summaryrefslogtreecommitdiff
path: root/src/gallium/auxiliary/gallivm/lp_bld_sample.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/auxiliary/gallivm/lp_bld_sample.c')
-rw-r--r--src/gallium/auxiliary/gallivm/lp_bld_sample.c755
1 files changed, 564 insertions, 191 deletions
diff --git a/src/gallium/auxiliary/gallivm/lp_bld_sample.c b/src/gallium/auxiliary/gallivm/lp_bld_sample.c
index e89ee7c230..844d1d935b 100644
--- a/src/gallium/auxiliary/gallivm/lp_bld_sample.c
+++ b/src/gallium/auxiliary/gallivm/lp_bld_sample.c
@@ -39,12 +39,52 @@
#include "lp_bld_arit.h"
#include "lp_bld_const.h"
#include "lp_bld_debug.h"
+#include "lp_bld_printf.h"
#include "lp_bld_flow.h"
#include "lp_bld_sample.h"
#include "lp_bld_swizzle.h"
#include "lp_bld_type.h"
+/*
+ * Bri-linear factor. Should be greater than one.
+ */
+#define BRILINEAR_FACTOR 2
+
+
+/**
+ * Does the given texture wrap mode allow sampling the texture border color?
+ * XXX maybe move this into gallium util code.
+ */
+boolean
+lp_sampler_wrap_mode_uses_border_color(unsigned mode,
+ unsigned min_img_filter,
+ unsigned mag_img_filter)
+{
+ switch (mode) {
+ case PIPE_TEX_WRAP_REPEAT:
+ case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
+ case PIPE_TEX_WRAP_MIRROR_REPEAT:
+ case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
+ return FALSE;
+ case PIPE_TEX_WRAP_CLAMP:
+ case PIPE_TEX_WRAP_MIRROR_CLAMP:
+ if (min_img_filter == PIPE_TEX_FILTER_NEAREST &&
+ mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
+ return FALSE;
+ } else {
+ return TRUE;
+ }
+ case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
+ case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
+ return TRUE;
+ default:
+ assert(0 && "unexpected wrap mode");
+ return FALSE;
+ }
+}
+
+
/**
* Initialize lp_sampler_static_state object with the gallium sampler
* and texture state.
@@ -93,31 +133,40 @@ lp_sampler_static_state(struct lp_sampler_static_state *state,
state->wrap_r = sampler->wrap_r;
state->min_img_filter = sampler->min_img_filter;
state->mag_img_filter = sampler->mag_img_filter;
- if (view->last_level) {
+
+ if (view->last_level && sampler->max_lod > 0.0f) {
state->min_mip_filter = sampler->min_mip_filter;
} else {
state->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
}
+ if (state->min_mip_filter != PIPE_TEX_MIPFILTER_NONE) {
+ if (sampler->lod_bias != 0.0f) {
+ state->lod_bias_non_zero = 1;
+ }
+
+ /* If min_lod == max_lod we can greatly simplify mipmap selection.
+ * This is a case that occurs during automatic mipmap generation.
+ */
+ if (sampler->min_lod == sampler->max_lod) {
+ state->min_max_lod_equal = 1;
+ } else {
+ if (sampler->min_lod > 0.0f) {
+ state->apply_min_lod = 1;
+ }
+
+ if (sampler->max_lod < (float)view->last_level) {
+ state->apply_max_lod = 1;
+ }
+ }
+ }
+
state->compare_mode = sampler->compare_mode;
if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
state->compare_func = sampler->compare_func;
}
state->normalized_coords = sampler->normalized_coords;
- state->lod_bias = sampler->lod_bias;
- if (!view->last_level &&
- sampler->min_img_filter == sampler->mag_img_filter) {
- state->min_lod = 0.0f;
- state->max_lod = 0.0f;
- } else {
- state->min_lod = MAX2(sampler->min_lod, 0.0f);
- state->max_lod = sampler->max_lod;
- }
- state->border_color[0] = sampler->border_color[0];
- state->border_color[1] = sampler->border_color[1];
- state->border_color[2] = sampler->border_color[2];
- state->border_color[3] = sampler->border_color[3];
/*
* FIXME: Handle the remainder of pipe_sampler_view.
@@ -126,6 +175,220 @@ lp_sampler_static_state(struct lp_sampler_static_state *state,
/**
+ * Generate code to compute coordinate gradient (rho).
+ * \param ddx partial derivatives of (s, t, r, q) with respect to X
+ * \param ddy partial derivatives of (s, t, r, q) with respect to Y
+ *
+ * XXX: The resulting rho is scalar, so we ignore all but the first element of
+ * derivatives that are passed by the shader.
+ */
+static LLVMValueRef
+lp_build_rho(struct lp_build_sample_context *bld,
+ const LLVMValueRef ddx[4],
+ const LLVMValueRef ddy[4])
+{
+ struct lp_build_context *float_size_bld = &bld->float_size_bld;
+ struct lp_build_context *float_bld = &bld->float_bld;
+ const unsigned dims = bld->dims;
+ LLVMTypeRef i32t = LLVMInt32Type();
+ LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
+ LLVMValueRef index1 = LLVMConstInt(i32t, 1, 0);
+ LLVMValueRef index2 = LLVMConstInt(i32t, 2, 0);
+ LLVMValueRef dsdx, dsdy, dtdx, dtdy, drdx, drdy;
+ LLVMValueRef rho_x, rho_y;
+ LLVMValueRef rho_vec;
+ LLVMValueRef float_size;
+ LLVMValueRef rho;
+
+ dsdx = ddx[0];
+ dsdy = ddy[0];
+
+ if (dims <= 1) {
+ rho_x = dsdx;
+ rho_y = dsdy;
+ }
+ else {
+ rho_x = float_size_bld->undef;
+ rho_y = float_size_bld->undef;
+
+ rho_x = LLVMBuildInsertElement(bld->builder, rho_x, dsdx, index0, "");
+ rho_y = LLVMBuildInsertElement(bld->builder, rho_y, dsdy, index0, "");
+
+ dtdx = ddx[1];
+ dtdy = ddy[1];
+
+ rho_x = LLVMBuildInsertElement(bld->builder, rho_x, dtdx, index1, "");
+ rho_y = LLVMBuildInsertElement(bld->builder, rho_y, dtdy, index1, "");
+
+ if (dims >= 3) {
+ drdx = ddx[2];
+ drdy = ddy[2];
+
+ rho_x = LLVMBuildInsertElement(bld->builder, rho_x, drdx, index2, "");
+ rho_y = LLVMBuildInsertElement(bld->builder, rho_y, drdy, index2, "");
+ }
+ }
+
+ rho_x = lp_build_abs(float_size_bld, rho_x);
+ rho_y = lp_build_abs(float_size_bld, rho_y);
+
+ rho_vec = lp_build_max(float_size_bld, rho_x, rho_y);
+
+ float_size = lp_build_int_to_float(float_size_bld, bld->int_size);
+
+ rho_vec = lp_build_mul(float_size_bld, rho_vec, float_size);
+
+ if (dims <= 1) {
+ rho = rho_vec;
+ }
+ else {
+ if (dims >= 2) {
+ LLVMValueRef rho_s, rho_t, rho_r;
+
+ rho_s = LLVMBuildExtractElement(bld->builder, rho_vec, index0, "");
+ rho_t = LLVMBuildExtractElement(bld->builder, rho_vec, index1, "");
+
+ rho = lp_build_max(float_bld, rho_s, rho_t);
+
+ if (dims >= 3) {
+ rho_r = LLVMBuildExtractElement(bld->builder, rho_vec, index0, "");
+ rho = lp_build_max(float_bld, rho, rho_r);
+ }
+ }
+ }
+
+ return rho;
+}
+
+
+/*
+ * Bri-linear lod computation
+ *
+ * Use a piece-wise linear approximation of log2 such that:
+ * - round to nearest, for values in the neighborhood of -1, 0, 1, 2, etc.
+ * - linear approximation for values in the neighborhood of 0.5, 1.5., etc,
+ * with the steepness specified in 'factor'
+ * - exact result for 0.5, 1.5, etc.
+ *
+ *
+ * 1.0 - /----*
+ * /
+ * /
+ * /
+ * 0.5 - *
+ * /
+ * /
+ * /
+ * 0.0 - *----/
+ *
+ * | |
+ * 2^0 2^1
+ *
+ * This is a technique also commonly used in hardware:
+ * - http://ixbtlabs.com/articles2/gffx/nv40-rx800-3.html
+ *
+ * TODO: For correctness, this should only be applied when texture is known to
+ * have regular mipmaps, i.e., mipmaps derived from the base level.
+ *
+ * TODO: This could be done in fixed point, where applicable.
+ */
+static void
+lp_build_brilinear_lod(struct lp_build_context *bld,
+ LLVMValueRef lod,
+ double factor,
+ LLVMValueRef *out_lod_ipart,
+ LLVMValueRef *out_lod_fpart)
+{
+ LLVMValueRef lod_fpart;
+ double pre_offset = (factor - 0.5)/factor - 0.5;
+ double post_offset = 1 - factor;
+
+ if (0) {
+ lp_build_printf(bld->builder, "lod = %f\n", lod);
+ }
+
+ lod = lp_build_add(bld, lod,
+ lp_build_const_vec(bld->type, pre_offset));
+
+ lp_build_ifloor_fract(bld, lod, out_lod_ipart, &lod_fpart);
+
+ lod_fpart = lp_build_mul(bld, lod_fpart,
+ lp_build_const_vec(bld->type, factor));
+
+ lod_fpart = lp_build_add(bld, lod_fpart,
+ lp_build_const_vec(bld->type, post_offset));
+
+ /*
+ * It's not necessary to clamp lod_fpart since:
+ * - the above expression will never produce numbers greater than one.
+ * - the mip filtering branch is only taken if lod_fpart is positive
+ */
+
+ *out_lod_fpart = lod_fpart;
+
+ if (0) {
+ lp_build_printf(bld->builder, "lod_ipart = %i\n", *out_lod_ipart);
+ lp_build_printf(bld->builder, "lod_fpart = %f\n\n", *out_lod_fpart);
+ }
+}
+
+
+/*
+ * Combined log2 and brilinear lod computation.
+ *
+ * It's in all identical to calling lp_build_fast_log2() and
+ * lp_build_brilinear_lod() above, but by combining we can compute the interger
+ * and fractional part independently.
+ */
+static void
+lp_build_brilinear_rho(struct lp_build_context *bld,
+ LLVMValueRef rho,
+ double factor,
+ LLVMValueRef *out_lod_ipart,
+ LLVMValueRef *out_lod_fpart)
+{
+ LLVMValueRef lod_ipart;
+ LLVMValueRef lod_fpart;
+
+ const double pre_factor = (2*factor - 0.5)/(M_SQRT2*factor);
+ const double post_offset = 1 - 2*factor;
+
+ assert(bld->type.floating);
+
+ assert(lp_check_value(bld->type, rho));
+
+ /*
+ * The pre factor will make the intersections with the exact powers of two
+ * happen precisely where we want then to be, which means that the integer
+ * part will not need any post adjustments.
+ */
+ rho = lp_build_mul(bld, rho,
+ lp_build_const_vec(bld->type, pre_factor));
+
+ /* ipart = ifloor(log2(rho)) */
+ lod_ipart = lp_build_extract_exponent(bld, rho, 0);
+
+ /* fpart = rho / 2**ipart */
+ lod_fpart = lp_build_extract_mantissa(bld, rho);
+
+ lod_fpart = lp_build_mul(bld, lod_fpart,
+ lp_build_const_vec(bld->type, factor));
+
+ lod_fpart = lp_build_add(bld, lod_fpart,
+ lp_build_const_vec(bld->type, post_offset));
+
+ /*
+ * Like lp_build_brilinear_lod, it's not necessary to clamp lod_fpart since:
+ * - the above expression will never produce numbers greater than one.
+ * - the mip filtering branch is only taken if lod_fpart is positive
+ */
+
+ *out_lod_ipart = lod_ipart;
+ *out_lod_fpart = lod_fpart;
+}
+
+
+/**
* Generate code to compute texture level of detail (lambda).
* \param ddx partial derivatives of (s, t, r, q) with respect to X
* \param ddy partial derivatives of (s, t, r, q) with respect to Y
@@ -138,83 +401,81 @@ lp_sampler_static_state(struct lp_sampler_static_state *state,
* XXX: The resulting lod is scalar, so ignore all but the first element of
* derivatives, lod_bias, etc that are passed by the shader.
*/
-LLVMValueRef
+void
lp_build_lod_selector(struct lp_build_sample_context *bld,
+ unsigned unit,
const LLVMValueRef ddx[4],
const LLVMValueRef ddy[4],
LLVMValueRef lod_bias, /* optional */
LLVMValueRef explicit_lod, /* optional */
- LLVMValueRef width,
- LLVMValueRef height,
- LLVMValueRef depth)
+ unsigned mip_filter,
+ LLVMValueRef *out_lod_ipart,
+ LLVMValueRef *out_lod_fpart)
{
- if (bld->static_state->min_lod == bld->static_state->max_lod) {
+ struct lp_build_context *float_bld = &bld->float_bld;
+ LLVMValueRef lod;
+
+ *out_lod_ipart = bld->int_bld.zero;
+ *out_lod_fpart = bld->float_bld.zero;
+
+ if (bld->static_state->min_max_lod_equal) {
/* User is forcing sampling from a particular mipmap level.
* This is hit during mipmap generation.
*/
- return LLVMConstReal(LLVMFloatType(), bld->static_state->min_lod);
+ LLVMValueRef min_lod =
+ bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);
+
+ lod = min_lod;
}
else {
- struct lp_build_context *float_bld = &bld->float_bld;
- LLVMValueRef sampler_lod_bias = LLVMConstReal(LLVMFloatType(),
- bld->static_state->lod_bias);
- LLVMValueRef min_lod = LLVMConstReal(LLVMFloatType(),
- bld->static_state->min_lod);
- LLVMValueRef max_lod = LLVMConstReal(LLVMFloatType(),
- bld->static_state->max_lod);
+ LLVMValueRef sampler_lod_bias =
+ bld->dynamic_state->lod_bias(bld->dynamic_state, bld->builder, unit);
LLVMValueRef index0 = LLVMConstInt(LLVMInt32Type(), 0, 0);
- LLVMValueRef lod;
if (explicit_lod) {
lod = LLVMBuildExtractElement(bld->builder, explicit_lod,
index0, "");
}
else {
- const int dims = texture_dims(bld->static_state->target);
- LLVMValueRef dsdx, dsdy;
- LLVMValueRef dtdx = NULL, dtdy = NULL, drdx = NULL, drdy = NULL;
LLVMValueRef rho;
- dsdx = LLVMBuildExtractElement(bld->builder, ddx[0], index0, "dsdx");
- dsdx = lp_build_abs(float_bld, dsdx);
- dsdy = LLVMBuildExtractElement(bld->builder, ddy[0], index0, "dsdy");
- dsdy = lp_build_abs(float_bld, dsdy);
- if (dims > 1) {
- dtdx = LLVMBuildExtractElement(bld->builder, ddx[1], index0, "dtdx");
- dtdx = lp_build_abs(float_bld, dtdx);
- dtdy = LLVMBuildExtractElement(bld->builder, ddy[1], index0, "dtdy");
- dtdy = lp_build_abs(float_bld, dtdy);
- if (dims > 2) {
- drdx = LLVMBuildExtractElement(bld->builder, ddx[2], index0, "drdx");
- drdx = lp_build_abs(float_bld, drdx);
- drdy = LLVMBuildExtractElement(bld->builder, ddy[2], index0, "drdy");
- drdy = lp_build_abs(float_bld, drdy);
- }
- }
+ rho = lp_build_rho(bld, ddx, ddy);
- /* Compute rho = max of all partial derivatives scaled by texture size.
- * XXX this could be vectorized somewhat
+ /*
+ * Compute lod = log2(rho)
*/
- rho = LLVMBuildFMul(bld->builder,
- lp_build_max(float_bld, dsdx, dsdy),
- lp_build_int_to_float(float_bld, width), "");
- if (dims > 1) {
- LLVMValueRef max;
- max = LLVMBuildFMul(bld->builder,
- lp_build_max(float_bld, dtdx, dtdy),
- lp_build_int_to_float(float_bld, height), "");
- rho = lp_build_max(float_bld, rho, max);
- if (dims > 2) {
- max = LLVMBuildFMul(bld->builder,
- lp_build_max(float_bld, drdx, drdy),
- lp_build_int_to_float(float_bld, depth), "");
- rho = lp_build_max(float_bld, rho, max);
+
+ if (!lod_bias &&
+ !bld->static_state->lod_bias_non_zero &&
+ !bld->static_state->apply_max_lod &&
+ !bld->static_state->apply_min_lod) {
+ /*
+ * Special case when there are no post-log2 adjustments, which
+ * saves instructions but keeping the integer and fractional lod
+ * computations separate from the start.
+ */
+
+ if (mip_filter == PIPE_TEX_MIPFILTER_NONE ||
+ mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
+ *out_lod_ipart = lp_build_ilog2(float_bld, rho);
+ *out_lod_fpart = bld->float_bld.zero;
+ return;
+ }
+ if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR &&
+ !(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
+ lp_build_brilinear_rho(float_bld, rho, BRILINEAR_FACTOR,
+ out_lod_ipart, out_lod_fpart);
+ return;
}
}
- /* compute lod = log2(rho) */
- lod = lp_build_log2(float_bld, rho);
+ if (0) {
+ lod = lp_build_log2(float_bld, rho);
+ }
+ else {
+ lod = lp_build_fast_log2(float_bld, rho);
+ }
/* add shader lod bias */
if (lod_bias) {
@@ -225,13 +486,43 @@ lp_build_lod_selector(struct lp_build_sample_context *bld,
}
/* add sampler lod bias */
- lod = LLVMBuildFAdd(bld->builder, lod, sampler_lod_bias, "sampler_lod_bias");
+ if (bld->static_state->lod_bias_non_zero)
+ lod = LLVMBuildFAdd(bld->builder, lod, sampler_lod_bias, "sampler_lod_bias");
+
/* clamp lod */
- lod = lp_build_clamp(float_bld, lod, min_lod, max_lod);
+ if (bld->static_state->apply_max_lod) {
+ LLVMValueRef max_lod =
+ bld->dynamic_state->max_lod(bld->dynamic_state, bld->builder, unit);
- return lod;
+ lod = lp_build_min(float_bld, lod, max_lod);
+ }
+ if (bld->static_state->apply_min_lod) {
+ LLVMValueRef min_lod =
+ bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);
+
+ lod = lp_build_max(float_bld, lod, min_lod);
+ }
+ }
+
+ if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
+ if (!(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
+ lp_build_brilinear_lod(float_bld, lod, BRILINEAR_FACTOR,
+ out_lod_ipart, out_lod_fpart);
+ }
+ else {
+ lp_build_ifloor_fract(float_bld, lod, out_lod_ipart, out_lod_fpart);
+ }
+
+ lp_build_name(*out_lod_fpart, "lod_fpart");
+ }
+ else {
+ *out_lod_ipart = lp_build_iround(float_bld, lod);
}
+
+ lp_build_name(*out_lod_ipart, "lod_ipart");
+
+ return;
}
@@ -245,10 +536,9 @@ lp_build_lod_selector(struct lp_build_sample_context *bld,
void
lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
unsigned unit,
- LLVMValueRef lod,
+ LLVMValueRef lod_ipart,
LLVMValueRef *level_out)
{
- struct lp_build_context *float_bld = &bld->float_bld;
struct lp_build_context *int_bld = &bld->int_bld;
LLVMValueRef last_level, level;
@@ -258,7 +548,7 @@ lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
bld->builder, unit);
/* convert float lod to integer */
- level = lp_build_iround(float_bld, lod);
+ level = lod_ipart;
/* clamp level to legal range of levels */
*level_out = lp_build_clamp(int_bld, level, zero, last_level);
@@ -273,43 +563,77 @@ lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
void
lp_build_linear_mip_levels(struct lp_build_sample_context *bld,
unsigned unit,
- LLVMValueRef lod,
+ LLVMValueRef lod_ipart,
+ LLVMValueRef *lod_fpart_inout,
LLVMValueRef *level0_out,
- LLVMValueRef *level1_out,
- LLVMValueRef *weight_out)
+ LLVMValueRef *level1_out)
{
- struct lp_build_context *float_bld = &bld->float_bld;
+ LLVMBuilderRef builder = bld->builder;
struct lp_build_context *int_bld = &bld->int_bld;
- LLVMValueRef last_level, level;
+ struct lp_build_context *float_bld = &bld->float_bld;
+ LLVMValueRef last_level;
+ LLVMValueRef clamp_min;
+ LLVMValueRef clamp_max;
+
+ *level0_out = lod_ipart;
+ *level1_out = lp_build_add(int_bld, lod_ipart, int_bld->one);
last_level = bld->dynamic_state->last_level(bld->dynamic_state,
bld->builder, unit);
- /* convert float lod to integer */
- level = lp_build_ifloor(float_bld, lod);
-
- /* compute level 0 and clamp to legal range of levels */
- *level0_out = lp_build_clamp(int_bld, level,
- int_bld->zero,
- last_level);
- /* compute level 1 and clamp to legal range of levels */
- level = lp_build_add(int_bld, level, int_bld->one);
- *level1_out = lp_build_clamp(int_bld, level,
- int_bld->zero,
- last_level);
-
- *weight_out = lp_build_fract(float_bld, lod);
+ /*
+ * Clamp both lod_ipart and lod_ipart + 1 to [0, last_level], with the
+ * minimum number of comparisons, and zeroing lod_fpart in the extreme
+ * ends in the process.
+ */
+
+ /* lod_ipart < 0 */
+ clamp_min = LLVMBuildICmp(builder, LLVMIntSLT,
+ lod_ipart, int_bld->zero,
+ "clamp_lod_to_zero");
+
+ *level0_out = LLVMBuildSelect(builder, clamp_min,
+ int_bld->zero, *level0_out, "");
+
+ *level1_out = LLVMBuildSelect(builder, clamp_min,
+ int_bld->zero, *level1_out, "");
+
+ *lod_fpart_inout = LLVMBuildSelect(builder, clamp_min,
+ float_bld->zero, *lod_fpart_inout, "");
+
+ /* lod_ipart >= last_level */
+ clamp_max = LLVMBuildICmp(builder, LLVMIntSGE,
+ lod_ipart, last_level,
+ "clamp_lod_to_last");
+
+ *level0_out = LLVMBuildSelect(builder, clamp_max,
+ last_level, *level0_out, "");
+
+ *level1_out = LLVMBuildSelect(builder, clamp_max,
+ last_level, *level1_out, "");
+
+ *lod_fpart_inout = LLVMBuildSelect(builder, clamp_max,
+ float_bld->zero, *lod_fpart_inout, "");
+
+ lp_build_name(*level0_out, "sampler%u_miplevel0", unit);
+ lp_build_name(*level1_out, "sampler%u_miplevel1", unit);
+ lp_build_name(*lod_fpart_inout, "sampler%u_mipweight", unit);
}
+/**
+ * Return pointer to a single mipmap level.
+ * \param data_array array of pointers to mipmap levels
+ * \param level integer mipmap level
+ */
LLVMValueRef
lp_build_get_mipmap_level(struct lp_build_sample_context *bld,
- LLVMValueRef data_array, LLVMValueRef level)
+ LLVMValueRef level)
{
LLVMValueRef indexes[2], data_ptr;
indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
indexes[1] = level;
- data_ptr = LLVMBuildGEP(bld->builder, data_array, indexes, 2, "");
+ data_ptr = LLVMBuildGEP(bld->builder, bld->data_array, indexes, 2, "");
data_ptr = LLVMBuildLoad(bld->builder, data_ptr, "");
return data_ptr;
}
@@ -317,10 +641,10 @@ lp_build_get_mipmap_level(struct lp_build_sample_context *bld,
LLVMValueRef
lp_build_get_const_mipmap_level(struct lp_build_sample_context *bld,
- LLVMValueRef data_array, int level)
+ int level)
{
LLVMValueRef lvl = LLVMConstInt(LLVMInt32Type(), level, 0);
- return lp_build_get_mipmap_level(bld, data_array, lvl);
+ return lp_build_get_mipmap_level(bld, lvl);
}
@@ -329,13 +653,24 @@ lp_build_get_const_mipmap_level(struct lp_build_sample_context *bld,
* Return max(1, base_size >> level);
*/
static LLVMValueRef
-lp_build_minify(struct lp_build_sample_context *bld,
+lp_build_minify(struct lp_build_context *bld,
LLVMValueRef base_size,
LLVMValueRef level)
{
- LLVMValueRef size = LLVMBuildLShr(bld->builder, base_size, level, "minify");
- size = lp_build_max(&bld->int_coord_bld, size, bld->int_coord_bld.one);
- return size;
+ assert(lp_check_value(bld->type, base_size));
+ assert(lp_check_value(bld->type, level));
+
+ if (level == bld->zero) {
+ /* if we're using mipmap level zero, no minification is needed */
+ return base_size;
+ }
+ else {
+ LLVMValueRef size =
+ LLVMBuildLShr(bld->builder, base_size, level, "minify");
+ assert(bld->type.sign);
+ size = lp_build_max(bld, size, bld->one);
+ return size;
+ }
}
@@ -364,71 +699,113 @@ lp_build_get_level_stride_vec(struct lp_build_sample_context *bld,
*/
void
lp_build_mipmap_level_sizes(struct lp_build_sample_context *bld,
- unsigned dims,
- LLVMValueRef width_vec,
- LLVMValueRef height_vec,
- LLVMValueRef depth_vec,
- LLVMValueRef ilevel0,
- LLVMValueRef ilevel1,
- LLVMValueRef row_stride_array,
- LLVMValueRef img_stride_array,
- LLVMValueRef *width0_vec,
- LLVMValueRef *width1_vec,
- LLVMValueRef *height0_vec,
- LLVMValueRef *height1_vec,
- LLVMValueRef *depth0_vec,
- LLVMValueRef *depth1_vec,
- LLVMValueRef *row_stride0_vec,
- LLVMValueRef *row_stride1_vec,
- LLVMValueRef *img_stride0_vec,
- LLVMValueRef *img_stride1_vec)
+ LLVMValueRef ilevel,
+ LLVMValueRef *out_size,
+ LLVMValueRef *row_stride_vec,
+ LLVMValueRef *img_stride_vec)
{
- const unsigned mip_filter = bld->static_state->min_mip_filter;
- LLVMValueRef ilevel0_vec, ilevel1_vec;
+ const unsigned dims = bld->dims;
+ LLVMValueRef ilevel_vec;
- ilevel0_vec = lp_build_broadcast_scalar(&bld->int_coord_bld, ilevel0);
- if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR)
- ilevel1_vec = lp_build_broadcast_scalar(&bld->int_coord_bld, ilevel1);
+ ilevel_vec = lp_build_broadcast_scalar(&bld->int_size_bld, ilevel);
/*
- * Compute width, height, depth at mipmap level 'ilevel0'
+ * Compute width, height, depth at mipmap level 'ilevel'
*/
- *width0_vec = lp_build_minify(bld, width_vec, ilevel0_vec);
+ *out_size = lp_build_minify(&bld->int_size_bld, bld->int_size, ilevel_vec);
+
if (dims >= 2) {
- *height0_vec = lp_build_minify(bld, height_vec, ilevel0_vec);
- *row_stride0_vec = lp_build_get_level_stride_vec(bld,
- row_stride_array,
- ilevel0);
+ *row_stride_vec = lp_build_get_level_stride_vec(bld,
+ bld->row_stride_array,
+ ilevel);
if (dims == 3 || bld->static_state->target == PIPE_TEXTURE_CUBE) {
- *img_stride0_vec = lp_build_get_level_stride_vec(bld,
- img_stride_array,
- ilevel0);
- if (dims == 3) {
- *depth0_vec = lp_build_minify(bld, depth_vec, ilevel0_vec);
- }
+ *img_stride_vec = lp_build_get_level_stride_vec(bld,
+ bld->img_stride_array,
+ ilevel);
}
}
- if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
- /* compute width, height, depth for second mipmap level at 'ilevel1' */
- *width1_vec = lp_build_minify(bld, width_vec, ilevel1_vec);
- if (dims >= 2) {
- *height1_vec = lp_build_minify(bld, height_vec, ilevel1_vec);
- *row_stride1_vec = lp_build_get_level_stride_vec(bld,
- row_stride_array,
- ilevel1);
- if (dims == 3 || bld->static_state->target == PIPE_TEXTURE_CUBE) {
- *img_stride1_vec = lp_build_get_level_stride_vec(bld,
- img_stride_array,
- ilevel1);
- if (dims == 3) {
- *depth1_vec = lp_build_minify(bld, depth_vec, ilevel1_vec);
- }
- }
+}
+
+
+/**
+ * Extract and broadcast texture size.
+ *
+ * @param size_type type of the texture size vector (either
+ * bld->int_size_type or bld->float_size_type)
+ * @param coord_type type of the texture size vector (either
+ * bld->int_coord_type or bld->coord_type)
+ * @param int_size vector with the integer texture size (width, height,
+ * depth)
+ */
+void
+lp_build_extract_image_sizes(struct lp_build_sample_context *bld,
+ struct lp_type size_type,
+ struct lp_type coord_type,
+ LLVMValueRef size,
+ LLVMValueRef *out_width,
+ LLVMValueRef *out_height,
+ LLVMValueRef *out_depth)
+{
+ const unsigned dims = bld->dims;
+ LLVMTypeRef i32t = LLVMInt32Type();
+
+ *out_width = lp_build_extract_broadcast(bld->builder,
+ size_type,
+ coord_type,
+ size,
+ LLVMConstInt(i32t, 0, 0));
+ if (dims >= 2) {
+ *out_height = lp_build_extract_broadcast(bld->builder,
+ size_type,
+ coord_type,
+ size,
+ LLVMConstInt(i32t, 1, 0));
+ if (dims == 3) {
+ *out_depth = lp_build_extract_broadcast(bld->builder,
+ size_type,
+ coord_type,
+ size,
+ LLVMConstInt(i32t, 2, 0));
}
}
}
+/**
+ * Unnormalize coords.
+ *
+ * @param int_size vector with the integer texture size (width, height, depth)
+ */
+void
+lp_build_unnormalized_coords(struct lp_build_sample_context *bld,
+ LLVMValueRef flt_size,
+ LLVMValueRef *s,
+ LLVMValueRef *t,
+ LLVMValueRef *r)
+{
+ const unsigned dims = bld->dims;
+ LLVMValueRef width;
+ LLVMValueRef height;
+ LLVMValueRef depth;
+
+ lp_build_extract_image_sizes(bld,
+ bld->float_size_type,
+ bld->coord_type,
+ flt_size,
+ &width,
+ &height,
+ &depth);
+
+ /* s = s * width, t = t * height */
+ *s = lp_build_mul(&bld->coord_bld, *s, width);
+ if (dims >= 2) {
+ *t = lp_build_mul(&bld->coord_bld, *t, height);
+ if (dims >= 3) {
+ *r = lp_build_mul(&bld->coord_bld, *r, depth);
+ }
+ }
+}
+
/** Helper used by lp_build_cube_lookup() */
static LLVMValueRef
@@ -547,25 +924,16 @@ lp_build_cube_lookup(struct lp_build_sample_context *bld,
rz_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rz, float_bld->zero, "");
{
- struct lp_build_flow_context *flow_ctx;
struct lp_build_if_state if_ctx;
+ LLVMValueRef face_s_var;
+ LLVMValueRef face_t_var;
+ LLVMValueRef face_var;
- flow_ctx = lp_build_flow_create(bld->builder);
- lp_build_flow_scope_begin(flow_ctx);
-
- *face_s = bld->coord_bld.undef;
- *face_t = bld->coord_bld.undef;
- *face = bld->int_bld.undef;
-
- lp_build_name(*face_s, "face_s");
- lp_build_name(*face_t, "face_t");
- lp_build_name(*face, "face");
+ face_s_var = lp_build_alloca(bld->builder, bld->coord_bld.vec_type, "face_s_var");
+ face_t_var = lp_build_alloca(bld->builder, bld->coord_bld.vec_type, "face_t_var");
+ face_var = lp_build_alloca(bld->builder, bld->int_bld.vec_type, "face_var");
- lp_build_flow_scope_declare(flow_ctx, face_s);
- lp_build_flow_scope_declare(flow_ctx, face_t);
- lp_build_flow_scope_declare(flow_ctx, face);
-
- lp_build_if(&if_ctx, flow_ctx, bld->builder, arx_ge_ary_arz);
+ lp_build_if(&if_ctx, bld->builder, arx_ge_ary_arz);
{
/* +/- X face */
LLVMValueRef sign = lp_build_sgn(float_bld, rx);
@@ -575,57 +943,52 @@ lp_build_cube_lookup(struct lp_build_sample_context *bld,
*face = lp_build_cube_face(bld, rx,
PIPE_TEX_FACE_POS_X,
PIPE_TEX_FACE_NEG_X);
+ LLVMBuildStore(bld->builder, *face_s, face_s_var);
+ LLVMBuildStore(bld->builder, *face_t, face_t_var);
+ LLVMBuildStore(bld->builder, *face, face_var);
}
lp_build_else(&if_ctx);
{
- struct lp_build_flow_context *flow_ctx2;
struct lp_build_if_state if_ctx2;
- LLVMValueRef face_s2 = bld->coord_bld.undef;
- LLVMValueRef face_t2 = bld->coord_bld.undef;
- LLVMValueRef face2 = bld->int_bld.undef;
-
- flow_ctx2 = lp_build_flow_create(bld->builder);
- lp_build_flow_scope_begin(flow_ctx2);
- lp_build_flow_scope_declare(flow_ctx2, &face_s2);
- lp_build_flow_scope_declare(flow_ctx2, &face_t2);
- lp_build_flow_scope_declare(flow_ctx2, &face2);
-
ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");
- lp_build_if(&if_ctx2, flow_ctx2, bld->builder, ary_ge_arx_arz);
+ lp_build_if(&if_ctx2, bld->builder, ary_ge_arx_arz);
{
/* +/- Y face */
LLVMValueRef sign = lp_build_sgn(float_bld, ry);
LLVMValueRef ima = lp_build_cube_ima(coord_bld, t);
- face_s2 = lp_build_cube_coord(coord_bld, NULL, -1, s, ima);
- face_t2 = lp_build_cube_coord(coord_bld, sign, -1, r, ima);
- face2 = lp_build_cube_face(bld, ry,
+ *face_s = lp_build_cube_coord(coord_bld, NULL, -1, s, ima);
+ *face_t = lp_build_cube_coord(coord_bld, sign, -1, r, ima);
+ *face = lp_build_cube_face(bld, ry,
PIPE_TEX_FACE_POS_Y,
PIPE_TEX_FACE_NEG_Y);
+ LLVMBuildStore(bld->builder, *face_s, face_s_var);
+ LLVMBuildStore(bld->builder, *face_t, face_t_var);
+ LLVMBuildStore(bld->builder, *face, face_var);
}
lp_build_else(&if_ctx2);
{
/* +/- Z face */
LLVMValueRef sign = lp_build_sgn(float_bld, rz);
LLVMValueRef ima = lp_build_cube_ima(coord_bld, r);
- face_s2 = lp_build_cube_coord(coord_bld, sign, -1, s, ima);
- face_t2 = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
- face2 = lp_build_cube_face(bld, rz,
+ *face_s = lp_build_cube_coord(coord_bld, sign, -1, s, ima);
+ *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
+ *face = lp_build_cube_face(bld, rz,
PIPE_TEX_FACE_POS_Z,
PIPE_TEX_FACE_NEG_Z);
+ LLVMBuildStore(bld->builder, *face_s, face_s_var);
+ LLVMBuildStore(bld->builder, *face_t, face_t_var);
+ LLVMBuildStore(bld->builder, *face, face_var);
}
lp_build_endif(&if_ctx2);
- lp_build_flow_scope_end(flow_ctx2);
- lp_build_flow_destroy(flow_ctx2);
- *face_s = face_s2;
- *face_t = face_t2;
- *face = face2;
}
lp_build_endif(&if_ctx);
- lp_build_flow_scope_end(flow_ctx);
- lp_build_flow_destroy(flow_ctx);
+
+ *face_s = LLVMBuildLoad(bld->builder, face_s_var, "face_s");
+ *face_t = LLVMBuildLoad(bld->builder, face_t_var, "face_t");
+ *face = LLVMBuildLoad(bld->builder, face_var, "face");
}
}
@@ -659,11 +1022,21 @@ lp_build_sample_partial_offset(struct lp_build_context *bld,
* Pixel blocks have power of two dimensions. LLVM should convert the
* rem/div to bit arithmetic.
* TODO: Verify this.
+ * It does indeed BUT it does transform it to scalar (and back) when doing so
+ * (using roughly extract, shift/and, mov, unpack) (llvm 2.7).
+ * The generated code looks seriously unfunny and is quite expensive.
*/
-
+#if 0
LLVMValueRef block_width = lp_build_const_int_vec(bld->type, block_length);
subcoord = LLVMBuildURem(bld->builder, coord, block_width, "");
coord = LLVMBuildUDiv(bld->builder, coord, block_width, "");
+#else
+ unsigned logbase2 = util_unsigned_logbase2(block_length);
+ LLVMValueRef block_shift = lp_build_const_int_vec(bld->type, logbase2);
+ LLVMValueRef block_mask = lp_build_const_int_vec(bld->type, block_length - 1);
+ subcoord = LLVMBuildAnd(bld->builder, coord, block_mask, "");
+ coord = LLVMBuildLShr(bld->builder, coord, block_shift, "");
+#endif
}
offset = lp_build_mul(bld, coord, stride);