );
+ }
+ ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Texture1.Retain = retain;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ ctx->EvalMap.Map1Texture2.Order = order;
+ ctx->EvalMap.Map1Texture2.u1 = u1;
+ ctx->EvalMap.Map1Texture2.u2 = u2;
+ ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Texture2.Points
+ && !ctx->EvalMap.Map1Texture2.Retain) {
+ free( ctx->EvalMap.Map1Texture2.Points );
+ }
+ ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Texture2.Retain = retain;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ ctx->EvalMap.Map1Texture3.Order = order;
+ ctx->EvalMap.Map1Texture3.u1 = u1;
+ ctx->EvalMap.Map1Texture3.u2 = u2;
+ ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Texture3.Points
+ && !ctx->EvalMap.Map1Texture3.Retain) {
+ free( ctx->EvalMap.Map1Texture3.Points );
+ }
+ ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Texture3.Retain = retain;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ ctx->EvalMap.Map1Texture4.Order = order;
+ ctx->EvalMap.Map1Texture4.u1 = u1;
+ ctx->EvalMap.Map1Texture4.u2 = u2;
+ ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
+ if (ctx->EvalMap.Map1Texture4.Points
+ && !ctx->EvalMap.Map1Texture4.Retain) {
+ free( ctx->EvalMap.Map1Texture4.Points );
+ }
+ ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
+ ctx->EvalMap.Map1Texture4.Retain = retain;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
+ }
+}
+
+
+
+
+/*
+ * Note that the array of control points must be 'unpacked' at this time.
+ * Input: retain - if TRUE, this control point data is also in a display
+ * list and can't be freed until the list is freed.
+ */
+void gl_Map2f( GLcontext* ctx, GLenum target,
+ GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
+ GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
+ const GLfloat *points, GLboolean retain )
+{
+ GLint k;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
+
+ if (u1==u2) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
+ return;
+ }
+
+ if (v1==v2) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
+ return;
+ }
+
+ if (uorder<1 || uorder>MAX_EVAL_ORDER) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
+ return;
+ }
+
+ if (vorder<1 || vorder>MAX_EVAL_ORDER) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
+ return;
+ }
+
+ k = components( target );
+ if (k==0) {
+ gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
+ }
+
+ if (ustride < k) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
+ return;
+ }
+ if (vstride < k) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
+ return;
+ }
+
+ switch (target) {
+ case GL_MAP2_VERTEX_3:
+ ctx->EvalMap.Map2Vertex3.Uorder = uorder;
+ ctx->EvalMap.Map2Vertex3.u1 = u1;
+ ctx->EvalMap.Map2Vertex3.u2 = u2;
+ ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Vertex3.Vorder = vorder;
+ ctx->EvalMap.Map2Vertex3.v1 = v1;
+ ctx->EvalMap.Map2Vertex3.v2 = v2;
+ ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Vertex3.Points
+ && !ctx->EvalMap.Map2Vertex3.Retain) {
+ free( ctx->EvalMap.Map2Vertex3.Points );
+ }
+ ctx->EvalMap.Map2Vertex3.Retain = retain;
+ ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_VERTEX_4:
+ ctx->EvalMap.Map2Vertex4.Uorder = uorder;
+ ctx->EvalMap.Map2Vertex4.u1 = u1;
+ ctx->EvalMap.Map2Vertex4.u2 = u2;
+ ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Vertex4.Vorder = vorder;
+ ctx->EvalMap.Map2Vertex4.v1 = v1;
+ ctx->EvalMap.Map2Vertex4.v2 = v2;
+ ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Vertex4.Points
+ && !ctx->EvalMap.Map2Vertex4.Retain) {
+ free( ctx->EvalMap.Map2Vertex4.Points );
+ }
+ ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
+ ctx->EvalMap.Map2Vertex4.Retain = retain;
+ break;
+ case GL_MAP2_INDEX:
+ ctx->EvalMap.Map2Index.Uorder = uorder;
+ ctx->EvalMap.Map2Index.u1 = u1;
+ ctx->EvalMap.Map2Index.u2 = u2;
+ ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Index.Vorder = vorder;
+ ctx->EvalMap.Map2Index.v1 = v1;
+ ctx->EvalMap.Map2Index.v2 = v2;
+ ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Index.Points
+ && !ctx->EvalMap.Map2Index.Retain) {
+ free( ctx->EvalMap.Map2Index.Points );
+ }
+ ctx->EvalMap.Map2Index.Retain = retain;
+ ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_COLOR_4:
+ ctx->EvalMap.Map2Color4.Uorder = uorder;
+ ctx->EvalMap.Map2Color4.u1 = u1;
+ ctx->EvalMap.Map2Color4.u2 = u2;
+ ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Color4.Vorder = vorder;
+ ctx->EvalMap.Map2Color4.v1 = v1;
+ ctx->EvalMap.Map2Color4.v2 = v2;
+ ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Color4.Points
+ && !ctx->EvalMap.Map2Color4.Retain) {
+ free( ctx->EvalMap.Map2Color4.Points );
+ }
+ ctx->EvalMap.Map2Color4.Retain = retain;
+ ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_NORMAL:
+ ctx->EvalMap.Map2Normal.Uorder = uorder;
+ ctx->EvalMap.Map2Normal.u1 = u1;
+ ctx->EvalMap.Map2Normal.u2 = u2;
+ ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Normal.Vorder = vorder;
+ ctx->EvalMap.Map2Normal.v1 = v1;
+ ctx->EvalMap.Map2Normal.v2 = v2;
+ ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Normal.Points
+ && !ctx->EvalMap.Map2Normal.Retain) {
+ free( ctx->EvalMap.Map2Normal.Points );
+ }
+ ctx->EvalMap.Map2Normal.Retain = retain;
+ ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ ctx->EvalMap.Map2Texture1.Uorder = uorder;
+ ctx->EvalMap.Map2Texture1.u1 = u1;
+ ctx->EvalMap.Map2Texture1.u2 = u2;
+ ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Texture1.Vorder = vorder;
+ ctx->EvalMap.Map2Texture1.v1 = v1;
+ ctx->EvalMap.Map2Texture1.v2 = v2;
+ ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Texture1.Points
+ && !ctx->EvalMap.Map2Texture1.Retain) {
+ free( ctx->EvalMap.Map2Texture1.Points );
+ }
+ ctx->EvalMap.Map2Texture1.Retain = retain;
+ ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ ctx->EvalMap.Map2Texture2.Uorder = uorder;
+ ctx->EvalMap.Map2Texture2.u1 = u1;
+ ctx->EvalMap.Map2Texture2.u2 = u2;
+ ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Texture2.Vorder = vorder;
+ ctx->EvalMap.Map2Texture2.v1 = v1;
+ ctx->EvalMap.Map2Texture2.v2 = v2;
+ ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Texture2.Points
+ && !ctx->EvalMap.Map2Texture2.Retain) {
+ free( ctx->EvalMap.Map2Texture2.Points );
+ }
+ ctx->EvalMap.Map2Texture2.Retain = retain;
+ ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ ctx->EvalMap.Map2Texture3.Uorder = uorder;
+ ctx->EvalMap.Map2Texture3.u1 = u1;
+ ctx->EvalMap.Map2Texture3.u2 = u2;
+ ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Texture3.Vorder = vorder;
+ ctx->EvalMap.Map2Texture3.v1 = v1;
+ ctx->EvalMap.Map2Texture3.v2 = v2;
+ ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Texture3.Points
+ && !ctx->EvalMap.Map2Texture3.Retain) {
+ free( ctx->EvalMap.Map2Texture3.Points );
+ }
+ ctx->EvalMap.Map2Texture3.Retain = retain;
+ ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ ctx->EvalMap.Map2Texture4.Uorder = uorder;
+ ctx->EvalMap.Map2Texture4.u1 = u1;
+ ctx->EvalMap.Map2Texture4.u2 = u2;
+ ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
+ ctx->EvalMap.Map2Texture4.Vorder = vorder;
+ ctx->EvalMap.Map2Texture4.v1 = v1;
+ ctx->EvalMap.Map2Texture4.v2 = v2;
+ ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
+ if (ctx->EvalMap.Map2Texture4.Points
+ && !ctx->EvalMap.Map2Texture4.Retain) {
+ free( ctx->EvalMap.Map2Texture4.Points );
+ }
+ ctx->EvalMap.Map2Texture4.Retain = retain;
+ ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
+ }
+}
+
+
+
+
+
+void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
+{
+ GLint i, n;
+ GLfloat *data;
+
+ switch (query) {
+ case GL_COEFF:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ data = ctx->EvalMap.Map1Color4.Points;
+ n = ctx->EvalMap.Map1Color4.Order * 4;
+ break;
+ case GL_MAP1_INDEX:
+ data = ctx->EvalMap.Map1Index.Points;
+ n = ctx->EvalMap.Map1Index.Order;
+ break;
+ case GL_MAP1_NORMAL:
+ data = ctx->EvalMap.Map1Normal.Points;
+ n = ctx->EvalMap.Map1Normal.Order * 3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ data = ctx->EvalMap.Map1Texture1.Points;
+ n = ctx->EvalMap.Map1Texture1.Order * 1;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ data = ctx->EvalMap.Map1Texture2.Points;
+ n = ctx->EvalMap.Map1Texture2.Order * 2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ data = ctx->EvalMap.Map1Texture3.Points;
+ n = ctx->EvalMap.Map1Texture3.Order * 3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ data = ctx->EvalMap.Map1Texture4.Points;
+ n = ctx->EvalMap.Map1Texture4.Order * 4;
+ break;
+ case GL_MAP1_VERTEX_3:
+ data = ctx->EvalMap.Map1Vertex3.Points;
+ n = ctx->EvalMap.Map1Vertex3.Order * 3;
+ break;
+ case GL_MAP1_VERTEX_4:
+ data = ctx->EvalMap.Map1Vertex4.Points;
+ n = ctx->EvalMap.Map1Vertex4.Order * 4;
+ break;
+ case GL_MAP2_COLOR_4:
+ data = ctx->EvalMap.Map2Color4.Points;
+ n = ctx->EvalMap.Map2Color4.Uorder
+ * ctx->EvalMap.Map2Color4.Vorder * 4;
+ break;
+ case GL_MAP2_INDEX:
+ data = ctx->EvalMap.Map2Index.Points;
+ n = ctx->EvalMap.Map2Index.Uorder
+ * ctx->EvalMap.Map2Index.Vorder;
+ break;
+ case GL_MAP2_NORMAL:
+ data = ctx->EvalMap.Map2Normal.Points;
+ n = ctx->EvalMap.Map2Normal.Uorder
+ * ctx->EvalMap.Map2Normal.Vorder * 3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ data = ctx->EvalMap.Map2Texture1.Points;
+ n = ctx->EvalMap.Map2Texture1.Uorder
+ * ctx->EvalMap.Map2Texture1.Vorder * 1;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ data = ctx->EvalMap.Map2Texture2.Points;
+ n = ctx->EvalMap.Map2Texture2.Uorder
+ * ctx->EvalMap.Map2Texture2.Vorder * 2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ data = ctx->EvalMap.Map2Texture3.Points;
+ n = ctx->EvalMap.Map2Texture3.Uorder
+ * ctx->EvalMap.Map2Texture3.Vorder * 3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ data = ctx->EvalMap.Map2Texture4.Points;
+ n = ctx->EvalMap.Map2Texture4.Uorder
+ * ctx->EvalMap.Map2Texture4.Vorder * 4;
+ break;
+ case GL_MAP2_VERTEX_3:
+ data = ctx->EvalMap.Map2Vertex3.Points;
+ n = ctx->EvalMap.Map2Vertex3.Uorder
+ * ctx->EvalMap.Map2Vertex3.Vorder * 3;
+ break;
+ case GL_MAP2_VERTEX_4:
+ data = ctx->EvalMap.Map2Vertex4.Points;
+ n = ctx->EvalMap.Map2Vertex4.Uorder
+ * ctx->EvalMap.Map2Vertex4.Vorder * 4;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
+ return;
+ }
+ if (data) {
+ for (i=0;i<n;i++) {
+ v[i] = data[i];
+ }
+ }
+ break;
+ case GL_ORDER:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ *v = ctx->EvalMap.Map1Color4.Order;
+ break;
+ case GL_MAP1_INDEX:
+ *v = ctx->EvalMap.Map1Index.Order;
+ break;
+ case GL_MAP1_NORMAL:
+ *v = ctx->EvalMap.Map1Normal.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ *v = ctx->EvalMap.Map1Texture1.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ *v = ctx->EvalMap.Map1Texture2.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ *v = ctx->EvalMap.Map1Texture3.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ *v = ctx->EvalMap.Map1Texture4.Order;
+ break;
+ case GL_MAP1_VERTEX_3:
+ *v = ctx->EvalMap.Map1Vertex3.Order;
+ break;
+ case GL_MAP1_VERTEX_4:
+ *v = ctx->EvalMap.Map1Vertex4.Order;
+ break;
+ case GL_MAP2_COLOR_4:
+ v[0] = ctx->EvalMap.Map2Color4.Uorder;
+ v[1] = ctx->EvalMap.Map2Color4.Vorder;
+ break;
+ case GL_MAP2_INDEX:
+ v[0] = ctx->EvalMap.Map2Index.Uorder;
+ v[1] = ctx->EvalMap.Map2Index.Vorder;
+ break;
+ case GL_MAP2_NORMAL:
+ v[0] = ctx->EvalMap.Map2Normal.Uorder;
+ v[1] = ctx->EvalMap.Map2Normal.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map2Texture1.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture1.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map2Texture2.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture2.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map2Texture3.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture3.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map2Texture4.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture4.Vorder;
+ break;
+ case GL_MAP2_VERTEX_3:
+ v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
+ v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
+ break;
+ case GL_MAP2_VERTEX_4:
+ v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
+ v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
+ return;
+ }
+ break;
+ case GL_DOMAIN:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ v[0] = ctx->EvalMap.Map1Color4.u1;
+ v[1] = ctx->EvalMap.Map1Color4.u2;
+ break;
+ case GL_MAP1_INDEX:
+ v[0] = ctx->EvalMap.Map1Index.u1;
+ v[1] = ctx->EvalMap.Map1Index.u2;
+ break;
+ case GL_MAP1_NORMAL:
+ v[0] = ctx->EvalMap.Map1Normal.u1;
+ v[1] = ctx->EvalMap.Map1Normal.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map1Texture1.u1;
+ v[1] = ctx->EvalMap.Map1Texture1.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map1Texture2.u1;
+ v[1] = ctx->EvalMap.Map1Texture2.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map1Texture3.u1;
+ v[1] = ctx->EvalMap.Map1Texture3.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map1Texture4.u1;
+ v[1] = ctx->EvalMap.Map1Texture4.u2;
+ break;
+ case GL_MAP1_VERTEX_3:
+ v[0] = ctx->EvalMap.Map1Vertex3.u1;
+ v[1] = ctx->EvalMap.Map1Vertex3.u2;
+ break;
+ case GL_MAP1_VERTEX_4:
+ v[0] = ctx->EvalMap.Map1Vertex4.u1;
+ v[1] = ctx->EvalMap.Map1Vertex4.u2;
+ break;
+ case GL_MAP2_COLOR_4:
+ v[0] = ctx->EvalMap.Map2Color4.u1;
+ v[1] = ctx->EvalMap.Map2Color4.u2;
+ v[2] = ctx->EvalMap.Map2Color4.v1;
+ v[3] = ctx->EvalMap.Map2Color4.v2;
+ break;
+ case GL_MAP2_INDEX:
+ v[0] = ctx->EvalMap.Map2Index.u1;
+ v[1] = ctx->EvalMap.Map2Index.u2;
+ v[2] = ctx->EvalMap.Map2Index.v1;
+ v[3] = ctx->EvalMap.Map2Index.v2;
+ break;
+ case GL_MAP2_NORMAL:
+ v[0] = ctx->EvalMap.Map2Normal.u1;
+ v[1] = ctx->EvalMap.Map2Normal.u2;
+ v[2] = ctx->EvalMap.Map2Normal.v1;
+ v[3] = ctx->EvalMap.Map2Normal.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map2Texture1.u1;
+ v[1] = ctx->EvalMap.Map2Texture1.u2;
+ v[2] = ctx->EvalMap.Map2Texture1.v1;
+ v[3] = ctx->EvalMap.Map2Texture1.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map2Texture2.u1;
+ v[1] = ctx->EvalMap.Map2Texture2.u2;
+ v[2] = ctx->EvalMap.Map2Texture2.v1;
+ v[3] = ctx->EvalMap.Map2Texture2.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map2Texture3.u1;
+ v[1] = ctx->EvalMap.Map2Texture3.u2;
+ v[2] = ctx->EvalMap.Map2Texture3.v1;
+ v[3] = ctx->EvalMap.Map2Texture3.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map2Texture4.u1;
+ v[1] = ctx->EvalMap.Map2Texture4.u2;
+ v[2] = ctx->EvalMap.Map2Texture4.v1;
+ v[3] = ctx->EvalMap.Map2Texture4.v2;
+ break;
+ case GL_MAP2_VERTEX_3:
+ v[0] = ctx->EvalMap.Map2Vertex3.u1;
+ v[1] = ctx->EvalMap.Map2Vertex3.u2;
+ v[2] = ctx->EvalMap.Map2Vertex3.v1;
+ v[3] = ctx->EvalMap.Map2Vertex3.v2;
+ break;
+ case GL_MAP2_VERTEX_4:
+ v[0] = ctx->EvalMap.Map2Vertex4.u1;
+ v[1] = ctx->EvalMap.Map2Vertex4.u2;
+ v[2] = ctx->EvalMap.Map2Vertex4.v1;
+ v[3] = ctx->EvalMap.Map2Vertex4.v2;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
+ }
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
+ }
+}
+
+
+void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
+{
+ GLint i, n;
+ GLfloat *data;
+
+ switch (query) {
+ case GL_COEFF:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ data = ctx->EvalMap.Map1Color4.Points;
+ n = ctx->EvalMap.Map1Color4.Order * 4;
+ break;
+ case GL_MAP1_INDEX:
+ data = ctx->EvalMap.Map1Index.Points;
+ n = ctx->EvalMap.Map1Index.Order;
+ break;
+ case GL_MAP1_NORMAL:
+ data = ctx->EvalMap.Map1Normal.Points;
+ n = ctx->EvalMap.Map1Normal.Order * 3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ data = ctx->EvalMap.Map1Texture1.Points;
+ n = ctx->EvalMap.Map1Texture1.Order * 1;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ data = ctx->EvalMap.Map1Texture2.Points;
+ n = ctx->EvalMap.Map1Texture2.Order * 2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ data = ctx->EvalMap.Map1Texture3.Points;
+ n = ctx->EvalMap.Map1Texture3.Order * 3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ data = ctx->EvalMap.Map1Texture4.Points;
+ n = ctx->EvalMap.Map1Texture4.Order * 4;
+ break;
+ case GL_MAP1_VERTEX_3:
+ data = ctx->EvalMap.Map1Vertex3.Points;
+ n = ctx->EvalMap.Map1Vertex3.Order * 3;
+ break;
+ case GL_MAP1_VERTEX_4:
+ data = ctx->EvalMap.Map1Vertex4.Points;
+ n = ctx->EvalMap.Map1Vertex4.Order * 4;
+ break;
+ case GL_MAP2_COLOR_4:
+ data = ctx->EvalMap.Map2Color4.Points;
+ n = ctx->EvalMap.Map2Color4.Uorder
+ * ctx->EvalMap.Map2Color4.Vorder * 4;
+ break;
+ case GL_MAP2_INDEX:
+ data = ctx->EvalMap.Map2Index.Points;
+ n = ctx->EvalMap.Map2Index.Uorder
+ * ctx->EvalMap.Map2Index.Vorder;
+ break;
+ case GL_MAP2_NORMAL:
+ data = ctx->EvalMap.Map2Normal.Points;
+ n = ctx->EvalMap.Map2Normal.Uorder
+ * ctx->EvalMap.Map2Normal.Vorder * 3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ data = ctx->EvalMap.Map2Texture1.Points;
+ n = ctx->EvalMap.Map2Texture1.Uorder
+ * ctx->EvalMap.Map2Texture1.Vorder * 1;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ data = ctx->EvalMap.Map2Texture2.Points;
+ n = ctx->EvalMap.Map2Texture2.Uorder
+ * ctx->EvalMap.Map2Texture2.Vorder * 2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ data = ctx->EvalMap.Map2Texture3.Points;
+ n = ctx->EvalMap.Map2Texture3.Uorder
+ * ctx->EvalMap.Map2Texture3.Vorder * 3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ data = ctx->EvalMap.Map2Texture4.Points;
+ n = ctx->EvalMap.Map2Texture4.Uorder
+ * ctx->EvalMap.Map2Texture4.Vorder * 4;
+ break;
+ case GL_MAP2_VERTEX_3:
+ data = ctx->EvalMap.Map2Vertex3.Points;
+ n = ctx->EvalMap.Map2Vertex3.Uorder
+ * ctx->EvalMap.Map2Vertex3.Vorder * 3;
+ break;
+ case GL_MAP2_VERTEX_4:
+ data = ctx->EvalMap.Map2Vertex4.Points;
+ n = ctx->EvalMap.Map2Vertex4.Uorder
+ * ctx->EvalMap.Map2Vertex4.Vorder * 4;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
+ return;
+ }
+ if (data) {
+ for (i=0;i<n;i++) {
+ v[i] = data[i];
+ }
+ }
+ break;
+ case GL_ORDER:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ *v = ctx->EvalMap.Map1Color4.Order;
+ break;
+ case GL_MAP1_INDEX:
+ *v = ctx->EvalMap.Map1Index.Order;
+ break;
+ case GL_MAP1_NORMAL:
+ *v = ctx->EvalMap.Map1Normal.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ *v = ctx->EvalMap.Map1Texture1.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ *v = ctx->EvalMap.Map1Texture2.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ *v = ctx->EvalMap.Map1Texture3.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ *v = ctx->EvalMap.Map1Texture4.Order;
+ break;
+ case GL_MAP1_VERTEX_3:
+ *v = ctx->EvalMap.Map1Vertex3.Order;
+ break;
+ case GL_MAP1_VERTEX_4:
+ *v = ctx->EvalMap.Map1Vertex4.Order;
+ break;
+ case GL_MAP2_COLOR_4:
+ v[0] = ctx->EvalMap.Map2Color4.Uorder;
+ v[1] = ctx->EvalMap.Map2Color4.Vorder;
+ break;
+ case GL_MAP2_INDEX:
+ v[0] = ctx->EvalMap.Map2Index.Uorder;
+ v[1] = ctx->EvalMap.Map2Index.Vorder;
+ break;
+ case GL_MAP2_NORMAL:
+ v[0] = ctx->EvalMap.Map2Normal.Uorder;
+ v[1] = ctx->EvalMap.Map2Normal.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map2Texture1.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture1.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map2Texture2.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture2.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map2Texture3.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture3.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map2Texture4.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture4.Vorder;
+ break;
+ case GL_MAP2_VERTEX_3:
+ v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
+ v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
+ break;
+ case GL_MAP2_VERTEX_4:
+ v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
+ v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
+ return;
+ }
+ break;
+ case GL_DOMAIN:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ v[0] = ctx->EvalMap.Map1Color4.u1;
+ v[1] = ctx->EvalMap.Map1Color4.u2;
+ break;
+ case GL_MAP1_INDEX:
+ v[0] = ctx->EvalMap.Map1Index.u1;
+ v[1] = ctx->EvalMap.Map1Index.u2;
+ break;
+ case GL_MAP1_NORMAL:
+ v[0] = ctx->EvalMap.Map1Normal.u1;
+ v[1] = ctx->EvalMap.Map1Normal.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map1Texture1.u1;
+ v[1] = ctx->EvalMap.Map1Texture1.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map1Texture2.u1;
+ v[1] = ctx->EvalMap.Map1Texture2.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map1Texture3.u1;
+ v[1] = ctx->EvalMap.Map1Texture3.u2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map1Texture4.u1;
+ v[1] = ctx->EvalMap.Map1Texture4.u2;
+ break;
+ case GL_MAP1_VERTEX_3:
+ v[0] = ctx->EvalMap.Map1Vertex3.u1;
+ v[1] = ctx->EvalMap.Map1Vertex3.u2;
+ break;
+ case GL_MAP1_VERTEX_4:
+ v[0] = ctx->EvalMap.Map1Vertex4.u1;
+ v[1] = ctx->EvalMap.Map1Vertex4.u2;
+ break;
+ case GL_MAP2_COLOR_4:
+ v[0] = ctx->EvalMap.Map2Color4.u1;
+ v[1] = ctx->EvalMap.Map2Color4.u2;
+ v[2] = ctx->EvalMap.Map2Color4.v1;
+ v[3] = ctx->EvalMap.Map2Color4.v2;
+ break;
+ case GL_MAP2_INDEX:
+ v[0] = ctx->EvalMap.Map2Index.u1;
+ v[1] = ctx->EvalMap.Map2Index.u2;
+ v[2] = ctx->EvalMap.Map2Index.v1;
+ v[3] = ctx->EvalMap.Map2Index.v2;
+ break;
+ case GL_MAP2_NORMAL:
+ v[0] = ctx->EvalMap.Map2Normal.u1;
+ v[1] = ctx->EvalMap.Map2Normal.u2;
+ v[2] = ctx->EvalMap.Map2Normal.v1;
+ v[3] = ctx->EvalMap.Map2Normal.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map2Texture1.u1;
+ v[1] = ctx->EvalMap.Map2Texture1.u2;
+ v[2] = ctx->EvalMap.Map2Texture1.v1;
+ v[3] = ctx->EvalMap.Map2Texture1.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map2Texture2.u1;
+ v[1] = ctx->EvalMap.Map2Texture2.u2;
+ v[2] = ctx->EvalMap.Map2Texture2.v1;
+ v[3] = ctx->EvalMap.Map2Texture2.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map2Texture3.u1;
+ v[1] = ctx->EvalMap.Map2Texture3.u2;
+ v[2] = ctx->EvalMap.Map2Texture3.v1;
+ v[3] = ctx->EvalMap.Map2Texture3.v2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map2Texture4.u1;
+ v[1] = ctx->EvalMap.Map2Texture4.u2;
+ v[2] = ctx->EvalMap.Map2Texture4.v1;
+ v[3] = ctx->EvalMap.Map2Texture4.v2;
+ break;
+ case GL_MAP2_VERTEX_3:
+ v[0] = ctx->EvalMap.Map2Vertex3.u1;
+ v[1] = ctx->EvalMap.Map2Vertex3.u2;
+ v[2] = ctx->EvalMap.Map2Vertex3.v1;
+ v[3] = ctx->EvalMap.Map2Vertex3.v2;
+ break;
+ case GL_MAP2_VERTEX_4:
+ v[0] = ctx->EvalMap.Map2Vertex4.u1;
+ v[1] = ctx->EvalMap.Map2Vertex4.u2;
+ v[2] = ctx->EvalMap.Map2Vertex4.v1;
+ v[3] = ctx->EvalMap.Map2Vertex4.v2;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
+ }
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
+ }
+}
+
+
+void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
+{
+ GLuint i, n;
+ GLfloat *data;
+
+ switch (query) {
+ case GL_COEFF:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ data = ctx->EvalMap.Map1Color4.Points;
+ n = ctx->EvalMap.Map1Color4.Order * 4;
+ break;
+ case GL_MAP1_INDEX:
+ data = ctx->EvalMap.Map1Index.Points;
+ n = ctx->EvalMap.Map1Index.Order;
+ break;
+ case GL_MAP1_NORMAL:
+ data = ctx->EvalMap.Map1Normal.Points;
+ n = ctx->EvalMap.Map1Normal.Order * 3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ data = ctx->EvalMap.Map1Texture1.Points;
+ n = ctx->EvalMap.Map1Texture1.Order * 1;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ data = ctx->EvalMap.Map1Texture2.Points;
+ n = ctx->EvalMap.Map1Texture2.Order * 2;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ data = ctx->EvalMap.Map1Texture3.Points;
+ n = ctx->EvalMap.Map1Texture3.Order * 3;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ data = ctx->EvalMap.Map1Texture4.Points;
+ n = ctx->EvalMap.Map1Texture4.Order * 4;
+ break;
+ case GL_MAP1_VERTEX_3:
+ data = ctx->EvalMap.Map1Vertex3.Points;
+ n = ctx->EvalMap.Map1Vertex3.Order * 3;
+ break;
+ case GL_MAP1_VERTEX_4:
+ data = ctx->EvalMap.Map1Vertex4.Points;
+ n = ctx->EvalMap.Map1Vertex4.Order * 4;
+ break;
+ case GL_MAP2_COLOR_4:
+ data = ctx->EvalMap.Map2Color4.Points;
+ n = ctx->EvalMap.Map2Color4.Uorder
+ * ctx->EvalMap.Map2Color4.Vorder * 4;
+ break;
+ case GL_MAP2_INDEX:
+ data = ctx->EvalMap.Map2Index.Points;
+ n = ctx->EvalMap.Map2Index.Uorder
+ * ctx->EvalMap.Map2Index.Vorder;
+ break;
+ case GL_MAP2_NORMAL:
+ data = ctx->EvalMap.Map2Normal.Points;
+ n = ctx->EvalMap.Map2Normal.Uorder
+ * ctx->EvalMap.Map2Normal.Vorder * 3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ data = ctx->EvalMap.Map2Texture1.Points;
+ n = ctx->EvalMap.Map2Texture1.Uorder
+ * ctx->EvalMap.Map2Texture1.Vorder * 1;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ data = ctx->EvalMap.Map2Texture2.Points;
+ n = ctx->EvalMap.Map2Texture2.Uorder
+ * ctx->EvalMap.Map2Texture2.Vorder * 2;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ data = ctx->EvalMap.Map2Texture3.Points;
+ n = ctx->EvalMap.Map2Texture3.Uorder
+ * ctx->EvalMap.Map2Texture3.Vorder * 3;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ data = ctx->EvalMap.Map2Texture4.Points;
+ n = ctx->EvalMap.Map2Texture4.Uorder
+ * ctx->EvalMap.Map2Texture4.Vorder * 4;
+ break;
+ case GL_MAP2_VERTEX_3:
+ data = ctx->EvalMap.Map2Vertex3.Points;
+ n = ctx->EvalMap.Map2Vertex3.Uorder
+ * ctx->EvalMap.Map2Vertex3.Vorder * 3;
+ break;
+ case GL_MAP2_VERTEX_4:
+ data = ctx->EvalMap.Map2Vertex4.Points;
+ n = ctx->EvalMap.Map2Vertex4.Uorder
+ * ctx->EvalMap.Map2Vertex4.Vorder * 4;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
+ return;
+ }
+ if (data) {
+ for (i=0;i<n;i++) {
+ v[i] = ROUNDF(data[i]);
+ }
+ }
+ break;
+ case GL_ORDER:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ *v = ctx->EvalMap.Map1Color4.Order;
+ break;
+ case GL_MAP1_INDEX:
+ *v = ctx->EvalMap.Map1Index.Order;
+ break;
+ case GL_MAP1_NORMAL:
+ *v = ctx->EvalMap.Map1Normal.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ *v = ctx->EvalMap.Map1Texture1.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ *v = ctx->EvalMap.Map1Texture2.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ *v = ctx->EvalMap.Map1Texture3.Order;
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ *v = ctx->EvalMap.Map1Texture4.Order;
+ break;
+ case GL_MAP1_VERTEX_3:
+ *v = ctx->EvalMap.Map1Vertex3.Order;
+ break;
+ case GL_MAP1_VERTEX_4:
+ *v = ctx->EvalMap.Map1Vertex4.Order;
+ break;
+ case GL_MAP2_COLOR_4:
+ v[0] = ctx->EvalMap.Map2Color4.Uorder;
+ v[1] = ctx->EvalMap.Map2Color4.Vorder;
+ break;
+ case GL_MAP2_INDEX:
+ v[0] = ctx->EvalMap.Map2Index.Uorder;
+ v[1] = ctx->EvalMap.Map2Index.Vorder;
+ break;
+ case GL_MAP2_NORMAL:
+ v[0] = ctx->EvalMap.Map2Normal.Uorder;
+ v[1] = ctx->EvalMap.Map2Normal.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ v[0] = ctx->EvalMap.Map2Texture1.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture1.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ v[0] = ctx->EvalMap.Map2Texture2.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture2.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ v[0] = ctx->EvalMap.Map2Texture3.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture3.Vorder;
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ v[0] = ctx->EvalMap.Map2Texture4.Uorder;
+ v[1] = ctx->EvalMap.Map2Texture4.Vorder;
+ break;
+ case GL_MAP2_VERTEX_3:
+ v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
+ v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
+ break;
+ case GL_MAP2_VERTEX_4:
+ v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
+ v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
+ return;
+ }
+ break;
+ case GL_DOMAIN:
+ switch (target) {
+ case GL_MAP1_COLOR_4:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
+ break;
+ case GL_MAP1_INDEX:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
+ break;
+ case GL_MAP1_NORMAL:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
+ break;
+ case GL_MAP1_TEXTURE_COORD_1:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
+ break;
+ case GL_MAP1_TEXTURE_COORD_2:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
+ break;
+ case GL_MAP1_TEXTURE_COORD_3:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
+ break;
+ case GL_MAP1_TEXTURE_COORD_4:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
+ break;
+ case GL_MAP1_VERTEX_3:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
+ break;
+ case GL_MAP1_VERTEX_4:
+ v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
+ break;
+ case GL_MAP2_COLOR_4:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
+ break;
+ case GL_MAP2_INDEX:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
+ break;
+ case GL_MAP2_NORMAL:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
+ break;
+ case GL_MAP2_TEXTURE_COORD_1:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
+ break;
+ case GL_MAP2_TEXTURE_COORD_2:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
+ break;
+ case GL_MAP2_TEXTURE_COORD_3:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
+ break;
+ case GL_MAP2_TEXTURE_COORD_4:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
+ break;
+ case GL_MAP2_VERTEX_3:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
+ break;
+ case GL_MAP2_VERTEX_4:
+ v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
+ v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
+ v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
+ v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
+ }
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
+ }
+}
+
+
+
+void eval_points1( GLfloat outcoord[][4],
+ GLfloat coord[][4],
+ const GLuint *flags,
+ GLfloat du, GLfloat u1 )
+{
+ GLuint i;
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & VERT_EVAL_P1)
+ outcoord[i][0] = coord[i][0] * du + u1;
+ else if (flags[i] & VERT_EVAL_ANY) {
+ outcoord[i][0] = coord[i][0];
+ outcoord[i][1] = coord[i][1];
+ }
+}
+
+void eval_points2( GLfloat outcoord[][4],
+ GLfloat coord[][4],
+ const GLuint *flags,
+ GLfloat du, GLfloat u1,
+ GLfloat dv, GLfloat v1 )
+{
+ GLuint i;
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & VERT_EVAL_P2) {
+ outcoord[i][0] = coord[i][0] * du + u1;
+ outcoord[i][1] = coord[i][1] * dv + v1;
+ } else if (flags[i] & VERT_EVAL_ANY) {
+ outcoord[i][0] = coord[i][0];
+ outcoord[i][1] = coord[i][1];
+ }
+}
+
+
+static const GLubyte dirty_flags[5] = {
+ 0, /* not possible */
+ VEC_DIRTY_0,
+ VEC_DIRTY_1,
+ VEC_DIRTY_2,
+ VEC_DIRTY_3
+};
+
+
+GLvector4f *eval1_4f( GLvector4f *dest,
+ GLfloat coord[][4],
+ const GLuint *flags,
+ GLuint dimension,
+ struct gl_1d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ GLfloat (*to)[4] = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ ASSIGN_4V(to[i], 0,0,0,1);
+ horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
+ }
+
+ dest->count = i;
+ dest->size = MAX2(dest->size, dimension);
+ dest->flags |= dirty_flags[dimension];
+ return dest;
+}
+
+
+GLvector1ui *eval1_1ui( GLvector1ui *dest,
+ GLfloat coord[][4],
+ const GLuint *flags,
+ struct gl_1d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ GLuint *to = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat tmp;
+ horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
+ to[i] = (GLuint) (GLint) tmp;
+ }
+
+ dest->count = i;
+ return dest;
+}
+
+GLvector3f *eval1_norm( GLvector3f *dest,
+ GLfloat coord[][4],
+ GLuint *flags, /* not const */
+ struct gl_1d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ GLfloat (*to)[3] = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
+ flags[i+1] |= VERT_NORM; /* reset */
+ }
+
+ dest->count = i;
+ return dest;
+}
+
+GLvector4ub *eval1_color( GLvector4ub *dest,
+ GLfloat coord[][4],
+ GLuint *flags, /* not const */
+ struct gl_1d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ GLubyte (*to)[4] = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat fcolor[4];
+ horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
+ FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
+ flags[i+1] |= VERT_RGBA; /* reset */
+ }
+
+ dest->count = i;
+ return dest;
+}
+
+
+
+
+GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
+ GLvector3f *norm_ptr,
+ GLfloat coord[][4],
+ GLuint *flags,
+ GLuint dimension,
+ struct gl_2d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ const GLfloat v1 = map->v1;
+ const GLfloat dv = map->dv;
+ GLfloat (*obj)[4] = obj_ptr->data;
+ GLfloat (*normal)[3] = norm_ptr->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat v = (coord[i][1] - v1) * dv;
+ GLfloat du[4], dv[4];
+
+ ASSIGN_4V(obj[i], 0,0,0,1);
+ de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
+ map->Uorder, map->Vorder);
+
+ CROSS3(normal[i], du, dv);
+ NORMALIZE_3FV(normal[i]);
+ flags[i+1] |= VERT_NORM;
+ }
+
+ obj_ptr->count = i;
+ obj_ptr->size = MAX2(obj_ptr->size, dimension);
+ obj_ptr->flags |= dirty_flags[dimension];
+ return obj_ptr;
+}
+
+
+GLvector4f *eval2_4f( GLvector4f *dest,
+ GLfloat coord[][4],
+ const GLuint *flags,
+ GLuint dimension,
+ struct gl_2d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ const GLfloat v1 = map->v1;
+ const GLfloat dv = map->dv;
+ GLfloat (*to)[4] = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat v = (coord[i][1] - v1) * dv;
+ horner_bezier_surf(map->Points, to[i], u, v, dimension,
+ map->Uorder, map->Vorder);
+ }
+
+ dest->count = i;
+ dest->size = MAX2(dest->size, dimension);
+ dest->flags |= dirty_flags[dimension];
+ return dest;
+}
+
+
+GLvector3f *eval2_norm( GLvector3f *dest,
+ GLfloat coord[][4],
+ GLuint *flags,
+ struct gl_2d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ const GLfloat v1 = map->v1;
+ const GLfloat dv = map->dv;
+ GLfloat (*to)[3] = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat v = (coord[i][1] - v1) * dv;
+ horner_bezier_surf(map->Points, to[i], u, v, 3,
+ map->Uorder, map->Vorder);
+ flags[i+1] |= VERT_NORM; /* reset */
+ }
+
+ dest->count = i;
+ return dest;
+}
+
+
+GLvector1ui *eval2_1ui( GLvector1ui *dest,
+ GLfloat coord[][4],
+ const GLuint *flags,
+ struct gl_2d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ const GLfloat v1 = map->v1;
+ const GLfloat dv = map->dv;
+ GLuint *to = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat v = (coord[i][1] - v1) * dv;
+ GLfloat tmp;
+ horner_bezier_surf(map->Points, &tmp, u, v, 1,
+ map->Uorder, map->Vorder);
+
+ to[i] = (GLuint) (GLint) tmp;
+ }
+
+ dest->count = i;
+ return dest;
+}
+
+
+
+GLvector4ub *eval2_color( GLvector4ub *dest,
+ GLfloat coord[][4],
+ GLuint *flags,
+ struct gl_2d_map *map )
+{
+ const GLfloat u1 = map->u1;
+ const GLfloat du = map->du;
+ const GLfloat v1 = map->v1;
+ const GLfloat dv = map->dv;
+ GLubyte (*to)[4] = dest->data;
+ GLuint i;
+
+ for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
+ GLfloat u = (coord[i][0] - u1) * du;
+ GLfloat v = (coord[i][1] - v1) * dv;
+ GLfloat fcolor[4];
+ horner_bezier_surf(map->Points, fcolor, u, v, 4,
+ map->Uorder, map->Vorder);
+ FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
+ flags[i+1] |= VERT_RGBA; /* reset */
+ }
+
+ dest->count = i;
+ return dest;
+}
+
+
+GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
+ const GLuint *flags)
+{
+ GLfloat (*to)[4] = out->data;
+ GLfloat (*from)[4] = in->data;
+ GLuint i;
+
+ for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (!(flags[i] & VERT_EVAL_ANY))
+ COPY_4FV( to[i], from[i] );
+
+ return out;
+}
+
+GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
+ const GLuint *flags)
+{
+ GLfloat (*to)[3] = out->data;
+ GLfloat (*from)[3] = in->data;
+ GLuint i;
+
+ for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (!(flags[i] & VERT_EVAL_ANY))
+ COPY_3V( to[i], from[i] );
+
+ return out;
+}
+
+GLvector4ub *copy_4ub( GLvector4ub *out, CONST GLvector4ub *in,
+ const GLuint *flags )
+{
+ GLubyte (*to)[4] = out->data;
+ GLubyte (*from)[4] = in->data;
+ GLuint i;
+
+ for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (!(flags[i] & VERT_EVAL_ANY))
+ COPY_4UBV( to[i], from[i] );
+
+ return out;
+}
+
+GLvector1ui *copy_1ui( GLvector1ui *out, CONST GLvector1ui *in,
+ const GLuint *flags )
+{
+ GLuint *to = out->data;
+ CONST GLuint *from = in->data;
+ GLuint i;
+
+ for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
+ if (!(flags[i] & VERT_EVAL_ANY))
+ to[i] = from[i];
+
+ return out;
+}
+
+
+/* KW: Rewrote this to perform eval on a whole buffer at once.
+ * Only evaluates active data items, and avoids scribbling
+ * the source buffer if we are running from a display list.
+ *
+ * If the user (in this case looser) sends eval coordinates
+ * or runs a display list containing eval coords with no
+ * vertex maps enabled, we have to either copy all non-eval
+ * data to a new buffer, or find a way of working around
+ * the eval data. I choose the second option.
+ *
+ * KW: This code not reached by cva - use IM to access storage.
+ */
+void gl_eval_vb( struct vertex_buffer *VB )
+{
+ struct immediate *IM = VB->IM;
+ GLcontext *ctx = VB->ctx;
+ GLuint req = ctx->CVA.elt.inputs;
+ GLfloat (*coord)[4] = VB->ObjPtr->data;
+ GLuint *flags = VB->Flag;
+ GLuint new_flags = 0;
+
+
+ GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
+ GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
+ GLuint all_eval = VB->AndFlag & VERT_EVAL_ANY;
+
+ /* Handle the degenerate cases.
+ */
+ if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
+ VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
+ VB->EarlyCull = 0;
+ any_eval1 = GL_FALSE;
+ }
+
+ if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
+ VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
+ VB->EarlyCull = 0;
+ any_eval2 = GL_FALSE;
+ }
+
+ /* KW: This really is a degenerate case - doing this disables
+ * culling, and causes dummy values for the missing vertices to be
+ * transformed and clip tested. It also forces the individual
+ * cliptesting of each primitive in vb_render. I wish there was a
+ * nice alternative, but I can't say I want to put effort into
+ * optimizing such a bad usage of the library - I'd much rather
+ * work on useful changes.
+ */
+ if (VB->PurgeFlags) {
+ if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB_START;
+ gl_purge_vertices( VB );
+ if (!any_eval1 && !any_eval2) return;
+ } else
+ VB->IndirectCount = VB->Count;
+
+ /* Translate points into coords.
+ */
+ if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
+ {
+ eval_points1( IM->Obj, coord, flags,
+ ctx->Eval.MapGrid1du,
+ ctx->Eval.MapGrid1u1);
+
+ coord = IM->Obj;
+ }
+
+ if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
+ {
+ eval_points2( IM->Obj, coord, flags,
+ ctx->Eval.MapGrid2du,
+ ctx->Eval.MapGrid2u1,
+ ctx->Eval.MapGrid2dv,
+ ctx->Eval.MapGrid2v1 );
+
+ coord = IM->Obj;
+ }
+
+ /* Perform the evaluations on active data elements.
+ */
+ if (req & VERT_INDEX)
+ {
+ GLvector1ui *in_index = VB->IndexPtr;
+ GLvector1ui *out_index = &IM->v.Index;
+
+ if (ctx->Eval.Map1Index && any_eval1)
+ VB->IndexPtr = eval1_1ui( out_index, coord, flags,
+ &ctx->EvalMap.Map1Index );
+
+ if (ctx->Eval.Map2Index && any_eval2)
+ VB->IndexPtr = eval2_1ui( out_index, coord, flags,
+ &ctx->EvalMap.Map2Index );
+
+ if (VB->IndexPtr != in_index) {
+ new_flags |= VERT_INDEX;
+ if (!all_eval)
+ VB->IndexPtr = copy_1ui( out_index, in_index, flags );
+ }
+ }
+
+ if (req & VERT_RGBA)
+ {
+ GLvector4ub *in_color = VB->ColorPtr;
+ GLvector4ub *out_color = &IM->v.Color;
+
+ if (ctx->Eval.Map1Color4 && any_eval1)
+ VB->ColorPtr = eval1_color( out_color, coord, flags,
+ &ctx->EvalMap.Map1Color4 );
+
+ if (ctx->Eval.Map2Color4 && any_eval2)
+ VB->ColorPtr = eval2_color( out_color, coord, flags,
+ &ctx->EvalMap.Map2Color4 );
+
+ if (VB->ColorPtr != in_color) {
+ new_flags |= VERT_RGBA;
+ if (!all_eval)
+ VB->ColorPtr = copy_4ub( out_color, in_color, flags );
+ }
+
+ VB->Color[0] = VB->Color[1] = VB->ColorPtr;
+ }
+
+
+ if (req & VERT_NORM)
+ {
+ GLvector3f *in_normal = VB->NormalPtr;
+ GLvector3f *out_normal = &IM->v.Normal;
+
+ if (ctx->Eval.Map1Normal && any_eval1)
+ VB->NormalPtr = eval1_norm( out_normal, coord, flags,
+ &ctx->EvalMap.Map1Normal );
+
+ if (ctx->Eval.Map2Normal && any_eval2)
+ VB->NormalPtr = eval2_norm( out_normal, coord, flags,
+ &ctx->EvalMap.Map2Normal );
+
+ if (VB->NormalPtr != in_normal) {
+ new_flags |= VERT_NORM;
+ if (!all_eval)
+ VB->NormalPtr = copy_3f( out_normal, in_normal, flags );
+ }
+ }
+
+
+ if (req & VERT_TEX_ANY(0))
+ {
+ GLvector4f *tc = VB->TexCoordPtr[0];
+ GLvector4f *in = tc;
+ GLvector4f *out = &IM->v.TexCoord[0];
+
+ if (any_eval1) {
+ if (ctx->Eval.Map1TextureCoord4)
+ tc = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Texture4);
+ else if (ctx->Eval.Map1TextureCoord3)
+ tc = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Texture3);
+ else if (ctx->Eval.Map1TextureCoord2)
+ tc = eval1_4f( out, coord, flags, 2, &ctx->EvalMap.Map1Texture2);
+ else if (ctx->Eval.Map1TextureCoord1)
+ tc = eval1_4f( out, coord, flags, 1, &ctx->EvalMap.Map1Texture1);
+ }
+
+ if (any_eval2) {
+ if (ctx->Eval.Map2TextureCoord4)
+ tc = eval2_4f( out, coord, flags, 4, &ctx->EvalMap.Map2Texture4);
+ else if (ctx->Eval.Map2TextureCoord3)
+ tc = eval2_4f( out, coord, flags, 3, &ctx->EvalMap.Map2Texture3);
+ else if (ctx->Eval.Map2TextureCoord2)
+ tc = eval2_4f( out, coord, flags, 2, &ctx->EvalMap.Map2Texture2);
+ else if (ctx->Eval.Map2TextureCoord1)
+ tc = eval2_4f( out, coord, flags, 1, &ctx->EvalMap.Map2Texture1);
+ }
+
+ if (tc != in) {
+ new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
+ if (!all_eval)
+ tc = copy_4f( out, in, flags );
+ }
+
+ VB->TexCoordPtr[0] = tc;
+ }
+
+
+ {
+ GLvector4f *in = VB->ObjPtr;
+ GLvector4f *out = &IM->v.Obj;
+ GLvector4f *obj = in;
+
+ if (any_eval1) {
+ if (ctx->Eval.Map1Vertex4)
+ obj = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Vertex4);
+ else
+ obj = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Vertex3);
+ }
+
+ if (any_eval2) {
+ if (ctx->Eval.Map2Vertex4)
+ {
+ if (ctx->Eval.AutoNormal && (req & VERT_NORM))
+ obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 4,
+ &ctx->EvalMap.Map2Vertex4 );
+ else
+ obj = eval2_4f( out, coord, flags, 4,
+ &ctx->EvalMap.Map2Vertex4);
+ }
+ else if (ctx->Eval.Map2Vertex3)
+ {
+ if (ctx->Eval.AutoNormal && (req & VERT_NORM))
+ obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 3,
+ &ctx->EvalMap.Map2Vertex3 );
+ else
+ obj = eval2_4f( out, coord, flags, 3,
+ &ctx->EvalMap.Map2Vertex3 );
+ }
+ }
+
+ if (obj != in && !all_eval)
+ obj = copy_4f( out, in, flags );
+
+ VB->ObjPtr = obj;
+ }
+
+ if (new_flags) {
+ GLuint *oldflags = VB->Flag;
+ GLuint *flags = VB->Flag = VB->EvaluatedFlags;
+ GLuint i;
+ GLuint count = VB->Count;
+
+ if (!flags) {
+ VB->EvaluatedFlags = (GLuint *)malloc(VB->Size * sizeof(GLuint));
+ flags = VB->Flag = VB->EvaluatedFlags;
+ }
+
+ if (all_eval) {
+ for (i = 0 ; i < count ; i++)
+ flags[i] = oldflags[i] | new_flags;
+ VB->AndFlag |= new_flags;
+ } else {
+ GLuint andflag = ~0;
+ for (i = 0 ; i < count ; i++) {
+ if (oldflags[i] & VERT_EVAL_ANY)
+ flags[i] = oldflags[i] | new_flags;
+ andflag &= flags[i];
+ }
+ VB->AndFlag = andflag;
+ }
+ }
+}
+
+
+void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
+
+ if (un<1) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
+ return;
+ }
+ ctx->Eval.MapGrid1un = un;
+ ctx->Eval.MapGrid1u1 = u1;
+ ctx->Eval.MapGrid1u2 = u2;
+ ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
+}
+
+
+void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
+ GLint vn, GLfloat v1, GLfloat v2 )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
+ if (un<1) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
+ return;
+ }
+ if (vn<1) {
+ gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
+ return;
+ }
+ ctx->Eval.MapGrid2un = un;
+ ctx->Eval.MapGrid2u1 = u1;
+ ctx->Eval.MapGrid2u2 = u2;
+ ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
+ ctx->Eval.MapGrid2vn = vn;
+ ctx->Eval.MapGrid2v1 = v1;
+ ctx->Eval.MapGrid2v2 = v2;
+ ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
+}
+
+
+
+void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
+{
+ GLint i;
+ GLfloat u, du;
+ GLenum prim;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
+
+ switch (mode) {
+ case GL_POINT:
+ prim = GL_POINTS;
+ break;
+ case GL_LINE:
+ prim = GL_LINE_STRIP;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
+ return;
+ }
+
+ /* No effect if vertex maps disabled.
+ */
+ if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
+ return;
+
+ du = ctx->Eval.MapGrid1du;
+ u = ctx->Eval.MapGrid1u1 + i1 * du;
+
+ /* KW: Could short-circuit this to avoid the immediate mechanism.
+ */
+ RESET_IMMEDIATE(ctx);
+
+ gl_Begin( ctx, prim );
+ for (i=i1;i<=i2;i++,u+=du) {
+ gl_EvalCoord1f( ctx, u );
+ }
+ gl_End(ctx);
+}
+
+
+
+void gl_EvalMesh2( GLcontext* ctx,
+ GLenum mode,
+ GLint i1, GLint i2,
+ GLint j1, GLint j2 )
+{
+ GLint i, j;
+ GLfloat u, du, v, dv, v1, u1;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
+
+ /* No effect if vertex maps disabled.
+ */
+ if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
+ return;
+
+ du = ctx->Eval.MapGrid2du;
+ dv = ctx->Eval.MapGrid2dv;
+ v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
+ u1 = ctx->Eval.MapGrid2u1 + i1 * du;
+
+ RESET_IMMEDIATE(ctx);
+
+ switch (mode) {
+ case GL_POINT:
+ gl_Begin( ctx, GL_POINTS );
+ for (v=v1,j=j1;j<=j2;j++,v+=dv) {
+ for (u=u1,i=i1;i<=i2;i++,u+=du) {
+ gl_EvalCoord2f( ctx, u, v );
+ }
+ }
+ gl_End(ctx);
+ break;
+ case GL_LINE:
+ for (v=v1,j=j1;j<=j2;j++,v+=dv) {
+ gl_Begin( ctx, GL_LINE_STRIP );
+ for (u=u1,i=i1;i<=i2;i++,u+=du) {
+ gl_EvalCoord2f( ctx, u, v );
+ }
+ gl_End(ctx);
+ }
+ for (u=u1,i=i1;i<=i2;i++,u+=du) {
+ gl_Begin( ctx, GL_LINE_STRIP );
+ for (v=v1,j=j1;j<=j2;j++,v+=dv) {
+ gl_EvalCoord2f( ctx, u, v );
+ }
+ gl_End(ctx);
+ }
+ break;
+ case GL_FILL:
+ for (v=v1,j=j1;j<j2;j++,v+=dv) {
+ /* NOTE: a quad strip can't be used because the four */
+ /* can't be guaranteed to be coplanar! */
+ gl_Begin( ctx, GL_TRIANGLE_STRIP );
+ for (u=u1,i=i1;i<=i2;i++,u+=du) {
+ gl_EvalCoord2f( ctx, u, v );
+ gl_EvalCoord2f( ctx, u, v+dv );
+ }
+ gl_End(ctx);
+ }
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
+ return;
+ }
+}
+